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Car–Pólya and Gel’fond’s theorems for Fq[T ]
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1. Introduction. In 1915, Pólya proved the following result:

Theorem 1 ([12]). Let f be an entire function on C such that

f(Z) ⊂ Z, lim
r→+∞

ln |f |r
r

< ln
(

3 +
√

5
2

)
,

resp.

f(N) ⊂ Z, lim
r→+∞

ln |f |r
r

< ln 2,

where |f |r = sup|z|≤r |f(z)|. Then f is a polynomial of Q[X]. Moreover ,

ln
(3+

√
5

2

)
(resp. ln 2) is optimal.

The constant is optimal, since the function

f(z) =
1√
5

[(
3 +
√

5
2

)z
−
(

3−
√

5
2

)z]

(resp. f(z) = 2z) is a non-polynomial entire function such that f(Z) ⊂ Z
(resp. f(N) ⊂ Z) and its exponential type is ln

(3+
√

5
2

)
(resp. ln 2).

In 1933, Gel’fond proved:

Theorem 2 ([9]). Let f be an entire function on C and q ≥ 2 be an
integer. If , for all n ∈ N, f(qn) ∈ Z and if

ln |f |r <
1

4 ln q
(ln r)2 − 1

2
ln r − ω(r)

where ω(r)→ +∞ as r → +∞, then f is a polynomial in Q[X].

The coefficients 1/4 ln q and −1/2 are optimal, since the entire function

ϕ(z) =
∑

n≥0

n−1∏

k=0

z − qk
qn − qk
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satisfies

ln |ϕ(z)| < 1
4 ln q

(ln r)2 − 1
2

ln r +O(1) for |z| = r as r → +∞,

ϕ(qn) ∈ Z for all n ∈ N, and ϕ is not a polynomial.
Here, we are interested in analogous results in function fields.
Let q be a power of a prime number, Fq be a field with q elements, Fq[T ]

be the ring of polynomials in T over Fq, Fq(T ) be its quotient field. Let
Fq(T )∞ be the completion of Fq(T ) for the infinite 1/T -adic valuation v
normalized by v(1/T ) = 1 and let Ω be the completion of an algebraic
closure of Fq(T )∞. The valuation v extends to a (non-discrete) valuation
on Ω that we still denote by v. For all z ∈ Ω, we put

deg(z) = −v(z).

Let f(X) =
∑

n≥0 cnX
n be an entire function on Ω and r be a real number.

We put
M(f, r) = sup

deg(z)≤r
{deg(f(z))}.

Schnirelmann showed (see [13] or [8, Appendice]) that, for all r ∈ Q+,

M(f, r) = sup
n∈N
{deg(cn) + nr}.

By continuity, for all r ∈ R+ we have

M(f, r) = sup
n∈N
{deg(cn) + nr}.(1)

Mireille Car proved the following analog of Pólya’s theorem for Fq[T ].

Theorem 3 ([4, Theorem 2]). Let f be an entire function on Ω such
that

f(Fq[T ]) ⊂ Fq[T ], lim
r→+∞

M(f, r)
qr

<
1

e ln q qq/(q−1)
.

Then f is a polynomial in Fq(T )[X].

Moreover, Car showed that the bound may be improved for linear func-
tions.

Theorem 4 ([4, Theorem 4]). Let f be an Fq-linear entire function such
that

f(Fq[T ]) ⊂ Fq[T ], lim
r→+∞

M(f, r)
qr

<
1

e ln q
.

Then f is a polynomial in Fq(T )[X].

In order to extend this last result to any entire function, Laurence De-
lamette proved:

Theorem 5 ([8, Théorème 3]). Let ε > 0. There exists q(ε) > 0 such
that for every finite field Fq with q > q(ε) elements, every entire function f
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on Ω such that

f(Fq[T ]) ⊂ Fq[T ], lim
r→+∞

M(f, r)
qr

<
1

e ln q qε

is a polynomial in Fq(T )[X].

In this paper, we prove two results. The first one shows that Car’s the-
orem for entire functions is true with the bound 1/e ln q (and Car gave an
example that proves that this constant is optimal).

