The Erdős-Turán property for a class of bases

by

Jaroslav Nešetřil (Praha) and Oriol Serra (Barcelona)

1. Introduction. Given a set $A \subset \mathbb{N}$ let $r_{A}(n)$ denote the number of ordered pairs $\left(a, a^{\prime}\right) \in A \times A$ such that $a+a^{\prime}=n$. Then A is an asymptotic additive basis of order 2 (a basis for short in what follows) if there is $n_{0}=n_{0}(A)$ such that $r_{A}(n) \geq 1$ for each positive integer $n \geq n_{0}$. It was conjectured by Erdős and Turán in 1941 [5] that if A is a basis, then

$$
\limsup _{n \rightarrow \infty} r_{A}(n)=\infty
$$

An excellent account of this and related problems is given by Sárközy and Sós [11] (see also [3]).

Not much is known about this famous conjecture. It can be easily shown that if a set of positive integers A satisfies $\lim \sup _{n \rightarrow \infty}|A(n)| n^{-1 / 2}=\infty$, where $A(n)=A \cap[1, n]$, then $r_{A}(n)$ cannot be bounded. Indeed, if $r_{A}(n) \leq g$ for all $n \in \mathbb{N}$ and $A_{n}(x)=\sum_{a \in A(n)} x^{a}$, then $A_{n}^{2}(x)=\sum_{i \geq 0} r_{A(n)}(i) x^{i}$ and

$$
|A(n)|^{2}=A_{n}^{2}(1)=\sum_{i \geq 1} r_{A(n)}(i) \leq 2 n g
$$

On the other hand, the counting function of a basis must satisfy $|A(n)|=$ $\Omega\left(n^{1 / 2}\right)$, since $|A(n)|^{2}>|A(n)+A(n)| \geq n-n_{0}(A)$ for some $n_{0}(A)$. More explicit quantitative expressions of both facts can be found for instance in [7]. Therefore, the Erdős-Turán conjecture is open for bases whose counting function satisfies $0<\limsup |A(n)| / n^{1 / 2}<\infty$, called thin bases. The first examples of thin bases were given by Cassels, Stöhr and Raikov (see e.g. [6]). More recent constructions were provided by Hofmeister [7]. In all these examples the constructed bases either contain arbitrarily large arithmetic progressions or contain elements of the form $\sum_{i \in E} x_{i} d^{i}$, $d \geq 2$, for arbitrarily large subsets $E \subset \mathbb{N}$ and all possible choices of $x_{i} \in\{0, r\}$ for some $r \neq 0$. In both cases we trivially see that $r_{A}(n)$ is not bounded.

[^0]Erdős [2] showed that the function $r_{A}(n)$ can grow slowly. More precisely, he showed that there exist bases A for which

$$
c_{1} \log n \leq r_{A}(n) \leq c_{2} \log n, \quad n \geq n_{0}(A)
$$

for some constants $c_{1}, c_{2}>0$. This result may explain the difficulties involved in the Erdős-Turán conjecture.

In this note we prove the validity of the Erdős-Turán conjecture for a class of "bounded" bases. The binary support of a positive integer n is the subset $S(n) \subset \mathbb{N} \cup\{0\}$ of its binary expansion

$$
n=\sum_{i \in S(n)} 2^{i}
$$

We say that $A \subset \mathbb{N}$ is bounded if there is a function f such that for each $n \in A+A$ there is a pair $x, y \in A$ with

$$
n=x+y, \quad|S(x) \cup S(y)| \leq f(|S(n)|)
$$

For instance, if the binary expansion of each element in A has no two consecutive 1 's, then A is a bounded set with $f(n)=n$.

