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The Erdős–Turán property for a class of bases

by

Jaroslav Nešetřil (Praha) and Oriol Serra (Barcelona)

1. Introduction. Given a set A ⊂ N let rA(n) denote the number of
ordered pairs (a, a′) ∈ A × A such that a + a′ = n. Then A is an asymp-
totic additive basis of order 2 (a basis for short in what follows) if there is
n0 = n0(A) such that rA(n) ≥ 1 for each positive integer n ≥ n0. It was
conjectured by Erdős and Turán in 1941 [5] that if A is a basis, then

lim sup
n→∞

rA(n) =∞.

An excellent account of this and related problems is given by Sárközy and
Sós [11] (see also [3]).

Not much is known about this famous conjecture. It can be easily shown
that if a set of positive integers A satisfies lim supn→∞ |A(n)|n−1/2 = ∞,
where A(n) = A∩[1, n], then rA(n) cannot be bounded. Indeed, if rA(n) ≤ g
for all n ∈ N and An(x) =

∑
a∈A(n) x

a, then A2
n(x) =

∑
i≥0 rA(n)(i)xi and

|A(n)|2 = A2
n(1) =

∑

i≥1

rA(n)(i) ≤ 2ng.

On the other hand, the counting function of a basis must satisfy |A(n)| =
Ω(n1/2), since |A(n)|2 > |A(n) + A(n)| ≥ n − n0(A) for some n0(A). More
explicit quantitative expressions of both facts can be found for instance
in [7]. Therefore, the Erdős–Turán conjecture is open for bases whose count-
ing function satisfies 0 < lim sup |A(n)|/n1/2 < ∞, called thin bases. The
first examples of thin bases were given by Cassels, Stöhr and Raikov (see
e.g. [6]). More recent constructions were provided by Hofmeister [7]. In all
these examples the constructed bases either contain arbitrarily large arith-
metic progressions or contain elements of the form

∑
i∈E xid

i, d ≥ 2, for
arbitrarily large subsets E ⊂ N and all possible choices of xi ∈ {0, r} for
some r 6= 0. In both cases we trivially see that rA(n) is not bounded.
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Erdős [2] showed that the function rA(n) can grow slowly. More precisely,
he showed that there exist bases A for which

c1 logn ≤ rA(n) ≤ c2 logn, n ≥ n0(A)

for some constants c1, c2 > 0. This result may explain the difficulties involved
in the Erdős–Turán conjecture.

In this note we prove the validity of the Erdős–Turán conjecture for a
class of “bounded” bases. The binary support of a positive integer n is the
subset S(n) ⊂ N ∪ {0} of its binary expansion

n =
∑

i∈S(n)

2i.

We say that A ⊂ N is bounded if there is a function f such that for each
n ∈ A+ A there is a pair x, y ∈ A with

n = x+ y, |S(x) ∪ S(y)| ≤ f(|S(n)|).
For instance, if the binary expansion of each element in A has no two con-
secutive 1’s, then A is a bounded set with f(n) = n.

We prove the following result.

Theorem 1. Let A be a bounded asymptotic basis of order 2. Then

lim sup
n→∞

rA(n) =∞.

In fact we prove a more general form of Theorem 1. Let us fix a positive
integer h ≥ 2 and let r(h)

A (n) denote the number of solutions of n = a1 +
· · ·+ah with a1, . . . , ah ∈ A. We say that A has the h-Erdős–Turán property
(h-ET for short) if r(h)

A (n) is unbounded. The set A is an asymptotic additive
basis of order h if every sufficiently large integer can be expressed as the
sum of h elements in A ∪ {0} and h is the minimum positive integer with
this property. We shall omit the reference to h in the above definitions when
h = 2. We prove the next result, for which the precise (and more technical)
notion of (d, h)-bounded basis is explained in Section 2.

Theorem 2. Let A be an asymptotic additive basis for N of order h ≥ 2
and d ≥ 2. If A is (d, h)-bounded then it has the h-Erdős–Turán property.

This generalizes Theorem 1, since we shall see later that every (2, 2)-basis
is a bounded basis.

We tested bounded bases in the context of other bases-related results,
both additive and multiplicative. For example we have the following:

The Erdős–Newman problem [4] asks for the existence of a set A with
lim supn→∞ rA(n) = k such that, for every finite partition A = A1∪· · ·∪Ar,
we have lim sup rAi(n) = k for some i. The problem has a positive answer
as proved by Nešetřil and Rödl [10]. A similar question can be asked when
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lim sup rA(n) =∞. The method we use in the proof of Theorem 2 gives the
following result.

