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1. Introduction. Let K be an algebraic number field of degree [K : Q]
= n = r1 + 2r2 (in the standard notation), d its discriminant, h its class
number, and r = r1 + r2− 1 its number of fundamental units. Let E , R, and
ω denote respectively the group of units, the regulator, and the number of
roots of unity in K.

The conjugates of a number α ∈ K are denoted by α(k) (k = 1, . . . , n),
and we write α � 0 to indicate that α is totally positive, i.e. α 6= 0 and
α(k) > 0 for 1 ≤ k ≤ r1 (so α � 0 means simply α 6= 0 if K is totally
imaginary). As usual, the numbers e1, . . . , er+1 are defined by

ek =
{

1 for k = 1, . . . , r1,

2 for k = r1 + 1, . . . , r1 + r2.

Throughout, x will denote a vector

x = (x1, . . . , xr+1) ∈ Rr+1
+ ,

and

X := X(x) :=
r+1∏

k=1

xekk .

We denote by OK the ring of integers in K. Let q be an integral ideal
of K. The reduced residue classes of integers (relatively prime to q) form a
group under multiplication; its order is denoted by φ(q). Let χ be a Dirichlet
character of this group. Throughout this paper, we will abbreviate principal
ideals (α) as α when no confusion is possible.

Next, we introduce an extended definition of the von Mangoldt function
for ideals. Whereas in the original definition, the argument of the function
must be an ideal, we allow ideal numbers for K as arguments as well. We
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recall that in [3, p. 108], a prime ideal number is defined as an ideal number
that corresponds to a prime ideal in the field K. Now, for an α that is either
a principal ideal or a prime ideal number, we define

Λ(α) =





log(Np) if α = pf , p is an prime ideal

(if α is a principal ideal)

or p is a prime ideal number

(if α is an ideal number),

0 otherwise.

(1)

By using a Perron formula for algebraic number fields, we can show the
following:

Theorem 1. Under the assumption that the Grand Riemann Hypothesis
(GRH ) holds in algebraic number fields, we have

∑

α∈OK
α�0

χ(α)Λ(α)Φ(|α|x−1) = g(χ)
ω2r2−r1

hR
X +OK(X1/2 log(Nq)),

where g(χ) = 1 if χ is a principal character and 0 otherwise. Φ(x) is a
weight function such that

Φ(x) := e−(x1+···+xr+1), |α|x−1 := (|α(1)|x−1
1 , . . . , |α(r+1)|x−1

r+1).(2)

Using Theorem 1 and the sieve method in [11], we consider the least
primitive root modulo a prime ideal q. First, we define

Ic(x) := {α � 0 | |α(k)| ≤ cxk, k = 1, . . . , r + 1}.(3)

We will prove the following theorem:

Theorem 2. Assume that the Grand Riemann Hypothesis (GRH ) holds
in number fields. Then there exists a primitive root α modulo a prime ideal q
such that

α ∈ Ic(m6 log2(Nq)),

where c is an absolute constant depending only on K, m := ω(φ(Nq)), and
ω(n) denotes the number of distinct prime divisors of n.

For rational number fields, Burgess [1] has proved unconditionally that
the least positive primitive root modulo a prime q must be less than q1/4+ε.
Assuming the GRH in rational number fields, Wang Yuan [11] improved
upon this result by showing that the least primitive root must be less
than ω6(q − 1) log2 q. For algebraic number fields, Hinz [5] first gave an
unconditional bound of α ∈ Ic(Nq1/2+ε) which he later improved [6] to
α ∈ Ic(Nq1/4+ε). The latter result generalizes Burgess’s result to algebraic
number fields. Here, we intend to generalize Wang Yuan’s conditional result
to algebraic number fields. For this purpose, we need to establish a Perron
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formula that is more accurate than the one used by Hinz, and we will appeal
to the sieve method as in [11].

2. Perron formula in number fields. The Perron formula for the
rational field plays a vital role in analytic number theory, e.g. in proving
the prime number theorem. For algebraic number fields, in 1936, Siegel es-
tablished the so-called Siegel formula for real quadratic number fields [10].
The generalization of his results to totally real number fields and then to
arbitrary algebraic number fields was achieved respectively by Schaal [9] and
Grotz [2]. This work was further generalized by Rausch [8], who established
general identities for weighted sums over algebraic number fields. This paper
will use a simplified version of Rausch’s idea.

In this section, we will first recall some facts from the theory of Grös-
sencharacters and Hecke’s zeta function. Then, we will prove the Perron
formula.