We prove the following result.
Theorem 1. Let A be a bounded asymptotic basis of order 2. Then

$$
\limsup _{n \rightarrow \infty} r_{A}(n)=\infty
$$

In fact we prove a more general form of Theorem 1. Let us fix a positive integer $h \geq 2$ and let $r_{A}^{(h)}(n)$ denote the number of solutions of $n=a_{1}+$ $\cdots+a_{h}$ with $a_{1}, \ldots, a_{h} \in A$. We say that A has the h-Erdös-Turán property (h-ET for short) if $r_{A}^{(h)}(n)$ is unbounded. The set A is an asymptotic additive basis of order h if every sufficiently large integer can be expressed as the sum of h elements in $A \cup\{0\}$ and h is the minimum positive integer with this property. We shall omit the reference to h in the above definitions when $h=2$. We prove the next result, for which the precise (and more technical) notion of (d, h)-bounded basis is explained in Section 2.

Theorem 2. Let A be an asymptotic additive basis for \mathbb{N} of order $h \geq 2$ and $d \geq 2$. If A is (d, h)-bounded then it has the h-Erdős-Turán property.

This generalizes Theorem 1, since we shall see later that every (2, 2)-basis is a bounded basis.

We tested bounded bases in the context of other bases-related results, both additive and multiplicative. For example we have the following:

The Erdős-Newman problem [4] asks for the existence of a set A with $\limsup _{n \rightarrow \infty} r_{A}(n)=k$ such that, for every finite partition $A=A_{1} \cup \cdots \cup A_{r}$, we have $\limsup r_{A_{i}}(n)=k$ for some i. The problem has a positive answer as proved by Nešetřil and Rödl [10]. A similar question can be asked when
$\limsup r_{A}(n)=\infty$. The method we use in the proof of Theorem 2 gives the following result.

Theorem 3. Let $A=A_{1} \cup \cdots \cup A_{r}$ be a partition of a (d, h)-bounded additive basis of order $h \geq 2$ into a finite number of parts. Then one of the parts has the h-ET property.

Erdős also proposed the following strengthening of the Erdős-Turán conjecture: if A is a set of positive integers satisfying $|A(n)|=\Omega\left(n^{1 / 2}\right)$ then A has the ET property, whether it is a basis or not. If that is true then Theorem 3 follows for a basis of order 2.

The method we use to prove Theorems 2 and 3 is inspired by the proof that Nešetřil and Rödl [10] gave for the multiplicative analog of the ErdősTurán conjecture. This was first proved by Erdős [1] in 1964:

Theorem 4. Suppose that every positive integer can be written as a product of two elements in a set $A \subset \mathbb{N}$. Then, for every $m \in \mathbb{N}$, there exists a positive integer n which can be written as a product of two elements in A in at least m different ways.

It is worth noting that the proof of Theorem 4 given in [10] can be extended to multiplicative bases of \mathbb{Z}. However the situation is strikingly different for additive bases of \mathbb{Z} or, more generally, in any linearly ordered Abelian group. Nathanson [9] proves that for an arbitrary function $r: \mathbb{Z} \cup$ $\{\infty\} \rightarrow \mathbb{N}_{0}$ with $r^{-1}(0)$ finite there is an additive basis A of order 2 such that $r_{A}(x)=r(x)$ for all but a finite number of $x \in \mathbb{Z}$. As shown by Nathanson, a greedy algorithm provides a basis for \mathbb{Z} with $r_{A}(n)=1$ for all $n \in \mathbb{Z}$. A similar result holds when restricted to bounded bases.

Theorem 5. There is a bounded basis of \mathbb{Z} satisfying $r_{A}(n)=1$ for each $n \in \mathbb{Z}$.

Thus while the definition of bounded basis and the proofs of Theorems 2 and 3 were inspired by the multiplicative versions of the Erdős-Turán conjecture which is valid both in \mathbb{N} and \mathbb{Z}, this notion is sensitive enough to separate \mathbb{N} and \mathbb{Z} in the additive case.

In the same vein, Theorem 3 is no longer true in \mathbb{Z}. We can construct an additive basis A for \mathbb{Z} with a prescribed function $r_{A}(n)$, even with the ET property, but which can be partitioned into two B_{2}^{1} sequences.