Theorem 3. Let A = A1 ∪ · · · ∪ Ar be a partition of a (d, h)-bounded
additive basis of order h ≥ 2 into a finite number of parts. Then one of the
parts has the h-ET property.

Erdős also proposed the following strengthening of the Erdős–Turán con-
jecture: if A is a set of positive integers satisfying |A(n)| = Ω(n1/2) then
A has the ET property, whether it is a basis or not. If that is true then
Theorem 3 follows for a basis of order 2.

The method we use to prove Theorems 2 and 3 is inspired by the proof
that Nešetřil and Rödl [10] gave for the multiplicative analog of the Erdős–
Turán conjecture. This was first proved by Erdős [1] in 1964:

Theorem 4. Suppose that every positive integer can be written as a
product of two elements in a set A ⊂ N. Then, for every m ∈ N, there
exists a positive integer n which can be written as a product of two elements
in A in at least m different ways.

It is worth noting that the proof of Theorem 4 given in [10] can be
extended to multiplicative bases of Z. However the situation is strikingly
different for additive bases of Z or, more generally, in any linearly ordered
Abelian group. Nathanson [9] proves that for an arbitrary function r : Z ∪
{∞} → N0 with r−1(0) finite there is an additive basis A of order 2 such that
rA(x) = r(x) for all but a finite number of x ∈ Z. As shown by Nathanson,
a greedy algorithm provides a basis for Z with rA(n) = 1 for all n ∈ Z.
A similar result holds when restricted to bounded bases.

Theorem 5. There is a bounded basis of Z satisfying rA(n) = 1 for
each n ∈ Z.

Thus while the definition of bounded basis and the proofs of Theorems 2
and 3 were inspired by the multiplicative versions of the Erdős–Turán con-
jecture which is valid both in N and Z, this notion is sensitive enough to
separate N and Z in the additive case.

In the same vein, Theorem 3 is no longer true in Z. We can construct an
additive basis A for Z with a prescribed function rA(n), even with the ET
property, but which can be partitioned into two B1

2 sequences.

Theorem 6. Let r : Z → N ∪ {∞} be a given function. There is a set
A of integers such that rA(n) = r(n) for each integer n and a partition
A = A1 ∪ A2 of A such that rAi(n) = 1 for each n, i = 1, 2.

2. Proofs of Theorems 2 and 3. Let d ≥ 2 be an integer. We consider
the d-adic expansion of each positive integer n =

∑
i≥0 nid

i, 0 ≤ ni < d.
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The d-support of n is the subset Sd(n) ⊂ N0 such that

n =
∑

i∈Sd(n)

nid
i, 0 < ni < d.

Let 0 ∈ A be an additive basis of order h ≥ 2, that is, every sufficiently
large integer can be expressed as a sum of h elements from A. We say that
A is a (d, h)-bounded set on X ⊂ N if there is a function f : N → N such
that for each n ∈ X there is an h-tuple τ(n) = (a1, . . . , ah) ∈ Ah satisfying

|Sd(a1) ∪ · · · ∪ Sd(ah)| ≤ f(|Sd(n)|).(1)

We call a set X of positive integers (N, d)-good if there is an infinite set
Y ⊂ N0 all of whose N -subsets are supports of some element in X, that is,
for every N -subset K ⊂ Y there is n ∈ X such that Sd(n) = K. The set
X is d-good if it is (N, d)-good for infinitely many values of N . A basis A is
(d, h)-bounded if it is (d, h)-bounded on some d-good set X. In particular, a
2-bounded basis A is (2, 2)-bounded on X = [n0(A),∞). This explains the
notions involved in Theorem 2 and it also shows that Theorem 2 implies
Theorem 1.

Proof of Theorem 2. Let 0 ∈ A be an additive basis of order h ≥ 2 which
is (d, h)-bounded on a good set X. Given N for which X is (N, d)-good, let
Y ′ ⊂ N0 be an infinite set each of whose N -subsets is the d-support of
some element in X. By the definition, there is a function f such that for
each N -subset K ⊂ Y ′ there is n ∈ X and an h-tuple τ(n) = (a1, . . . , ah)
satisfying inequality (1).

Set M = dlogd he and consider an infinite subset Y = {y1 < y2 < · · ·}
⊂ Y ′ such that

|yr+1 − yr| > max{f(N),M}, r ≥ 1.

We color the N -subsets of Y as follows. For each N -subset K = {k1 < · · · <
kN} ⊂ Y , choose n = n(K) with Sd(n) = K and let τ(n) = (a1, . . . , ah).
Note that

maxSd(n) ≤ max{Sd(a1), . . . , Sd(ah)}+M.