Theorem 6. Let f be an entire function on Ω such that

f(Fq[T ]) ⊂ Fq[T ], lim
r→+∞

M(f, r)
qr

<
1

e ln q
.

Then f is a polynomial in Fq(T )[X].

Our second result is an analog for Fq[T ] of Gel’fond’s theorem:

Theorem 7. Let f be an entire function on Ω and let H ∈ Fq[T ] be a
polynomial of degree h ≥ 1. If , for all n ∈ N, f(Hn) ∈ Fq[T ] and

lim
r→+∞

M(f, r)
r2 <

1
4h

then f is a polynomial in Fq(T )[X]. Moreover , the constant 1/4h is optimal.

2. Car–Pólya’s theorem. Let R be a domain with quotient field K
and let E be a subset of R. We denote by Int(E,R) (or Int(R) if E = R)
the R-module formed by the polynomials which take values in R on E:

Int(E,R) = {P ∈ K[X] | P (E) ⊂ R}.
Here, we consider the case when E = R = Fq[T ]. Denote by u0 = 0, u1, . . .
. . . , uq−1 the elements of Fq. Mireille Car defines (see [3]) a one-to-one cor-
respondence between N and Fq[T ] in the following way: for every n ∈ N, let
n =

∑s
i=0 niq

i be its q-adic expansion. Then, put

un =
s∑

i=0

uniT
i.

We recall that Bhargava’s factorials for Fq[T ] are given by (see [2, §7] or [1]
for a straightforward proof)

n!BFq[T ] =
n−1∏

k=0

(un − uk).

Then, the sequence of polynomials
n−1∏

k=0

X − uk
un − uk

is a basis of the Fq[T ]-module Int(Fq[T ]).
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We recall the definition of Carlitz factorials (see [7]). For every i ∈ N,
put

Di =
∏

P∈Fq[T ]
degP<i

(T i + P ).

For every n ∈ N with q-adic expansion n =
∑s

i=0 niq
i, the Carlitz nth

factorial is defined by

n!CFq[T ] =
s∏

i=0

Dni
i .

We know that (see [2, §7])

n!CFq[T ] = ξn × n!BFq[T ] with ξn ∈ F×q .(2)

Therefore, the sequence of polynomials
(
X

n

)
=
∏n−1
k=0(X − ui)
n!CFq[T ]

is a basis of the Fq[T ]-module Int(Fq[T ]). From now on, for simplicity, the
Carlitz nth factorial will be denoted by n!. There is no risk of confusion,
because it will be the only one used. The degree of n! is

deg(n!) =
s∑

i=0

iniq
i.(3)

We have the relation (see [14])
n!

(n− 1)!
= Le(n),(4)

where e(n) denotes the highest power of q dividing n and, for every m ∈ N,
Lm is the polynomial defined by

Lm =
m∏

j=1

(T q
j − T ).

The degree of Lm is

deg(Lm) =
qm+1 − q
q − 1

.(5)

For every n, k ∈ N, we define the elements an,k and bn,k of Fq[T ] by

Xn =
n∑

k=0

bn,k

(
X

k

)
,(6)

n!
(
X

n

)
=

n∑

k=0

(−1)n−kan,kXk.(7)

Hence, for all k > n and k < 0, we have bn,k = an,k = 0. We see that
bn,0 = an,0 = 0 for all n ∈ N∗.
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Lemma 8. The bn,k and an,k satisfy the recurrence relations

ar+1,k = urar,k + ar,k−1,(8)

br,k = Le(k)br−1,k−1 + ukbr−1,k.(9)

Proof. 1) Using (7), we have

(X − u0)(X − u1) · · · (X − ur)

=
r∑

k=0

(−1)r−kar,kXk+1 − ur
r∑

k=0

(−1)r−kar,kXk

=
r+1∑

k=1

(−1)r−k+1ar,k−1X
k − ur

r∑

k=0

(−1)r−kar,kXk

and by identification
ar+1,k = ar,k−1 + urar,k.