Theorem 6. Let $r: \mathbb{Z} \rightarrow \mathbb{N} \cup\{\infty\}$ be a given function. There is a set A of integers such that $r_{A}(n)=r(n)$ for each integer n and a partition $A=A_{1} \cup A_{2}$ of A such that $r_{A_{i}}(n)=1$ for each $n, i=1,2$.
2. Proofs of Theorems 2 and 3. Let $d \geq 2$ be an integer. We consider the d-adic expansion of each positive integer $n=\sum_{i \geq 0} n_{i} d^{i}, 0 \leq n_{i}<d$.

The d-support of n is the subset $S_{d}(n) \subset \mathbb{N}_{0}$ such that

$$
n=\sum_{i \in S_{d}(n)} n_{i} d^{i}, \quad 0<n_{i}<d
$$

Let $0 \in A$ be an additive basis of order $h \geq 2$, that is, every sufficiently large integer can be expressed as a sum of h elements from A. We say that A is a (d, h)-bounded set on $X \subset \mathbb{N}$ if there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for each $n \in X$ there is an h-tuple $\tau(n)=\left(a_{1}, \ldots, a_{h}\right) \in A^{h}$ satisfying

$$
\begin{equation*}
\left|S_{d}\left(a_{1}\right) \cup \cdots \cup S_{d}\left(a_{h}\right)\right| \leq f\left(\left|S_{d}(n)\right|\right) \tag{1}
\end{equation*}
$$

We call a set X of positive integers (N, d)-good if there is an infinite set $Y \subset \mathbb{N}_{0}$ all of whose N-subsets are supports of some element in X, that is, for every N-subset $K \subset Y$ there is $n \in X$ such that $S_{d}(n)=K$. The set X is d-good if it is (N, d)-good for infinitely many values of N. A basis A is (d, h)-bounded if it is (d, h)-bounded on some d-good set X. In particular, a 2 -bounded basis A is $(2,2)$-bounded on $X=\left[n_{0}(A), \infty\right)$. This explains the notions involved in Theorem 2 and it also shows that Theorem 2 implies Theorem 1.

Proof of Theorem 2. Let $0 \in A$ be an additive basis of order $h \geq 2$ which is (d, h)-bounded on a good set X. Given N for which X is (N, d)-good, let $Y^{\prime} \subset \mathbb{N}_{0}$ be an infinite set each of whose N-subsets is the d-support of some element in X. By the definition, there is a function f such that for each N-subset $K \subset Y^{\prime}$ there is $n \in X$ and an h-tuple $\tau(n)=\left(a_{1}, \ldots, a_{h}\right)$ satisfying inequality (1).

Set $M=\left\lceil\log _{d} h\right\rceil$ and consider an infinite subset $Y=\left\{y_{1}<y_{2}<\cdots\right\}$ $\subset Y^{\prime}$ such that

$$
\left|y_{r+1}-y_{r}\right|>\max \{f(N), M\}, \quad r \geq 1
$$

We color the N-subsets of Y as follows. For each N-subset $K=\left\{k_{1}<\cdots<\right.$ $\left.k_{N}\right\} \subset Y$, choose $n=n(K)$ with $S_{d}(n)=K$ and let $\tau(n)=\left(a_{1}, \ldots, a_{h}\right)$. Note that

$$
\max S_{d}(n) \leq \max \left\{S_{d}\left(a_{1}\right), \ldots, S_{d}\left(a_{h}\right)\right\}+M
$$

Since $k_{r+1}-k_{r}>M$, we have

$$
\left(S_{d}\left(a_{1}\right) \cup \cdots \cup S_{d}\left(a_{h}\right)\right) \cap\left[k_{r}-M, k_{r}\right] \neq \emptyset, \quad r=1, \ldots, N
$$