We always assume χ to be a character mod q and set r = r1 +r2−1 > 0.
Let U be the free group of the totally positive free units which are congruent
to 1 mod q, i.e. η ≡ 1 mod q for η ∈ U . Therefore, χ(η) = 1 for η ∈ U .

Hence U has finite index [E : U ] in the units group E . If we fix a basis
η1, . . . , ηr of U and define

R(U) := |det(ej log |η(j)
1 |, . . . , ej log |η(j)

r |)j=1,...,r|,
then (see [8])

[E : U ] = ωR(U)/R.

Following Hecke’s idea [4], we now define the Grössencharacters λ with
respect to U (i.e. λ(η) = 1 for every η ∈ U). For τ := (τ1, . . . , τr) ∈ Rr define
the numbers

E(τ) := (E1(τ), . . . , Er+1(τ))

by the system of equations
r+1∑

j=1

ejEj(τ) = 0,
r+1∑

j=1

ejEj(τ) log |η(j)
k | = 2πτk (k = 1, . . . , r).(4)

As in [8], we define a generalized Grössencharacter as

λτ (α) =
r+1∏

j=1

|α(j)|iejEj(τ) (0 6= α ∈ K).(5)

Thus, by (4) for m := (m1, . . . ,mr) ∈ Zr we have λm(η) = 1 for every η ∈ U ,
i.e., λm is indeed a Grössencharacter with respect to U .

Following Hecke [3, p. 108], we assign to K a system of ideal numbers
α̂, β̂, . . . . For an integral ideal α, α̂ is a specimen out of this system of ideal
numbers such that α = (α̂). One can deduce from the structure of this
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system that if (α̂) = (β̂) then α̂ = β̂ε where ε ∈ E . Indeed, the system of
ideal numbers splits into h classes,

R(α̂) = {α̂% : % ∈ K}.
These classes are mutually disjoint except for the number 0. Further, we
follow [4] and divide the set of ideal numbers into “narrow” classes as follows:
Two ideal numbers α̂ and β̂ are in the same class if and only if

β̂ ∈ R(α̂), and α̂/β̂ is totally positive.

These classes form a group S of order 2r1h (see [5, p. 57]). Let ψ be a
character of this group. Then for Re s > 1, we can transform the following
summation over totally positive algebraic integers into a summation over
ideal integers:

∑

α∈OK
α�0

λm(α)χ(α)Λ(α)
|N(α)|s =

1
2r1h

∑

ψ

∑

α̂

Λ(α̂)λm(α̂)χ(α̂)ψ(α̂)
|N(α̂)|s(6)

=:
1

2r1h

∑

ψ

∑

α̂

Λ(α̂)λmχψ(α̂)
|N(α̂)|s , say.

We note that on the right hand side, χ is extended to a character for all ideal
integers, since according to a general property of characters of finite abelian
groups it is always possible to extend a character given on a subgroup to the
ambient group. We also apply our extended definition of the von Mangoldt
function in (1). We now introduce Hecke’s zeta functions: First, let

Z(s, λmχψ,U) :=
∑

(α̂)U

λmχψ(α̂)
|N(α̂)|s (Re s > 1),

where (α̂)U means that the sum runs over a complete set of the ideal integers
which are not associated with respect to U . Since λmχψ(η) = 1 for η ∈ U ,
it is well defined.

We note that the units not associated mod U form a group of order
[E : U ] = ωR(U)/R. Obviously, λmχψ is a character of this group. In the
next equation, we indicate by (ε)U the fact that ε runs over this group. We
find that

(7) Z(s, λmχψ,U)

=
∑

(α̂)U

λmχψ(α̂)
|N(α̂)|s =

∑

(α̂)E

∑

(ε)U

λmχψ(α̂ε)
|N(α̂)|s =

∑

(α̂)E

λmχψ(α̂)
|N(α̂)|s

∑

(ε)U

λmχψ(ε)

=





ωR(U)
R

∑

(α̂)E

λmχψ(α̂)
|N(α̂)|s if λmχψ(ε) = 1 for ε ∈ E ,

0 otherwise.
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If λm(ε)χ(ε)ψ(ε) = 1 for ε ∈ E , then λmχψ is called a Hecke Grössen-
character for ideals, and we may define λmχψ(a) for nonzero ideals a in K
by

λmχψ(a) := λmχψ(α̂) := λm(α̂)χ(α̂)ψ(α̂),

where a = (α̂).
If λmχψ is a Hecke Grössencharacter, we can define a Hecke zeta function

as follows:

ζ(s, λmχψ) :=
∑

(α̂)E

λmχψ(α̂)
|N(α̂)|s =

∏

(%̂)E

(
1− λmχψ(%̂)

|N(%̂)|s
)−1

(Re s > 1),

where (%̂)E runs over prime ideal numbers mod E . Therefore, we deduce
from (7) that

Z(s, λmχψ,U) =
ωR(U)
R

ζ(s, λmχψ),

if λmχψ is a Hecke Grössencharacter. We note that for Re s > 1,

log ζ(s, λmχψ) = log
∏

(%̂)E

(
1− λmχψ(%̂)

|N(%̂)|s
)−1

=
∑

(%̂)E

∞∑

n=1

λmχψ(%̂n)
n|N(%̂n)|s ,

and obtain
ζ ′(s, λmχψ)
ζ(s, λmχψ)

= −
∑

(α̂)E

λmχψ(α̂)Λ(α̂)
|N(α̂)|s ,

where Λ(α̂) is the von Mangoldt function defined in (1). Arguing as in (6)
and (7), we find:

∑

(α)U
α�0

λmχ(α)Λ(α)
|N(α)|s =

1
2r1h

∑

ψ

∑

(α̂)U

λmχψ(α̂)Λ(α̂)
|N(α̂)|s(8)

=
1

2r1h

∑

ψ

∑

(α̂)E

λmχψ(α̂)Λ(α̂)
|N(α̂)|s

∑

(ε)U

λmχψ(ε)

= −ωR(U)
2r1hR

∑

ψ

ζ ′(s, λmχψ)
ζ(s, λmχψ)

,

where
∑

ψ runs over λmχψ that are Hecke Grössencharacters, i.e. λmχψ(ε)
= 1 for all ε ∈ E .

We will now begin with the preparations for the proof of the Perron
formula which will allow us to estimate the sum

∑
α χ(α)Λ(α)Φ(|α|x−1) via

Hecke’s zeta functions. Our result can be regarded as a simplified case of the
theorem of Rausch [8, Theorems 2.1 and 2.2], the difference being that we
do not apply a complicated smoothing integral operator as in [8, Theorems



274 Y. H. Wang and C. Bauer

2.1 and 2.2], since our weight function Φ is already sufficiently smooth. This
simplifies our application in this paper.

We now define the (r + 1)-dimensional Mellin transform of Φ(u) =
e−(u1+···+ur+1) as

Ψ(s) := 2r2
�

Rr+1
+

Φ(u)
r+1∏

k=1

ueksk−1
k du = 2r2

r+1∏

k=1

Γ (eksk)

for s = (s1, . . . , sr+1) ∈ Cr+1.

We first consider the special case of
∑

η∈U
λ(η)Φ(|η|x−1),

where λ is a generalized Grössencharacter defined as

λ(α) :=
r+1∏

k=1

|α(k)|iekbk .

Lemma 1. We have

(9)
∑

η∈U
λ(η)Φ(|η|x−1)

=
1

2πiR(U)

∑

m

2+i∞�

2−i∞
Ψ(s+ ib− iE(m))

r+1∏

k=1

x
ek(s+ibk−iEk(m))
k ds,

where m runs through Zr, and we use the abbreviation

s+ ib− iE(m) := (s+ ib1 − iE1(m), . . . , s+ ibr+1 − iEr+1(m)).

Proof. This is a special case of [8, Theorem 2.1]. Since

Ψ(s) = 2r2
r+1∏

k=1

Γ (eksk),

and Γ (σ + it) is of exponential decay in |t|, the sum and integrals on the
right converge absolutely. Thus, there is no need to apply the smoothing
operator as in [8, Theorem 2.1]. Hence, by the same argument of applying
Poisson summation as in [8, Theorem 2.1], the lemma is proved.

Therefore we get the Perron formula for number fields as follows.

Theorem 3. Set s− iE(m) := (s− E1(m), . . . , s−Er+1(m)). Then

(10)
∑

α�0

Λχ(α)Φ(|α|x−1) = −ω2r2−r1

hR

∑

ψ

∑

m∈Zr

1
2πi

2+i∞�

2−i∞

ζ ′(s, λmχψ)
ζ(s, λmχψ)



The least primitive root in number fields 275

×
r+1∏

k=1

(Γ (ek(s− iEk(m)))xek(s−iEk(m))
k ) ds

=:−ω2r2−r1

hR

∑

ψ

∑

m∈Zr

1
2πi

2+i∞�

2−i∞

ζ ′(s, λmχψ)
ζ(s, λmχψ)

Y (s− iE(m)) ds,

where m runs over Zr and ψ runs over characters of S (see (6)) such that
λmχψ is a Hecke Grössencharacter , and

Y (s) :=
r+1∏

k=1

Yk(sk) :=
r+1∏

k=1

(Γ (eksk)x
eksk
k )

for s = (s1, . . . , sr+1) ∈ Cr+1.