Since kr+1 − kr > M , we have

(Sd(a1) ∪ · · · ∪ Sd(ah)) ∩ [kr −M,kr] 6= ∅, r = 1, . . . , N.

We may therefore assume that Sd(a1) intersects s ≥ N/h of the intervals
[kr −M,kr]. On the other hand, since kr+1 − kr > f(N) we have Sd(a1) ⊂⋃N
r=1[kr −M,kr]. Let a1 =

∑
i≥0 a1id

i be the d-adic expansion of a1. Then
we define the coloring c on the N -subsets of Y as follows:

cr(K) = (a1i, i ∈ [kr −M,kr]), c(K) = (c1(K), . . . , cN (K)).(2)



Erdős–Turán property for a class of bases 249

By the definition of c, if cr(K) = (xr0, . . . , xrM), r = 1, . . . , N , then

x(K, c) =
k1∑

i=k1−M
x1id

k1−M+i + · · ·+
kN∑

i=kN−M
xNid

kN−M+i = a1 ∈ A.(3)

The coloring c uses less than NdM+1 colors. By Ramsey’s theorem, there
is an infinite subset Y0 ⊂ Y all of whose N -subsets receive the same color
β = (β1, . . . , βN ). Let J ⊂ {1, . . . , N} be the set of subscripts for which
βi 6= (0, . . . , 0). By the choice of a1 in the definition of c we have |J | ≥ s ≥
N/h. Choose a subset S = {z1 < · · · < z2s} ⊂ Y0 of cardinality 2s such that
between any two consecutive elements of S there are N elements of Y0. Set
Vj = {z2j−1, z2j}, j = 1, . . . , s.

Let U ′ ⊂ S be a subset of cardinality s obtained by picking out one ele-
ment in each Vj . Since between any two elements in S there are N elements
of Y0, U ′ can be completed to a set U = {u1 < · · · < uN} such that ui ∈ U ′
whenever i ∈ J and ui ∈ Y0 \ S otherwise. By the choice of Y0, the set U
has color β. Therefore, the element x(U, c) as defined in (3) belongs to the
basis A. By the same token, the complement W ′ = S \U ′ of U ′ in S can be
completed to an N -subset W = {w1 < · · · < wN} of Y0 by adding N − s
elements in Y0 \ S which fill positions with value (0, . . . , 0) in β. Therefore,
the element x(W, c) belongs to the basis A as well.

Note that, by the choice of Y , the supports of x(U, c) and x(W, c) are
disjoint. Moreover, for any other choice of an s-subset L of S obtained by
picking one element in each Vj , we have

x(U) + x(S \ U) = x(L) + x(S \ L).

Therefore, we get 2s−1 ≥ 2N/h−1 different expressions of m = x(U)+x(S\U)
as sums of two elements in the basis. Since there are infinitely many choices
for N , the basis A has the ET property.

Proof of Theorem 3. The proof is similar to the above proof of Theo-
rem 2. Given n and τ(n) = (a1, . . . , ah) consider the following coloring of
S(n):

c′(S(n)) = (c(S(n));α(n)),

where c(S(n)) is the coloring given in (2) and α(n) = i if a1 ∈ Ai. By
the same argument as in the proof of Theorem 2, for each N > 0 there
is an infinite set Y0 ⊂ N such that all its N -subsets have the same color
β′ = (β1, . . . , βN ;α), where α = α(N) identifies the set of the partition
which the corresponding a1 belongs to. Hence, there is a positive integer
m ∈ N which admits at least 2N/h−1 different expressions as a sum of two
elements in Aα(N). Since A is partitioned into a finite number of parts, there
are infinitely many values of N with the same value α(N).
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Let us now consider additive bases in Z. For n ∈ Z let S(n) denote
the 2-adic support of n in the sense that |n| =

∑
i∈S(n) 2i. The notion of

2-bounded sets is extended to subsets of Z in the obvious way.

3. Additive bases for Z. The notion of (d, h)-bounded basis extends
naturally to bases in Z. For simplicity we only consider (2, 2)-bounded bases.
In order to preserve the unicity of binary expansions, we define the binary
support of a negative integer as S(x) = −S(|x|), that is, x = −∑i∈S(x) 2−i.
A set B of integers is bounded if there is a function f : N→ N such that for
each n ∈ B +B there is a pair x, y ∈ B satisfying

n = x+ y, |S(x) ∪ S(y)| ≤ f(|S(n)|).
We can now proceed to prove Theorem 5.