We may therefore assume that $S_{d}\left(a_{1}\right)$ intersects $s \geq N / h$ of the intervals $\left[k_{r}-M, k_{r}\right]$. On the other hand, since $k_{r+1}-k_{r}>f(N)$ we have $S_{d}\left(a_{1}\right) \subset$ $\bigcup_{r=1}^{N}\left[k_{r}-M, k_{r}\right]$. Let $a_{1}=\sum_{i \geq 0} a_{1 i} d^{i}$ be the d-adic expansion of a_{1}. Then we define the coloring \mathbf{c} on the N-subsets of Y as follows:

$$
\begin{equation*}
c_{r}(K)=\left(a_{1 i}, i \in\left[k_{r}-M, k_{r}\right]\right), \quad \mathbf{c}(K)=\left(c_{1}(K), \ldots, c_{N}(K)\right) \tag{2}
\end{equation*}
$$

By the definition of \mathbf{c}, if $c_{r}(K)=\left(x_{r 0}, \ldots, x_{r M}\right), r=1, \ldots, N$, then

$$
\begin{equation*}
x(K, \mathbf{c})=\sum_{i=k_{1}-M}^{k_{1}} x_{1 i} d^{k_{1}-M+i}+\cdots+\sum_{i=k_{N}-M}^{k_{N}} x_{N i} d^{k_{N}-M+i}=a_{1} \in A \tag{3}
\end{equation*}
$$

The coloring c uses less than $N d^{M+1}$ colors. By Ramsey's theorem, there is an infinite subset $Y_{0} \subset Y$ all of whose N-subsets receive the same color $\beta=\left(\beta_{1}, \ldots, \beta_{N}\right)$. Let $J \subset\{1, \ldots, N\}$ be the set of subscripts for which $\beta_{i} \neq(0, \ldots, 0)$. By the choice of a_{1} in the definition of \mathbf{c} we have $|J| \geq s \geq$ N / h. Choose a subset $S=\left\{z_{1}<\cdots<z_{2 s}\right\} \subset Y_{0}$ of cardinality $2 s$ such that between any two consecutive elements of S there are N elements of Y_{0}. Set $V_{j}=\left\{z_{2 j-1}, z_{2 j}\right\}, j=1, \ldots, s$.

Let $U^{\prime} \subset S$ be a subset of cardinality s obtained by picking out one element in each V_{j}. Since between any two elements in S there are N elements of Y_{0}, U^{\prime} can be completed to a set $U=\left\{u_{1}<\cdots<u_{N}\right\}$ such that $u_{i} \in U^{\prime}$ whenever $i \in J$ and $u_{i} \in Y_{0} \backslash S$ otherwise. By the choice of Y_{0}, the set U has color β. Therefore, the element $x(U, \mathbf{c})$ as defined in (3) belongs to the basis A. By the same token, the complement $W^{\prime}=S \backslash U^{\prime}$ of U^{\prime} in S can be completed to an N-subset $W=\left\{w_{1}<\cdots<w_{N}\right\}$ of Y_{0} by adding $N-s$ elements in $Y_{0} \backslash S$ which fill positions with value $(0, \ldots, 0)$ in β. Therefore, the element $x(W, \mathbf{c})$ belongs to the basis A as well.

Note that, by the choice of Y, the supports of $x(U, \mathbf{c})$ and $x(W, \mathbf{c})$ are disjoint. Moreover, for any other choice of an s-subset L of S obtained by picking one element in each V_{j}, we have

$$
x(U)+x(S \backslash U)=x(L)+x(S \backslash L)
$$

Therefore, we get $2^{s-1} \geq 2^{N / h-1}$ different expressions of $m=x(U)+x(S \backslash U)$ as sums of two elements in the basis. Since there are infinitely many choices for N, the basis A has the ET property.

Proof of Theorem 3. The proof is similar to the above proof of Theorem 2. Given n and $\tau(n)=\left(a_{1}, \ldots, a_{h}\right)$ consider the following coloring of $S(n)$:

$$
\mathbf{c}^{\prime}(S(n))=(\mathbf{c}(S(n)) ; \alpha(n))
$$

where $\mathbf{c}(S(n))$ is the coloring given in (2) and $\alpha(n)=i$ if $a_{1} \in A_{i}$. By the same argument as in the proof of Theorem 2, for each $N>0$ there is an infinite set $Y_{0} \subset \mathbb{N}$ such that all its N-subsets have the same color $\beta^{\prime}=\left(\beta_{1}, \ldots, \beta_{N} ; \alpha\right)$, where $\alpha=\alpha(N)$ identifies the set of the partition which the corresponding a_{1} belongs to. Hence, there is a positive integer $m \in \mathbb{N}$ which admits at least $2^{N / h-1}$ different expressions as a sum of two elements in $A_{\alpha(N)}$. Since A is partitioned into a finite number of parts, there are infinitely many values of N with the same value $\alpha(N)$.