Proof. Using Lemma 1 with bk = 0 and noting that χψ(η) = 1 for η ∈ U ,
and Λ(α̂ε) = Λ(α̂) for ε ∈ E , we see that
∑

α�0

χ(α)Λ(α)Φ(|α|x−1) =
∑

(α)U
α�0

χ(α)Λ(α)
∑

η∈U
Φ(|η|(|α|x−1))

=
1

2πiR(U)

∑

(α)U
α�0

χ(α)Λ(α)
∑

m∈Zr

2+i∞�

2−i∞
Ψ(s− iE(m))

×
r+1∏

k=1

(|α(k)|−1xk)ek(s−iEk(m)) ds.

Note that N(α) =
∏r+1
k=1(α(k))ek and λm(α) =

∏r+1
k=1 |α(k)|iekEk(m), hence

the above is

=
1

2πiR(U)

∑

m∈Zr

2+i∞�

2−i∞
Ψ(s− iE(m))

×
( ∑

(α)U
α�0

Λ(α)χ(α)λm(α)
|N(α)|s

) r+1∏

k=1

x
ek(s−iEk(m))
k ds

= − ω

2r1hR

∑

ψ

∑

m∈Zr

1
2πi

2+i∞�

2−i∞
Ψ(s− iE(m))

ζ ′(s, λmχψ)
ζ(s, λmχψ)

r+1∏

k=1

x
ek(s−iEk(m))
k ds.

The last equality follows from (8) and (5), as each expression λmχψ is a
Hecke Grössencharacter while m runs over Zr and ψ runs over characters
of S (see (6)). Hence, we get the desired Perron formula.

We assume that for a given χψ, λmχψ is a Hecke Grössencharacter, i.e.
λmχψ(ε) = 1 for all ε ∈ E . We let E(m) = (E1(m), . . . , Er+1(m)) as in (4)



276 Y. H. Wang and C. Bauer

and let ε1, . . . , εr be a basis of the subgroup of E that contains all torsion-free
elements of E . We derive from (4) and (5) a system of equations

r+1∑

j=1

ejEj(m)=0,
r+1∑

j=1

ejEj(m) log |ε(j)
k |=2πm′k+i logχψ(εk) (k=1, . . . , r).

Since |χψ| = 1, i logχψ is real. Then we get

Ej(m) = E′j

((
m′k +

i

2π
logχψ(εk)

)

k=1,...,r

)
,(11)

where E′(τ) denotes the solution of

r+1∑

j=1

ejE
′
j(τ) = 0,

r+1∑

j=1

ejE
′
j(τ) log |ε(j)

k | = 2πτk (k = 1, . . . , r).(12)

We will use this relation to show in Lemma 6 that the summation over
m which runs over Zr with λmχψ being Hecke Grössencharacter does not
depend on U .

3. Estimate for Hecke’s zeta functions. In this section, we will de-
rive several estimates for Hecke’s zeta functions. If χ is a nonprincipal char-
acter modulo q (q6=(1)), ψ is a character of the “narrow” class group S in
(6), and λm is the generalized Grössencharacter (5) such that λmχψ(ε) = 1
for ε ∈ E, then λmχψ is a nonprincipal Hecke Grössencharacter. And if
χ is a primitive character mod q, then λmχψ is also a primitive Hecke
Grössencharacter (see [4]). We note that if χ is not primitive, then it is
induced by a primitive character χ∗ mod f, where f | q. In this case,

ζ(s, λmχψ) = ζ(s, λmχ∗ψ)
∏

p|q
(1− λmχ∗ψ(p)Np−s)(13)

= ζ(s, λmχ∗ψ)
(∑

a|q
µ(a)λmχ∗ψ(a)Na−s

)
.

Hence, we can reduce our investigations to the case that λmχψ is primi-
tive modulo f, where f | q. For primitive λmχψ, Hecke (see [4, p. 35]) obtained
the following functional equation for ζ(s, λmχψ): Let

ξ(s, λmχψ) := ζ(s, λmχψ)
r1∏

k=1

Γ

(
1
2

(s+ak+iEk(m))
) r1+r2∏

k=r1+1

Γ (s+iEk(m)),

where a1, . . . , ar1 are determined by the sign character induced by χψ (see
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[4, p. 20]). Then

ξ(s, λmχψ) = ζ(s, λmχψ)

×
r1∏

k=1

Γ

(
1
2

(s+ ak − iEk(m))
) r1+r2∏

k=r1+1

Γ (s− iEk(m)),

and we have the functional equation

ξ(s, λmχψ) = W (λmχψ)A1−2sξ(1− s, λmχψ),

where |W (λmχψ)| = 1, A =
√
|d|N(f)/πn 2−r2.