2) Using (4) and (6), we may write

Xr = Xr−1X =
r−1∑

k=0

br−1,k
(X − u0)(X − u1) · · · (X − uk−1)(X − uk + uk)

k!

=
r−1∑

k=0

br−1,k

(
X

k + 1

)
Le(k+1) +

r−1∑

k=0

br−1,kuk

(
X

k

)
.

We begin to give upper bounds for the degrees of br,k and ar,k.

Lemma 9. Let r, s, k ∈ N be such that r ∈ N∗ and k ∈ [qs, qs+1[. Then

deg(br,k) ≤ (r − k)s+
s∑

j=1

([
k

qj

]
−
[

k

qj+1

])
qj+1 − q
q − 1

.

Proof. We prove the inequality by induction on r. We may assume that
0 ≤ qs ≤ r. Clearly, the lemma is true for r = 1.

We first assume that k ∈ ]qs, qs+1[. By Lemma 8, we have

deg(br,k) ≤ max(deg(br−1,k−1) + deg(Le(k)),deg(uk) + deg(br−1,k)).

By the induction hypothesis, we have

deg(br−1,k−1) ≤ (r − k)s+
s∑

j=1

([
k − 1
qj

]
−
[
k − 1
qj+1

])
qj+1 − q
q − 1

.

For every n ∈ N, [n/qj] − [n/qj+1] is the number of integers ≤ n divisible
by qj and not by qj+1:[

n

qj

]
−
[
n

qj+1

]
= #{m ∈ N | 1 ≤ m ≤ n and qj ‖m}

where the symbol ‖ means “exactly divisible by”. However, if j 6= e(k) then
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#{n ∈ N | 1 ≤ n ≤ k and qj ‖n} = #{n ∈ N | 1 ≤ n ≤ k − 1 and qj ‖n},
and if j = e(k) then

#{n ∈ N | 1 ≤ n ≤ k and qj ‖n} = 1+#{n ∈ N | 1 ≤ n ≤ k−1 and qj ‖n}.
So, if j 6= e(k) then[

k − 1
qj

]
−
[
k − 1
qj+1

]
=
[
k

qj

]
−
[

k

qj+1

]
,

and if j = e(k) then[
k − 1
qe(k)

]
−
[
k − 1
qe(k)+1

]
=
[

k

qe(k)

]
−
[

k

qe(k)+1

]
− 1.

By (5), we have

deg(Le(k)) =
qe(k)+1 − q
q − 1

.

It follows that
s∑

j=1

([
k − 1
qj

]
−
[
k − 1
qj+1

])
qj+1 − q
q − 1

+ deg(Le(k))

=
s∑

j=1

([
k

qj

]
−
[
k

qj+1

])
qj+1 − q
q − 1

.

Therefore

deg(br−1,k−1Le(k)) ≤ (r − k)s+
s∑

j=1

([
k

qj

]
−
[
k

qj+1

])
qj+1 − q
q − 1

.

Since deg(uk) = s, we have

deg(br−1,k) + deg(uk) ≤ (r − 1− k)s+ s+
s∑

j=1

([
k

qj

]
−
[

k

qj+1

])
qj+1 − q
q − 1

≤ (r − k)s+
s∑

j=1

([
k

qj

]
−
[

k

qj+1

])
qj+1 − q
q − 1

.

We now assume that k = qs. Then

deg(br,qs) ≤ max
(

deg(br−1,qs−1) +
qs+1 − q
q − 1

,deg(br−1,qs) + s

)
.

By the induction hypothesis, we have

deg(br−1,qs−1) +
qs+1 − q
q − 1

≤ (r − qs)(s− 1) +
s−1∑

j=1

([
qs − 1
qj

]
−
[
qs − 1
qj+1

])
qj+1 − q
q − 1

+
qs+1 − q
q − 1

.
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For 1 ≤ j ≤ s− 1, we have the equality

#{n ∈ N | 1 ≤ n ≤ qs − 1 and qj ‖n} = #{n ∈ N | 1 ≤ n ≤ qs and qj ‖n},
and so [

qs − 1
qj

]
−
[
qs − 1
qj+1

]
=
[
qs

qj

]
−
[
qs

qj+1

]
.