Let us now consider additive bases in \mathbb{Z}. For $n \in \mathbb{Z}$ let $S(n)$ denote the 2-adic support of n in the sense that $|n|=\sum_{i \in S(n)} 2^{i}$. The notion of 2-bounded sets is extended to subsets of \mathbb{Z} in the obvious way.
3. Additive bases for \mathbb{Z}. The notion of (d, h)-bounded basis extends naturally to bases in \mathbb{Z}. For simplicity we only consider (2,2)-bounded bases. In order to preserve the unicity of binary expansions, we define the binary support of a negative integer as $S(x)=-S(|x|)$, that is, $x=-\sum_{i \in S(x)} 2^{-i}$. A set B of integers is bounded if there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for each $n \in B+B$ there is a pair $x, y \in B$ satisfying

$$
n=x+y, \quad|S(x) \cup S(y)| \leq f(|S(n)|)
$$

We can now proceed to prove Theorem 5.
Proof of Theorem 5. We construct an increasing family $\left\{A_{k}: k \geq 1\right\}$ of sets of integers with the following properties:
(i) $r_{A_{k}}(n) \leq 1$ for all $n \in \mathbb{Z}$.
(ii) $A_{k}+A_{k} \supseteq(-k / 2, k / 2)$ for all $k \geq 1$.
(iii) For each pair $x, y \in A_{k}$ we have $|S(x) \cup S(y)| \leq 4|S(x+y)|$.

From (i) and (ii) it follows that $A=\bigcup_{k \geq 1} A_{k}$ is a unique representation basis of \mathbb{Z} and, by (iii), it is 2-bounded.

For each integer $n \in \mathbb{Z}$ define $\sigma(n)$ by

$$
S(\sigma(n))=\{i \in S(n): i-1 \notin S(n)\}
$$

Then $|S(n+\sigma(n))|=|S(\sigma(n))| \leq|S(n)|$ and $S(n+\sigma(n))$ has no two consecutive integers.

Let $A_{1}=\{0\}, A_{2}=\{-10,0,9\}$ and suppose we have constructed A_{k} satisfying (i)-(iii) above and such that the support of each element in A_{k} has no two consecutive integers.

Let n_{k} be an element not in $A_{k}+A_{k}$ with smallest absolute value. Suppose that $n_{k}>0$, the other case being similar. Choose a subset U_{k} of positive integers with cardinality $\left|U_{k}\right|=\left|S\left(n_{k}\right)\right|$ such that min $U_{k}>$ $1+\max _{x \in A_{k}+A_{k}} \max \{i \in S(|x|)\}$ and U_{k} has no two consecutive integers. Define

$$
a_{k}=n_{k}+\sigma\left(n_{k}\right)+\sum_{i \in U_{k}} 2^{i}, \quad b_{k}=n_{k}-a_{k}, \quad A_{k+1}=A_{k} \cup\left\{a_{k}, b_{k}\right\}
$$

We have

$$
A_{k+1}+A_{k+1}=\left\{n_{k}\right\} \cup\left(A_{k}+A_{k}\right) \cup\left(A_{k}+a_{k}\right) \cup\left(A_{k}+b_{k}\right)
$$

where, by the choice of a_{k} and b_{k}, the four sets on the right hand side are pairwise disjoint. Hence A_{k+1} satisfies (i). Since $n_{k} \in A_{k+1}+A_{k+1}$, (ii) is also satisfied. Let us check that (iii) also holds. Since $\left|S\left(a_{k}\right)\right| \leq 2\left|S\left(n_{k}\right)\right|$ and
$\left|S\left(b_{k}\right)\right| \leq 2\left|S\left(n_{k}\right)\right|$, it follows that

$$
\left|S\left(a_{k}\right) \cup S\left(b_{k}\right)\right| \leq 4\left|S\left(n_{k}\right)\right|=4\left|S\left(a_{k}+b_{k}\right)\right|
$$