Using the functional equation, the Phragmén–Lindelöf principle, and the
relation (13), the following lemma is shown in [5, Lemma 2] for all λmχψ:

Lemma 2. Let 0 < η ≤ 1/2, then for −η ≤ σ ≤ 1 + η, where s = σ + it,
we have

ζ(s, λmχψ)�η,K

(
Nq(1 + |t|)n

r+1∏

k=1

(1 + |Ek(m)|)ek
)(1+η−σ)/2

= (Nq|E(m)|(1 + |t|)n)(1+η−σ)/2,

where |E(m)| := ∏r+1
k=1(1 + |Ek(m)|)ek .

Applying Lemma 2 of Moroz [7, p. 54], and in particular taking the order
of ζ(s, λmχψ) in his lemma, one obtains:

Lemma 3 ([7, p. 55, Proposition 2]). If % = σ + iγ are the nontrivial
zeros of ζ(s, λmχψ), then the number of zeros such that l ≤ γ ≤ l + 1 is
O(log(Nq|E(m)|(|l|+ 1)n)).

For the entire function ξ(s, λmχψ), we write the Weierstrass product

g(λmχψ)s(s− 1)ξ(s, λmχψ) = exp(A+Bs)
∏

%

exp
(
s

%

)(
1− s

%

)

where % runs over all nontrivial zeros of ζ(s, λmχψ). Using this presentation,
we follow the argument in [7, p. 55, Lemma 3] to obtain

(14)
ζ ′(s, λmχψ)
ζ(s, λmχψ)

=
∑

%

1
s− % − g(λmχψ)

(
1
s

+
1

s− 1

)
+O(log(Nq|E(m)|(|t|+ 2)n))

=
∑

|t−γ|<1

1
s− % − g(λmχψ)

(
1
s

+
1

s− 1

)
+O(log(Nq|E(m)|(|t|+ 2)n)),

with −1/4 < Re s ≤ 2. Now, g(λmχψ) = 1 if λmχψ is principal and 0
otherwise. The last equality above is deduced using Lemma 3.
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Hence, the residue of the Hecke zeta function is:

(15)

Res
ζ ′(s, λmχψ)
ζ(s, λmχψ)

∣∣∣∣
s=%

= 1 if % is a zero of ζ(s, λmχψ),

Res
ζ ′(s, λmχψ)
ζ(s, λmχψ)

∣∣∣∣
s=0,1

= − 1 if λmχψ is principal.

Using again Lemma 3, we obtain:

Lemma 4. For all l ∈ Z, |l| ≥ 2, there exists Tl ∈ (l, l + 1) such that

ζ ′(σ + iTl, λmχψ)
ζ(σ + iTl, λmχψ)

� log2(Nq|E(m)|(|Tl|+ 1)n).

Proof. By Lemma 3, for each λmχψ there exists a positive constant c
and Tl ∈ (l, l + 1) such that there is no zero of ζ(s, λmχψ) in the region

|Im s− Tl| ≤ c log−1(Nq|E(m)|(|Tl|+ 1)n).

Then we get the lemma by applying (14) and Lemma 3.

Furthermore, if we assume GRH, i.e. all the nontrivial zeros of ζ(s, λmχψ)
have the form % = 1/2 + iγ, then by (14) and Lemma 3 we have:

Lemma 5. Assuming the GRH , we have

ζ ′

ζ

(
1
3

+ it, λmχψ

)
� log(Nq|E(m)|(|t|+ 1)n).

4. Estimate for character sums and proof of Theorem 1. We
suppose r > 0; then R 6= 0. Define Ek(m) as in (4) for a general Grössen-
character λm with respect to U , and set

Wk(m) := Ek(m)−Er+1(m) (k = 1, . . . , r).

This is an r-dimensional lattice, and by Rausch [8, Lemma 4.4], for any fixed
w = (w1, . . . , wr) ∈ Rr,

#{m ∈ Zr : wk ≤Wk(m) ≤ wk + 1, k = 1, . . . , r} � R(U).(16)

We will show in the following similar lemma that the distribution of Ek(m)
such that all λmχψ are Hecke Grössencharacters for fixed χψ no longer
depends on U :

Lemma 6. Let Ek(m) be as in (4) such that λmχψ are Hecke Grössen-
characters for fixed χψ. Then

#{m ∈ Zr, l ∈ Z : wk ≤ l − Ek(m) ≤ wk + 1, k = 1, . . . , r + 1} � R.