As a consequence,

s−1∑

j=1

([
qs − 1
qj

]
−
[
qs − 1
qj+1

])
qj+1 − q
q − 1

+
qs+1 − q
q − 1

=
s∑

j=1

([
qs

qj

]
−
[
qs

qj+1

])
qj+1 − q
q − 1

.

Since (r − qs) ≥ 0, we have (r − qs)(s− 1) ≤ (r − qs)s, and

deg(br−1,qs−1Le(qs)) ≤ (r − qs)s+
s∑

j=1

([
qs

qj

]
−
[
qs

qj+1

])
qj+1 − q
q − 1

.

Moreover,

deg(br−1,qs) + s ≤ (r − qs)s+
s∑

j=1

([
qs

qj

]
−
[
qs

qj+1

])
qj+1 − q
q − 1

.

Proposition 10. For all r, k ∈ N∗ such that 1 ≤ k ≤ r, we have

deg(br,k) ≤ r logq k.(10)

Proof. Let s be the integer such that k ∈ [qs, qs+1[. We compute

S =
s∑

j=1

([
k

qj

]
−
[

k

qj+1

])
qj+1 − q
q − 1

=
1

q − 1

(
q

s∑

j=1

[
k

qj

]
qj −

s−1∑

j=1

[
k

qj+1

]
qj+1

− q
( s∑

j=1

[
k

qj

]
−

s−1∑

j=1

[
k

qj+1

]))

=
s∑

j=1

[
k

qj

]
qj ≤

s∑

j=1

k

qj
qj ≤ ks.

By Lemma 9, we easily deduce that deg(br,k) ≤ rs−ks+ks ≤ rs ≤ r logq k.
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Lemma 11. Let r, k ∈ N∗, l, s ∈ N be such that r ∈ [ql, ql+1[ and k ∈
[qs, qs+1[. Then

deg(ar,k) ≤ rl −
q

q − 1
(ql − qs)− sqs − (k − qs)l.

Proof. We may assume s ≤ l. The proof is by induction on r. The lemma
is true for r = ql, by the following result of Carlitz [6, Theorem 2.1]:

ql!
(
X

ql

)
=

l∑

i=0

(−1)r−i
[
l
i

]
Xqi ,

where [
l
i

]
=

Dl

DiL
qi

l−i
= aql,qi .

By (3) and (5) (see also [4, Lemma IV.4(ii)]), for all 0 ≤ i ≤ l, we have

deg(aql,qi) = lql − iqi − qi q
l−i+1 − q
q − 1

and, for every i which is not power of q, deg(aql,i) = −∞. By Lemma 8, we
have

deg(ar+1,k) ≤ max(l + deg(ar,k),deg(ar,k−1)).

We first assume that k ∈ ]qs, qs+1[. It is a straightforward exercise to
verify that

deg(ar+1,k) ≤ (r + 1)l − q

q − 1
(ql − qs)− sqs − (k − qs).

We now assume that k = qs. Then, by induction,

l+deg(ar,qs) ≤ l+rl− q

q−1
(ql−qs)−sqs ≤ (r+1)l− q

q−1
(ql−qs)−sqs,

deg(ar,qs−1) ≤ rl− q

q−1
(ql−qs−1)− (s−1)qs−1− (qs−qs−1−1)l.

The following inequality holds because l ≥ s− 1:
q

q − 1
qs − sqs ≥ q

q − 1
qs−1 − (s− 1)qs−1 − (qs − qs−1)l.

Hence,

deg(ar,qs−1) ≤ rl − q

q − 1
(ql − qs)− sqs + l.

From this, we deduce

Proposition 12. Let r, k ∈ N∗ be such that 1 ≤ k ≤ r. Then

deg
(
ar,k
r!

)
≤ − logq r +

2q − 1
q − 1

k − k logq k.
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Proof. Let
∑l

j=0 rjq
j be the q-adic expansion of r and let s ∈ N be such

that k ∈ [qs, qs+1[. By Lemma 11 and (3), we have

deg
(
ar,k
r!