Let $x \in A_{k}$. Since $S(x)$ has no two consecutive integers, we have

$$
\left|S(x) \cup S\left(a_{k}\right)\right| \leq\left|S\left(x+a_{k}\right)\right| \quad \text { if } x>0
$$

and it can be easily checked that

$$
\left|S(x) \cup S\left(a_{k}\right)\right| \leq 4\left|S\left(x+a_{k}\right)\right| \quad \text { if } x<0
$$

Indeed, let $V=S(x)$ and $V^{\prime}=S(|x|) \backslash S\left(a_{k}\right)$. Then

$$
\begin{aligned}
\left|S(x) \cup S\left(a_{k}\right)\right| & \leq|V|+2\left|S\left(n_{k}\right)\right| \leq\left|V^{\prime}\right|+3\left|S\left(n_{k}\right)\right| \leq 4\left(\left|V^{\prime}\right|+\left|U_{k}\right|-1\right) \\
& \leq 4\left|S\left(x+a_{k}\right)\right|
\end{aligned}
$$

where in the last inequality we used the facts that V^{\prime} has no two consecutive integers, that $\max S(|x|)<\min U_{k}$, and that for any positive integers r and $s, 2^{r+s}-2^{r}=2^{r+s-1}+\cdots+2^{r}$. Similar arguments show that

$$
\left|S(x) \cup S\left(b_{k}\right)\right| \leq 4\left|S\left(x+b_{k}\right)\right|
$$

Proof of Theorem 6. Set $Z=r^{-1}(\infty)$ and $Z^{\prime}=\mathbb{Z} \backslash Z$. Consider the set $F \subset \mathbb{Z} \times \mathbb{N}$ of ordered pairs

$$
F=\{(i, j): i \in Z, j=1,2, \ldots\} \cup\left\{(i, j): i \in Z^{\prime}, j=1, \ldots, r(i)\right\}
$$

with the ordering defined as

$$
(i, j) \preceq\left(i^{\prime}, j^{\prime}\right) \Leftrightarrow\left\{\begin{array}{l}
|i|+j<\left|i^{\prime}\right|+j^{\prime}, \text { or } \\
|i|+j=\left|i^{\prime}\right|+j^{\prime} \text { and } j<j^{\prime}, \text { or } \\
|i|+j=\left|i^{\prime}\right|+j^{\prime} \text { and } j=j^{\prime} \text { and }|i|<\left|i^{\prime}\right|, \text { or } \\
|i|+j=\left|i^{\prime}\right|+j^{\prime} \text { and } j=j^{\prime} \text { and }|i|=\left|i^{\prime}\right| \text { and } i<i^{\prime},
\end{array}\right.
$$

so that $F=\left\{f_{1}=(0,1), f_{2}=(-1,1), f_{3}=(1,1), f_{4}, \ldots\right\}$ in this ordering.
We construct a non-decreasing family $\left\{A_{k}: k \geq 1\right\}$ of sets of integers satisfying
(a) $r_{A_{k}}(n)=\max \left\{j:(n, j) \preceq f_{k}\right\}$ if $(n, 1) \preceq f_{k}$ and $r_{A_{k}}(n) \leq 1$ otherwise,
(b) $r_{A_{k}^{+}}(n) \leq 1$ and $r_{A_{k}^{-}}(n) \leq 1$ for all $n \in \mathbb{Z}$, where $A_{k}^{+}=A_{k} \cap[0, \infty)$ and $A_{k}^{-}=A_{k} \backslash A_{k}^{+}$.
Once such a family of sets has been constructed, the set $A=\bigcup_{k \geq 1} A_{k}$ satisfies

$$
r_{A}(n)=\lim _{k \rightarrow \infty} r_{A_{k}}(n)=r(n) \quad \text { for all } n \in \mathbb{Z}
$$

while both $A^{+}=A \cap[0, \infty)$ and $A^{-}=A \backslash A^{+}$are B_{2}^{1} sequences.
Let $A_{1}=\{0\}$ and suppose that A_{k-1} satisfies (a) and (b) above. Let $f_{k}=(i, j)$. Then $r_{A_{k-1}}(i)=j-1$ if $j>1$ and $r_{A_{k-1}}(i) \leq 1$ if $j=1$.