Proof. By (11), if λmχψ are Hecke Grössencharacters for fixed χψ, then
there exist m′ ∈ Zr and fixed z ∈ Rr such that

Ek(m) = E′k(m
′ + z), Wk(m) = W ′k(m

′ + z),
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where m′+ z := (m′1 + z1, . . . ,m
′
r + zr), and E′(τ) is defined as in (12) with

respect to E . Since R,R(U) 6= 0 the correspondence m 7→ m′ defined by (11)
is then injective.

If
wk < l − Ek(m) < wk + 1, k = 1, . . . , r + 1,

then
wr+1 − wk − 1 ≤W ′k(m′ + z) ≤ wr+1 − wk + 1.

By the injectivity of m 7→ m′, it suffices to prove that the number of the m′

satisfying the above inequality is at most R. This can be done by the same
argument as in Rausch [8, Lemma 4.4] with the added fixed z. And for a
fixed m, there exists at most one l satisfying our assumption. The assertion
follows.

Now, we will use the Perron formula (10) to prove Theorem 1. Assuming
the General Riemann Hypothesis for Hecke zeta functions, we denote by∑

% the fact that % := %(m) := 1/2 + iγ(m) runs over the nontrivial zeros of
ζ(s, λmχψ). We first assume that χ is nonprincipal; then λmχψ can only run
over nonprincipal Hecke Grössencharacters, and ζ ′(s, λmχψ)/ζ(s, λmχψ) has
its all poles at %(m)s with residue 1 by (14). From Cauchy’s theorem and
Lemmas 4 and 5, we obtain

S :=
∑

m∈Zr

2+i∞�

2−i∞

ζ ′(s, λmχψ)
ζ(s, λmχψ)

r+1∏

k=1

Yk(s− iEk(m)) ds

=
∑

m∈Zr

∑

γ(m)

r+1∏

k=1

Yk

(
1
2

+ i(γ(m) − Ek(m))
)

+
∑

m∈Zr

1/3+i∞�

1/3−i∞

ζ ′(s, λmχψ)
ζ(s, λmχψ)

r+1∏

k=1

Yk(s− iEk(m)) ds

�
∑

m∈Zr

∑

γ(m)

∣∣∣∣
r+1∏

k=1

{
Γ

(
ek

(
1
2

+i(γ(m) − Ek(m))
))

x
ek(1/2+i(γ(m)−Ek(m)))
k

}∣∣∣∣

+X1/3
∑

m∈Zr
log(Nq|E(m)|)

∞�

−∞

r+1∏

k=1

e−π|t−Ek(m)|/2 dt.

By the well known estimate Γ (σ + it)� |t|σ−1/2e−π|t|/2,

S � X1/2
( ∑

m∈Zr

∑

γ(m)

r+1∏

k=1

|γ(m) − Ek(m)|ek−1/2e−π|γ
(m)−Ek(m)|/2

)

+X1/3
∑

m∈Zr
log(Nq|E(m)|)

∑

l∈Z

r+1∏

k=1

e−π|l−Ek(m)|/2
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� X1/2
∑

m∈Zr

∑

γ(m)

r+1∏

k=1

e−|γ
(m)−Ek(m)|/2

+X1/3
∑

m∈Zr
log(Nq|E(m)|)

∑

l∈Z

r+1∏

k=1

e−π|l−Ek(m)|/2

=: X1/2S1 +X1/3S2.

We use Lemma 3 to estimate S1 as follows:

S1 =
∑

m∈Zr

∑

γ(m)

r+1∏

k=1

e−|γ
(m)−Ek(m)|/2

�
∑

m∈Zr

∑

l∈Z

∑

l<γ(m)≤l+1

r+1∏

k=1

e−|γ
(m)−Ek(m)|/2

�
∑

m∈Zr

∑

l∈Z

r+1∏

k=1

e−|l−Ek(m)|/2 ∑

l<γ(m)≤l+1

1

�
∑

m∈Zr

∑

l∈Z

r+1∏

k=1

e−|l−Ek(m)|/2 log(Nq|E(m)|(|l|+ 1)n)

� logNq
∑

m∈Zr

∑

l∈Z

r+1∏

k=1

e−|l−Ek(m)|/2

+
∑

m∈Zr

∑

l∈Z

r+1∏

k=1

e−|l−Ek(m)|/2 log(|l|+ 1)n

+
∑

m∈Zr

∑

l∈Z

r+1∏

k=1

e−|l−Ek(m)|/2 log(|E(m)|)

=: S11 log(Nq) + S12 + S13.