Proof of Theorem 5. We construct an increasing family {Ak : k ≥ 1} of
sets of integers with the following properties:

(i) rAk(n) ≤ 1 for all n ∈ Z.
(ii) Ak + Ak ⊇ (−k/2, k/2) for all k ≥ 1.
(iii) For each pair x, y ∈ Ak we have |S(x) ∪ S(y)| ≤ 4|S(x+ y)|.

From (i) and (ii) it follows that A =
⋃
k≥1Ak is a unique representation

basis of Z and, by (iii), it is 2-bounded.
For each integer n ∈ Z define σ(n) by

S(σ(n)) = {i ∈ S(n) : i− 1 6∈ S(n)}.
Then |S(n + σ(n))| = |S(σ(n))| ≤ |S(n)| and S(n + σ(n)) has no two
consecutive integers.

Let A1 = {0}, A2 = {−10, 0, 9} and suppose we have constructed Ak
satisfying (i)–(iii) above and such that the support of each element in Ak
has no two consecutive integers.

Let nk be an element not in Ak + Ak with smallest absolute value.
Suppose that nk > 0, the other case being similar. Choose a subset Uk
of positive integers with cardinality |Uk| = |S(nk)| such that minUk >
1 + maxx∈Ak+Ak max{i ∈ S(|x|)} and Uk has no two consecutive integers.
Define

ak = nk + σ(nk) +
∑

i∈Uk
2i, bk = nk − ak, Ak+1 = Ak ∪ {ak, bk}.

We have

Ak+1 + Ak+1 = {nk} ∪ (Ak + Ak) ∪ (Ak + ak) ∪ (Ak + bk),

where, by the choice of ak and bk, the four sets on the right hand side are
pairwise disjoint. Hence Ak+1 satisfies (i). Since nk ∈ Ak+1 + Ak+1, (ii) is
also satisfied. Let us check that (iii) also holds. Since |S(ak)| ≤ 2|S(nk)| and
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|S(bk)| ≤ 2|S(nk)|, it follows that

|S(ak) ∪ S(bk)| ≤ 4|S(nk)| = 4|S(ak + bk)|.
Let x ∈ Ak. Since S(x) has no two consecutive integers, we have

|S(x) ∪ S(ak)| ≤ |S(x+ ak)| if x > 0,

and it can be easily checked that

|S(x) ∪ S(ak)| ≤ 4|S(x+ ak)| if x < 0.

Indeed, let V = S(x) and V ′ = S(|x|) \ S(ak). Then

|S(x) ∪ S(ak)| ≤ |V |+ 2|S(nk)| ≤ |V ′|+ 3|S(nk)| ≤ 4(|V ′|+ |Uk| − 1)

≤ 4|S(x+ ak)|,
where in the last inequality we used the facts that V ′ has no two consecutive
integers, that maxS(|x|) < minUk, and that for any positive integers r
and s, 2r+s − 2r = 2r+s−1 + · · ·+ 2r. Similar arguments show that

|S(x) ∪ S(bk)| ≤ 4|S(x+ bk)|.
Proof of Theorem 6. Set Z = r−1(∞) and Z ′ = Z \ Z. Consider the set

F ⊂ Z× N of ordered pairs

F = {(i, j) : i ∈ Z, j = 1, 2, . . .} ∪ {(i, j) : i ∈ Z ′, j = 1, . . . , r(i)},
with the ordering defined as

(i, j) � (i′, j′)⇔





|i|+ j < |i′|+ j′, or

|i|+ j = |i′|+ j′ and j < j′, or

|i|+ j = |i′|+ j′ and j = j′ and |i| < |i′|, or

|i|+ j = |i′|+ j′ and j = j′ and |i| = |i′| and i < i′,

so that F = {f1 = (0, 1), f2 = (−1, 1), f3 = (1, 1), f4, . . .} in this ordering.
We construct a non-decreasing family {Ak : k ≥ 1} of sets of integers

satisfying

(a) rAk(n) = max{j : (n, j) � fk} if (n, 1) � fk and rAk(n) ≤ 1 other-
wise,

(b) rA+
k

(n) ≤ 1 and rA−k
(n) ≤ 1 for all n ∈ Z, where A+

k = Ak ∩ [0,∞)

and A−k = Ak \A+
k .

Once such a family of sets has been constructed, the set A =
⋃
k≥1Ak

satisfies
rA(n) = lim

k→∞
rAk(n) = r(n) for all n ∈ Z

while both A+ = A ∩ [0,∞) and A− = A \A+ are B1
2 sequences.