If $r_{A_{k-1}}(i)=j=1$ then we define $A_{k}=A_{k-1}$.

If $r_{A_{k-1}}(i)=j-1$, let $x_{k}=\max \left\{|x|: x \in A_{k-1}+A_{k-1}\right\}+\left|A_{k-1}\right|+|i|$ and define

$$
a_{k}=i+x_{k}, \quad b_{k}=-x_{k}, \quad A_{k}=A_{k-1} \cup\left\{a_{k}, b_{k}\right\} .
$$

Then

$$
A_{k}+A_{k}=\left(\left(A_{k-1}+A_{k-1}\right) \cup\{i\}\right) \cup\left(A_{k-1}+a_{k}\right) \cup\left(A_{k-1}+b_{k}\right),
$$

where, by the choice of x_{k}, the three sets on the right hand side are pairwise disjoint. Therefore $r_{A_{k}}(n) \leq r_{A_{k-1}}(n)+1$ for all $n \in \mathbb{Z}$, and equality holds if either $n=i$, so that $r_{A_{k}}(i)=j$, or $n \in\left(A_{k-1}+a_{k}\right) \cup\left(A_{k-1}+b_{k}\right)$, in which case $f_{k} \prec(n, 1)$ and $r_{A_{k}}(n)=1$. Thus A_{k} satisfies (a). Moreover, since x_{k} is large enough, both $A_{k}^{+}=A_{k-1}^{+} \cup\left\{a_{k}\right\}$ and $A_{k}^{-}=A_{k-1}^{-} \cup\left\{b_{k}\right\}$ are still B_{2}^{1} sets. This completes the proof.
4. Remarks and open problems. It is pleasing to note that the multiplicative version of Erdős-Turán conjecture is valid both in \mathbb{N} and in \mathbb{Z}. However the additive version for 2-bounded bases is true in \mathbb{N} while it fails to be true in \mathbb{Z} even in the stronger form of Theorem 6 (we note that the basis in this theorem can be required to be bounded as well). The proof of Theorem 5, though, involves constructing a very sparse basis for the set of all integers. Thicker bases for the integers without the ET property have been constructed by Nathanson [9] and Łuczak and Schoen [8] with counting function of order $n^{1 / 3}$. It might be true that unboundedness of the representation function appears when the lower density of the set has order $n^{1 / 2}$. In that respect the following may be an easier problem.

Problem 1. Let A be an additive basis of \mathbb{N} and assume that it has the ET property. Is it true that in any finite partition of A one of the parts still has the ET property?

Perhaps the following perspective may contribute to a better understanding of the Erdős-Turán conjecture. Given a function $f: \mathbb{N} \rightarrow \mathbb{N}$, we say that a basis $A \subset \mathbb{Z}$ is f-restricted if for any $n \in \mathbb{Z}$ there exist $x, y \in X$ such that

$$
n=x+y, \quad \max \{|x|,|y|\} \leq f(n) .
$$

A basis for the set of positive integers is f-restricted with $f(n)=n$, so that this case for bases of \mathbb{Z} seems to be closely related to the Erdős-Turán conjecture. One possible formulation of the link between the two problems is the following:

Problem 2. Is it true that for every thin additive basis A of \mathbb{N} there exists a basis B of \mathbb{N} and a constant c which bounds the number of solutions $n=a-b, a \in A, b \in B$, for every $n \in \mathbb{N}$?

A positive answer implies that proving the ET property for f-restricted bases in \mathbb{Z} with $f(n)=n$ gives a proof of the Erdős-Turán conjecture.