For S11, by Lemma 6, we have

S11 =
∑

m∈Zr

∑

l∈Z

r+1∏

k=1

e−|l−Ek(m)|/2

�
∑

w∈Zr+1

r+1∏

k=1

e−|wk|/2
∑

m∈Zr

∑

l∈Z
wk≤l−Ek(m)≤wk+1

1

� R
∑

w∈Zr+1

r+1∏

k=1

e−|wk|/2 � R.
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For S12, we see that

S12 =
∑

m∈Zr

∑

l∈Z

r+1∏

k=1

e−|l−Ek(m)|/2 log(|l|+ 1)

�
∑

m∈Zr

∑

|l|≥|Er+1(m)|
e−(|l|−|Er+1(m)|)/2 log(|l|+ 1)

r∏

k=1

e−(|l−Ek(m)|)/2

+
∑

m∈Zr

∑

|l|<|Er+1(m)|
e(|l|−|Er+1(m)|)/2 log(|Er+1(m)|+1)

r∏

k=1

e−(|l−Ek(m)|)/2

�
∑

m∈Zr

∑

l∈Z

r∏

k=1

e−(|l−Ek(m)|)/2(e|−|l|/3+|Er+1(m)|/2| + e||l|/2−|Er+1(m)|/3|)

�
∑

m∈Zr

∑

l∈Z

r∏

k=1

e−(|l−Ek(m)|)/2
( 1∑

u=0

e|(−1)ul/3+Er+1(m)/2|

+
1∑

u=0

e|l/2+(−1)uEr+1(m)/3|
)

�
1∑

u=0

∑

m∈Zr

∑

l∈Z

(
e|(−1)ul/3+Er+1(m)/2|

r∏

k=1

e−(|l−Ek(m)|)/2

+ e|l/2+(−1)uEr+1(m)/3|
r∏

k=1

e−(|l−Ek(m)|)/2
)
� R.

The last inequality is achieved by the same argument applied to S11. Simi-
larly, we obtain S13 � R, S2 � R log(Nq). Thus,

S � X1/2R log(Nq).(17)

Applying the Perron formula (10) and (17), we obtain for a nonprincipal
character χ:
∑

α�0

χ(α)Λ(α)Φ(|α|x−1)

� ω2r2

R
max
ψ

∑

m∈Zr

2+i∞�

2−i∞

ζ ′(s, λmχψ)
ζ(s, λmχψ)

r+1∏

k=1

Yk(s− iEk(m)) ds

�K X1/2 log(Nq).

If λmχψ is principal, then ζ ′(s, λmχψ)/ζ(s, λmχψ) has poles at s = 0, 1
with residue −1 by (14) and (15). When λmχψ is principal, it can be
easily seen that the means χ, λm, ψ are all principal. Using again the Perron
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formula (10) and Cauchy’s theorem, we obtain
∑

α�0

χ(α)Λ(α)Φ(|α|x−1)

= − ω2r2−r1

hR

1
2πi

2+i∞�

2−i∞

ζ ′(s, 1)
ζ(s, 1)

r+1∏

k=1

Yk(s) ds

− ω2r2−r1

hR

∑

ψ

∑∗

m∈Zr

1
2πi

2+i∞�

2−i∞

ζ ′(s, λmχψ)
ζ(s, λmχψ)

r+1∏

k=1

Yk(s− iEk(m)) ds,

where
∑∗

m∈Zr denotes that λmχψ runs over nonprincipal Hecke Grössen-
characters.

Arguing as above, we find that
∑

α�0

χ(α)Λ(α)Φ(|α|x−1) =
ω2r2−r1

hR
X +OK(X1/2 log(Nq))

for a principal character χ. This proves Theorem 1.

5. The least primitive root. For (α, q) = 1, denote by indα the index
modulo q with respect to a fixed primitive root g, i.e. α ≡ gindα (mod q). If
d |φ(Nq), then

Gd(x) :=
∑

indα≡0 (mod d)
α�0

Λ(α)Φ(|α|x−1) =
1
d

∑

α�0

Λ(α)Φ(|α|x−1)
∑

χd

χd(α)

=
1
d

∑

α�0
(α,q)=1

Λ(α)Φ(|α|x−1) +
1
d

∑∗

χd

∑

α�0

χd(α)Λ(α)Φ(|α|x−1),

where
∑∗

χd
means that χd runs over all nonprincipal characters modulo q

that satisfy χdd = χ0. By Theorem 1, we have

Gd(x) =
1
d

∑

α�0

Λ(α)Φ(|α|x−1) +O(X1/2 log(Nq)).(18)