)
≤ l

l∑

j=0

rjq
j − q

q − 1
(ql − qs)− sqs − (k − qs)l −

l∑

j=0

jrjq
j

≤
l∑

j=0

(q − 1)qj(l − j)− q

q − 1
(ql − qs)− sqs − (k − qs)l

≤ − l(q − 1) + q

q − 1
+

q

q − 1
qs − ks.

Since −l ≤ 1− logq r and −s ≤ 1− logq k, we get

deg
(
ar,k
r!

)
≤ 1− logq r −

q

q − 1
+

q

q − 1
k + k(1− logq k)

≤ − logq r −
1

q − 1
+

2q − 1
q − 1

k − k logq k.

Proposition 13. Let x ∈ Ω be of degree δ and r ∈ N∗. Then

deg
(
x

r

)
≤ − logq r +

q(2q−1)/(q−1)+δ

e ln q
.(11)

Proof. By Proposition 12, for all k ∈ N∗ we have

deg
(
ar,k
r!

xk
)
≤ kδ − logq r +

2q − 1
q − 1

k − k logq k.

Moreover, for all k ≥ 1, it is easy to verify that

kδ +
2q − 1
q − 1

k − k logq k ≤
q(2q−1)/(q−1)+δ

e ln q
.

Inequality (11) follows from
(
x

r

)
=

r∑

k=0

(−1)r−k
ar,k
r!

xk.

Let g(X) =
∑k

n=0 cnX
n be a polynomial of Ω[X] of degree k. We have

g(X) =
k∑

n=0

cn

n∑

j=0

bn,j

(
X

j

)
=

+∞∑

j=0

+∞∑

n=0

cnbn,j

(
X

j

)
,

where cn = 0 when n > k and bn,j = 0 when j > n. We put

∆j(g) =
∑

n≥0

cnbn,j =
∑

n≥j
cnbn,j ,
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and so

g(X) =
∑

j≥0

∆j(g)
(
X

j

)
.(12)

Let f(X) =
∑

n≥0 cnX
n be an entire function on Ω. Let j be a non-negative

integer. If limn→+∞ deg(cnbn,j) = −∞, we put

∆j(f) =
∑

n≥0

cnbn,j .

Theorem 14. Let f be an entire function on Ω and let

τ(f) = lim
r→+∞

M(f, r)
qr

.

If τ(f) < 1/e ln q, then

(13) ∆j(f) exists for all j ∈ N,

(14)
∑

j≥0

∆j(f)
(
x

j

)
converges for all x ∈ Ω,

(15) f(x) =
∑

j≥0

∆j(f)
(
x

j

)
for all x ∈ Ω.

Proof. Let τ ∈ R+ be such that τ(f) < τ < 1/e ln q, and let j ∈ N. By
[4, Proposition III.1], there exists N1 ∈ N such that, for all n ≥ N1, we have

deg(cn) ≤ nθ − n logq n(16)

where θ = logq(eτ ln q) < 0. Let j ≥ N1 and n ≥ j. By (10) and (16), we
have

deg(cnbn,j) ≤ nθ − n logq n+ n logq j.

We deduce that limn→+∞ deg(cnbn,j) = −∞. This proves (13) and for
j ≥ N1,

deg(∆j(f)) ≤ θj.(17)

Let x ∈ Ω be of degree δ. By (11) and (17), we have

deg
(
∆j(f)

(
x

j

))
≤ − logq j +

q(2q−1)/(q−1)+δ

e ln q
+ θj,

hence limj→+∞ deg
(
∆j(f)

(
x
j

))
= −∞ and (14) holds.