On the one side of the spectrum the function $f(n)=n / 2+c$ yields a positive solution of the Erdős-Turán conjecture for f-restricted bases.

Proposition 1. For any positive integer c an f-restrictive basis in \mathbb{Z} with $f(n)=n / 2+c$ has the Erdős-Turán property.

Proof. Let A be an f-restricted basis of \mathbb{Z}. Define sets $A_{i}, i=0,1, \ldots, 2 c$, by $n \in A_{i}$ iff there exists $x \in A$ such that $n / 2-x=i / 2$. By the van der Waerden Theorem, one of the sets A_{i} contains an arithmetic progression of any length. Since an arithmetic progression of length k yields $k / 2$ pairs of elements with the same sum, the basis A has the Erdős-Turán property.

Of course the same proof gives the Erdős-Turán property for f-restricted bases for functions $f(n)=n / 2+\varepsilon(n)$, where $\varepsilon(n)$ is a very slowly growing function (essentially the inverse function to the van der Waerden's function $W(k, k)$; by Shelah and Gowers this is not as astronomically slowly growing as it seems at first glance). These remarks also apply to f-restricted bases in \mathbb{N}.

By using a greedy algorithm as in the above proof of Theorem 5 we easily get examples of f-restricted bases for \mathbb{Z} without the ET property for any function $f(n)>2^{n}$. It would be interesting to find examples for more slowly growing functions as suggested by the following problem.

Problem 3. Fix a positive $c \in \mathbb{R}$. Let A be a basis for \mathbb{Z} such that for each sufficiently large $n \in A+A$ there are $x, y \in A$ with $n=x+y$ and $\max \{|x|,|y|\} \leq c n$. Is it true that A has the ET property?

References

[1] P. Erdős, On the multiplicative representation of integers, Israel J. Math. 2 (1964), 251-261.
[2] - Problems and results in additive number theory, in: Colloque sur la Théorie des Nombres (Bruxelles, 1955), Massion, Paris, 1956, 127-137.
[3] -, Some applications of Ramsey's theorem to additive number theory, European J. Combin. 1 (1980), 43-46.
[4] P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Monograph. Enseign. Math. 28, Univ. Genève, 1980.
[5] P. Erdős and P. Turán, On a problem of Sidon in additive number theory, and on some related problems, J. London Math. Soc. 16 (1941), 212-215.
[6] H. Halberstam and K. F. Roth, Sequences, Springer, 1983.
[7] G. Hofmeister, Thin basis of order two, J. Number Theory 86 (2001), 118-132.
[8] T. Łuczak and T. Schoen, A remark on unique representation basis for the integers, preprint, 2003.
[9] M. B. Nathanson, The inverse problem for representation functions of additive basis, in: Number Theory: New York Seminar 2003, D. Chudnovsky et al. (eds.), Springer, New York, 2004, 253-262.
[10] J. Nešetřil and V. Rödl, Two proofs in Combinatorial Number Theory, Proc. Amer. Math. Soc. 93 (1985), 185-188.
[11] A. Sárközy and V. Sós, On additive representation functions, in: The Mathematics of Paul Erdős, R. L. Graham and J. Nešetřil (eds.), Springer, 1991, 129-150.

Department of Applied Mathematics and
Institute of Theoretical Computer Sciences (ITI)
Charles University
Malostranské nám. 25
11800 Praha, Czech Republic
E-mail: nesetril@kam.mff.cuni.cz
Department of Applied Mathematics IV
Universitat Politècnica de Catalunya
Jordi Girona, 1
08034 Barcelona, Spain
E-mail: oserra@mat.upc.es

Received on 31.10.2003
and in revised form on 16.2.2004

[^0]: 2000 Mathematics Subject Classification: 11B13, 11B75.
 J. Nešetřil supported by the project LN00A056 of Czech Ministry of Education and Institut Català per a la Recerca ICREA.
 O. Serra supported by project BFM2002-00412 of the Spanish Ministry of Science.