Let Ic(x) := {α � 0 | |α(k)| ≤ cxk} as in (3). One can assume for the
convenience of computation that

c′0x
ek/n ≤ xk ≤ c′1xek/n, k = 1, . . . , r + 1,

where the positive constants c′0, c
′
1 depend on the field K only. This as-

sumption can be justified by multiplying a suitably chosen totally positive
unit ε ∈ K (see proof in [5, p. 62, (13)]). If α 6∈ Ic(x), then there exists
k such that |α(k)| > cxk. For convenience, we assume that k = 1. Taking
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x′ = (2x1, x2, . . . , xr+1), we apply partial summation with respect to |α(1)|:
(19)

∑

|α(1)|>cx1
α�0

Λ(α)Φ(|α|x−1)

=
∑

|α(1)|>cx1
α�0

Λ(α)Φ(|α|(x′)−1)e−|α
(1)|x−1

1 /2 ≤ C ′1Xe−c/2,

where C ′1 is an absolute constant only depending on K that is derived from
the inequality

C0X ≤
∑

α�0

Λ(α)Φ(|α|x−1) ≤ C1X,(20)

which follows from Theorem 1. Hence,
∑

α6∈Ic0(x)
α�0

Λ(α)Φ(|α|x−1) ≤ C2Xe
−c0/2(21)

with C2 = nC1 depending only on K as well.
Let

P :=
∏

p|φ(Nq)

p, P1 =
∏

p|φ(Nq)
p<c1m log 4m

p (c1 ≥ 2),

where m = ω(φ(Nq)). It is easily seen that α is a primitive root modulo q if
(indα,P ) = 1. We consider the summation over primitive roots as follows:

N(x) :=
∑

(indα,P )=1
α�0

Λ(α)Φ(|α|x−1)(22)

≥
∑

(indα,P1)=1
α�0

Λ(α)Φ(|α|x−1)−
∑

p|φ(Nq)
p>c1m log 4m

Gp(x)

= M(x)−
∑

p|φ(Nq)
p>c1m log 4m

1
p

∑

α�0

Λ(α)Φ(|α|x−1)+O(mX1/2 log(Nq))

= M(x)−H(x)
( ∑

p|φ(Nq)
p>c1m log 4m

1
p

)
+O(mX1/2 log(Nq)),

where

M(x) :=
∑

(indα,P1)=1
α�0

Λ(α)Φ(|α|x−1), H(x) :=
∑

α�0

Λ(α)Φ(|α|x−1).

We now quote a lemma from [11, Lemma 4] that is based on the sieve
method:
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Lemma 7. Let Γ be an index set , and L : Γ → Z and W : Γ → R+ be
such that

Sd :=
∑

γ∈Γ
L(γ)≡0 (mod d)

W (γ)

exists for any d and satisfies

Sd =
M

d
+O(N).

Let p1, . . . , pr be distinct primes with Q = p1 · · · pr. Then

T :=
∑

γ∈Γ
(L(γ),Q)=1

W (γ) ≥ C ′3M
r∏

i=1

(
1− 1

pi

)
+O(p2.99

r N),

with an absolute positive constant C ′3.

Applying Lemma 7 with T = M(x) and Q = P1, from (18) we obtain

M(x) ≥ C ′3
∏

p|P1

(
1− 1

p

)
H(x) +O((c1m)2.991X1/2 log(Nq))

≥ C3

log(c1m)
H(x) +O((c1m)2.991X1/2 log(Nq)),

where C3 is an absolute constant.
Taking c1 sufficiently large, from (20) and (22) we obtain

N(x) ≥ C3C0

log c1 log 4m
X − C1

c1 log 4m
X +O((c1m)2.991X1/2 log(Nq))

≥ C4

log c1 log 4m
X +O((c1m)2.991X1/2 log(Nq)),

with an absolute positive constant C4.
Finally, we split N(x) into two sums:

N(x) =
∑

α∈Ic0(x)
α�0

Λ(α)Φ(|α|x−1) +
∑

α6∈Ic0(x)
α�0

Λ(α)Φ(|α|x−1) :=
∑

1
+
∑

2
.

By (21),
∑

2 ≤ C2Xe
−c0/2. Taking c0 = c2 log 4m with a sufficiently large

c2 = c2(c1), we have
∑

1
≥ C

log c1 log 4m
X +O((c1m)2.991X1/2 log(Nq))

with an absolute constant C. Hence, there exists a constant c such that if
X = cm5.99 log2(Nq), then

∑
1 > 0. This proves Theorem 2.
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