Let A1 = {0} and suppose that Ak−1 satisfies (a) and (b) above. Let
fk = (i, j). Then rAk−1(i) = j − 1 if j > 1 and rAk−1(i) ≤ 1 if j = 1.

If rAk−1(i) = j = 1 then we define Ak = Ak−1.
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If rAk−1(i) = j − 1, let xk = max{|x| : x ∈ Ak−1 + Ak−1} + |Ak−1|+ |i|
and define

ak = i+ xk, bk = −xk, Ak = Ak−1 ∪ {ak, bk}.
Then

Ak + Ak = ((Ak−1 +Ak−1) ∪ {i}) ∪ (Ak−1 + ak) ∪ (Ak−1 + bk),

where, by the choice of xk, the three sets on the right hand side are pairwise
disjoint. Therefore rAk(n) ≤ rAk−1(n) + 1 for all n ∈ Z, and equality holds if
either n = i, so that rAk(i) = j, or n ∈ (Ak−1 + ak) ∪ (Ak−1 + bk), in which
case fk ≺ (n, 1) and rAk(n) = 1. Thus Ak satisfies (a). Moreover, since xk
is large enough, both A+

k = A+
k−1 ∪ {ak} and A−k = A−k−1 ∪ {bk} are still B1

2
sets. This completes the proof.

4. Remarks and open problems. It is pleasing to note that the mul-
tiplicative version of Erdős–Turán conjecture is valid both in N and in Z.
However the additive version for 2-bounded bases is true in N while it fails
to be true in Z even in the stronger form of Theorem 6 (we note that the
basis in this theorem can be required to be bounded as well). The proof
of Theorem 5, though, involves constructing a very sparse basis for the set
of all integers. Thicker bases for the integers without the ET property have
been constructed by Nathanson [9] and Łuczak and Schoen [8] with counting
function of order n1/3. It might be true that unboundedness of the repre-
sentation function appears when the lower density of the set has order n1/2.
In that respect the following may be an easier problem.

Problem 1. Let A be an additive basis of N and assume that it has the
ET property. Is it true that in any finite partition of A one of the parts still
has the ET property?

Perhaps the following perspective may contribute to a better understand-
ing of the Erdős–Turán conjecture. Given a function f : N→ N, we say that
a basis A ⊂ Z is f -restricted if for any n ∈ Z there exist x, y ∈ X such that

n = x+ y, max{|x|, |y|} ≤ f(n).

A basis for the set of positive integers is f -restricted with f(n) = n, so
that this case for bases of Z seems to be closely related to the Erdős–Turán
conjecture. One possible formulation of the link between the two problems
is the following:

Problem 2. Is it true that for every thin additive basis A of N there
exists a basis B of N and a constant c which bounds the number of solutions
n = a− b, a ∈ A, b ∈ B, for every n ∈ N?

A positive answer implies that proving the ET property for f -restricted
bases in Z with f(n) = n gives a proof of the Erdős–Turán conjecture.
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On the one side of the spectrum the function f(n) = n/2 + c yields a
positive solution of the Erdős–Turán conjecture for f -restricted bases.

Proposition 1. For any positive integer c an f -restrictive basis in Z
with f(n) = n/2 + c has the Erdős–Turán property.

Proof. LetA be an f -restricted basis of Z. Define setsAi, i = 0, 1, . . . , 2c,
by n ∈ Ai iff there exists x ∈ A such that n/2 − x = i/2. By the van der
Waerden Theorem, one of the sets Ai contains an arithmetic progression of
any length. Since an arithmetic progression of length k yields k/2 pairs of
elements with the same sum, the basis A has the Erdős–Turán property.

Of course the same proof gives the Erdős–Turán property for f -restricted
bases for functions f(n) = n/2 + ε(n), where ε(n) is a very slowly growing
function (essentially the inverse function to the van der Waerden’s function
W (k, k); by Shelah and Gowers this is not as astronomically slowly growing
as it seems at first glance). These remarks also apply to f -restricted bases
in N.

By using a greedy algorithm as in the above proof of Theorem 5 we easily
get examples of f -restricted bases for Z without the ET property for any
function f(n) > 2n. It would be interesting to find examples for more slowly
growing functions as suggested by the following problem.

Problem 3. Fix a positive c ∈ R. Let A be a basis for Z such that for
each sufficiently large n ∈ A + A there are x, y ∈ A with n = x + y and
max{|x|, |y|} ≤ cn. Is it true that A has the ET property?
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