We put

f(X) =
∑

j≥0

∆j(f)
(
X

j

)
, fN (X) =

N−1∑

n=0

cnX
n, fN (X) =

N−1∑

j=0

∆j(f)
(
X

j

)
.
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Let x ∈ Ω be of degree δ and A ∈ R+. We have limN→+∞ f(x)−fN (x) = 0.
Therefore, there exists N2 ∈ N such that

deg(f(x)− fN (x)) ≤ −A for all N ≥ N2.(18)

In the same way, there exists N3 ∈ N such that

deg(f(x)− fN (x)) ≤ −A for all N ≥ N3.(19)

Let N be an integer ≥ N1. With (12), we have

fN (x)− fN (x) =
N−1∑

j=0

[∆j(fN )−∆j(f)]
(
x

j

)
.

Clearly, ∆0(fN ) = ∆0(f) and, for all 1 ≤ j ≤ N − 1,

∆j(fN )−∆j(f) =
∑

n≥N
cnbn,j .

For all n ≥ N , deg(cnbn,j) ≤ n(θ + logq j)− n logq n ≤ Nθ. Hence,

deg(∆j(fN )−∆j(f)) ≤ Nθ,

deg
(

(∆j(fN )−∆j(f))
(
x

j

))
≤ Nθ − logq j +

q(2q−1)/(q−1)+δ

e ln q
,

deg((fN − fN )(x)) ≤ Nθ +
q(2q−1)/(q−1)+δ

e ln q
.

Therefore, there exists N4 ∈ N such that

deg(fN (x)− fN (x)) ≤ −A for all N ≥ N4.(20)

By (18)–(20), for all N ≥ max(N1, N2, N3, N4) we have

deg(f(x)− f(x)) ≤ −A.
As a consequence, deg(f(x)− f(x)) = −∞ and f(x) = f(x), that is,

f(x) =
∑

n≥0

∆n(f)
(
x

n

)
.

Theorem 15. Let f be an entire function on Ω such that

f(Fq[T ]) ⊂ Fq[T ], lim
r→+∞

M(f, r)
qr

<
1

e ln q
.

Then f is a polynomial of Fq(T )[X]. Moreover , 1/e ln q is optimal.

Proof. By Theorem 14, we have

∀x ∈ Ω, f(x) =
∑

j≥0

∆j(f)
(
x

j

)
.
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Consequently, the ∆j(f) form the solution of the following linear system:

f(u0) = ∆0(f),

f(u1) = ∆0(f)
(
u1

0

)
+∆1(f)

(
u1

1

)
,

...

f(un) = ∆0(f)
(
un
0

)
+∆1(f)

(
un
1

)
+ · · ·+∆n(f)

(
un
n

)
,

...

For all n ∈ N, f(un) ∈ Fq[T ],
(
un
n

)
∈ F×q and, for all 0 ≤ j < n,

(
un
j

)
∈ Fq[T ].

By induction, we deduce that for all j ∈ N, ∆j(f) ∈ Fq[T ]. Moreover,
we know that, for j large enough, deg(∆j) ≤ θj. Therefore, for j large
enough, ∆j(f) is a polynomial of negative degree, that is, ∆j(f) = 0. As a
consequence, f is a polynomial of Fq(T )[X].

Finally, recall that in [4, §VI], M. Car shows that the exponential type
of the entire function

f(z) =
∑

n≥0

(
z

qn

)

is 1/e ln q, that f(Fq[T ]) ⊂ Fq[T ], and that f is not a polynomial. This
proves that the upper bound 1/e ln q is optimal.

3. The analog of Gel’fond’s theorem. In this section, we show how
to modify the proof from the previous section to show the following:

Theorem 16. Let f : Ω → Ω be an entire function and let H ∈ Fq[T ]
be of degree h ≥ 1. If , for all n ∈ N, f(Hn) ∈ Fq[T ] and

lim
r→+∞

M(f, r)
r2 <

1
4h
,

then f is a polynomial in Fq(T )[X]. Moreover , the bound 1/4h is optimal.

Let E = {Hn | n ∈ N}. As for the case of Int({tn | n ∈ N},Z) where
t is an integer ≥ 2 (see [11, Théorème 3]), one shows that the sequence of
polynomials

(
X

n

)

E

=
n−1∏

k=0

X −Hk

Hn −Hk

is a basis of the Fq[T ]-module Int(E,Fq[T ]). Here

n!E =
n−1∏

k=0

(Hn −Hk).
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Analogously to Section 2, we define the elements an,k and bn,k of Fq[T ] with
similar formulas

Xn =
n∑

k=0

bn,k

(
X

k

)

E

,

n!
(
X

n

)

E

=
n∑

k=0

(−1)n−kan,kXk.

Lemma 8 is then replaced by

Lemma 17. The ar,k and br,k satisfy the recurrence relations

ar+1,k = Hrar,k + ar,k−1,(21)

br,k = Hk−1(Hk − 1)br−1,k−1 +Hkbr−1,k.(22)

By induction on r, we prove the following proposition that corresponds
to Propositions 10, 12 and 13.

Proposition 18. For all r ∈ N∗ and 1 ≤ k ≤ r,
deg(br,k) ≤ rkh,(23)

deg(ar,k) = (r − 1)(r − k)h,(24)

and , for all x ∈ Ω and r ≥ 1 + deg(x)/h,

deg
((

x

r

)

E

)
≤ −rh.(25)

Proposition 19. Let f(X) =
∑

n≥0 cnX
n be an entire function on Ω

and let τ ∈ R+ be such that

lim
r→+∞

M(f, r)
r2 < τ.

Then there exists N ∈ N such that , for all n ≥ N ,

deg(cn) ≤ −n
2

4τ
.

Proof. By (1), there exists % ∈ R+ such that

r ≥ % ⇒ sup
n∈N
{nr + deg(cn)} ≤ τr2.

For all n ∈ N, deg(cn) ≤ τr2 − nr if r ≥ %. Consequently,

deg(cn) ≤ inf
r≥%
{τr2 − nr} = −n

2

4τ
if n ≥ 2τ%.

As in Section 2, if j is an integer such that limn→+∞ deg(cnbn,j) = −∞,
we define ∆E

j (f) by
∆E
j (f) =

∑

n≥0

cnbn,j .
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Let

τ ∈
]

lim
r→+∞

M(f, r)
r2 ,

1
4h

[
.

For all x ∈ Ω and for j ∈ N large enough,

deg(∆E
j (f)) ≤

(
h− 1

4τ

)
j2,(26)

deg
(
∆E
j (f)

(
x

j

))
≤
(
h− 1

4τ

)
j2 − hj.(27)

As a consequence,
∑

j≥0∆
E
j (f)

(
x
j

)
E

converges for every x ∈ Ω and we prove
as in Theorem 14 that

f(x) =
∑

j≥0

∆E
j (f)

(
x

j

)

E

.

Then we may end the proof of Theorem 16 analogously to Car–Pólya’s
theorem. Now, we give an example which proves that the upper bound 1/4h
is optimal.

Proposition 20. The function Ψ(z) =
∑

n≥0

(
z
n

)
E

is an entire function
on Ω such that

(1) lim
r→+∞

M(f, r)
r2 =

1
4h
,

(2) Ψ(Hn) ∈ Fq[T ] for all n ∈ N,
(3) Ψ is not a polynomial in Ω[X].

Proof. By (25), the function Ψ is well defined on Ω. Clearly, Ψ(Hm) ∈
Fq[T ] for all m ∈ N, since for every m,n ∈ N, we have

(
Hm

n

)
E

= 0 when
n > m and

(
Hm

n

)
∈ Fq[T ] when n ≤ m. This proves the second assertion of

the proposition.
Let z ∈ Ω. We can write

Ψ(z) =
∑

r≥0

r∑

k=0

(−1)r−k
ar,k
r!

zk.

It follows from (24) that
∑

r≥k(−1)r−kar,k/r! exists and that

deg
(∑

r≥k
(−1)r−k

ar,k
r!

)
= −k2h,(28)

and so
∑

k≥0

[∑

r≥k
(−1)r−k

ar,k
r!

]
zk converges.
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Now, we prove that

Ψ(z) =
∑

k≥0

[∑

r≥k
(−1)r−k

ar,k
r!

]
zk.(29)

For all r, k ∈ N, we put

vr,k = (−1)r−k
ar,k
r!

zk.

Of course, vr,k = 0 if k > r. For every R ∈ N, we may write

Ψ(z)−
∑

k≥0

∑

r≥k
vr,k

=
(∑

r≥0

r∑

k=0

vr,k −
R∑

r=0

r∑

k=0

vr,k

)
+
( R∑

r=0

r∑

k=0

vr,k −
∑

k≥0

∑

r≥k
vr,k

)
.

Clearly,
∑

k≥0

∑

r≥k
vr,k −

R∑

r=0

r∑

k=0

vr,k =
∑

k≥0

∑

r≥R
vr,k.

Consequently,

Ψ(z)−
∑

k≥0

∑

r≥k
vr,k =

∑

r≥R

r∑

k=0

vr,k −
∑

k≥0

∑

r≥R
vr,k.

For R large enough and r ≥ R, we have deg(vr,k) ≤ −Rh. We see that both
sums in the previous difference tend to zero as R tends to infinity. Equal-
ity (29) is proved and Ψ is an entire function on Ω. From (1), (28) and (29),
we have

lim
r→+∞

M(f, r)
r2 =

1
4h
.

This proves the first part of the proposition.
Finally, Ψ is not a polynomial of Ω[X] since the quadratic type of any

polynomial of Ω[X] equals zero. This proves the third assertion.

In [4, Corollary IV.8 and Corollary V.2], Car studied entire functions on
Ω which are constant on Fq[T ]. In [5, Theorem 3], Thiery showed:

Theorem 21. Let f : Ω → Ω be an entire function, and let A ∈ Ω. If

f(Fq[T ]) = {A}, lim
r→+∞

M(f, r)
qr

<
qq/(q−1)

e ln q
,

then f is the constant function A. Moreover , qq/(q−1)/e ln q is optimal.

Here, we are interested in entire functions which are constant on E, that
is, an analog for geometric sequences.
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Proposition 22. Let f : Ω → Ω be an entire function, let A ∈ Ω and
let H ∈ Fq[T ] be of degree h ≥ 1. If

f(Hn) = A for all n ∈ N, lim
r→+∞

M(f, r)
r2 <

1
2h
,

then f is the constant function A. Moreover , 1/2h is optimal.

Proof. Following Thiery’s proof, we assumeA=0. By [10, Theorem 2.14],
the function

F (X) =
∏

n≥0

(
1− X

Hn

)

is well defined and is an entire function on Ω. Again by [10, Theorem 2.14],
f admits a Weierstrass expansion

f(X) = cXk
∏

λ∈Λ

(
1− X

λ

)nλ

where c ∈ Ω∗, Λ is the set of non-zero roots of f , k is the order of f in 0 and
nλ is the order of zero λ. Since {Hn | n ∈ N} ⊂ Λ, for all x ∈ Ω we have

f(X) = g(X)F (X),

where g is an entire function on Ω. We get

lim
r→+∞

M(f, r)
r2 ≥ lim

r→+∞
M(F, r)
r2 + lim

r→+∞
M(g, r)
r2 .

Hence, the following lemma finishes the proof.

Lemma 23. Let F be the previous entire function, i.e.

F (X) =
∏

n≥0

(
1− X

Hn

)
.

Then

lim
r→+∞

M(F, r)
r2 =

1
2h
.

Proof. Let z ∈ Ω be of degree r. We have

deg(F (z)) =
∑

0≤n≤[r/h]

deg
(

1− z

Hn

)
(30)

=
∑

0≤n<[r/h]

deg
(

z

Hn

)
+ δ[r/h],r/h deg

(
1− z

H [r/h]

)

where δi,j denotes the Kronecker symbol. We conclude that for all r ≥ 0,

M(f, r)
r2 ≤ 1

2h
+

3
2r
.
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Let (rk)k∈N be the sequence of positive integers defined by rk = (k+1)h−1/2,
and let (zk)k∈N be a sequence of elements of Ω such that deg(zk) = rk for
all k ∈ N. Then, using (30), we obtain

deg(F (zk))
r2
k

∼ 1
2h

as k → +∞.

This proves the lemma.
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