# Car-Pólya and Gel'fond's theorems for $\mathbb{F}_{q}[T]$ 

by<br>David Adam (Amiens)

1. Introduction. In 1915, Pólya proved the following result:

Theorem 1 ([12]). Let $f$ be an entire function on $\mathbb{C}$ such that

$$
f(\mathbb{Z}) \subset \mathbb{Z}, \quad \varlimsup_{r \rightarrow+\infty} \frac{\ln |f|_{r}}{r}<\ln \left(\frac{3+\sqrt{5}}{2}\right)
$$

resp.

$$
f(\mathbb{N}) \subset \mathbb{Z}, \quad \varlimsup_{r \rightarrow+\infty} \frac{\ln |f|_{r}}{r}<\ln 2
$$

where $|f|_{r}=\sup _{|z| \leq r}|f(z)|$. Then $f$ is a polynomial of $\mathbb{Q}[X]$. Moreover, $\ln \left(\frac{3+\sqrt{5}}{2}\right)($ resp. $\ln 2)$ is optimal.

The constant is optimal, since the function

$$
f(z)=\frac{1}{\sqrt{5}}\left[\left(\frac{3+\sqrt{5}}{2}\right)^{z}-\left(\frac{3-\sqrt{5}}{2}\right)^{z}\right]
$$

(resp. $f(z)=2^{z}$ ) is a non-polynomial entire function such that $f(\mathbb{Z}) \subset \mathbb{Z}$ (resp. $f(\mathbb{N}) \subset \mathbb{Z}$ ) and its exponential type is $\ln \left(\frac{3+\sqrt{5}}{2}\right)$ (resp. $\ln 2$ ).

In 1933, Gel'fond proved:
Theorem 2 ([9]). Let $f$ be an entire function on $\mathbb{C}$ and $q \geq 2$ be an integer. If, for all $n \in \mathbb{N}, f\left(q^{n}\right) \in \mathbb{Z}$ and if

$$
\ln |f|_{r}<\frac{1}{4 \ln q}(\ln r)^{2}-\frac{1}{2} \ln r-\omega(r)
$$

where $\omega(r) \rightarrow+\infty$ as $r \rightarrow+\infty$, then $f$ is a polynomial in $\mathbb{Q}[X]$.
The coefficients $1 / 4 \ln q$ and $-1 / 2$ are optimal, since the entire function

$$
\varphi(z)=\sum_{n \geq 0} \prod_{k=0}^{n-1} \frac{z-q^{k}}{q^{n}-q^{k}}
$$

2000 Mathematics Subject Classification: Primary 11R58.
satisfies

$$
\ln |\varphi(z)|<\frac{1}{4 \ln q}(\ln r)^{2}-\frac{1}{2} \ln r+O(1) \quad \text { for }|z|=r \text { as } r \rightarrow+\infty
$$

$\varphi\left(q^{n}\right) \in \mathbb{Z}$ for all $n \in \mathbb{N}$, and $\varphi$ is not a polynomial.
Here, we are interested in analogous results in function fields.
Let $q$ be a power of a prime number, $\mathbb{F}_{q}$ be a field with $q$ elements, $\mathbb{F}_{q}[T]$ be the ring of polynomials in $T$ over $\mathbb{F}_{q}, \mathbb{F}_{q}(T)$ be its quotient field. Let $\mathbb{F}_{q}(T)_{\infty}$ be the completion of $\mathbb{F}_{q}(T)$ for the infinite $1 / T$-adic valuation $v$ normalized by $v(1 / T)=1$ and let $\Omega$ be the completion of an algebraic closure of $\mathbb{F}_{q}(T)_{\infty}$. The valuation $v$ extends to a (non-discrete) valuation on $\Omega$ that we still denote by $v$. For all $z \in \Omega$, we put

$$
\operatorname{deg}(z)=-v(z)
$$

Let $f(X)=\sum_{n \geq 0} c_{n} X^{n}$ be an entire function on $\Omega$ and $r$ be a real number. We put

$$
M(f, r)=\sup _{\operatorname{deg}(z) \leq r}\{\operatorname{deg}(f(z))\}
$$

Schnirelmann showed (see [13] or [8, Appendice]) that, for all $r \in \mathbb{Q}^{+}$,

$$
M(f, r)=\sup _{n \in \mathbb{N}}\left\{\operatorname{deg}\left(c_{n}\right)+n r\right\}
$$

By continuity, for all $r \in \mathbb{R}^{+}$we have

$$
\begin{equation*}
M(f, r)=\sup _{n \in \mathbb{N}}\left\{\operatorname{deg}\left(c_{n}\right)+n r\right\} \tag{1}
\end{equation*}
$$

Mireille Car proved the following analog of Pólya's theorem for $\mathbb{F}_{q}[T]$.
Theorem 3 ([4, Theorem 2]). Let $f$ be an entire function on $\Omega$ such that

$$
f\left(\mathbb{F}_{q}[T]\right) \subset \mathbb{F}_{q}[T], \quad \varlimsup_{r \rightarrow+\infty} \frac{M(f, r)}{q^{r}}<\frac{1}{e \ln q q^{q /(q-1)}}
$$

Then $f$ is a polynomial in $\mathbb{F}_{q}(T)[X]$.
Moreover, Car showed that the bound may be improved for linear functions.

Theorem 4 ([4, Theorem 4]). Let $f$ be an $\mathbb{F}_{q}$-linear entire function such that

$$
f\left(\mathbb{F}_{q}[T]\right) \subset \mathbb{F}_{q}[T], \quad \varlimsup_{r \rightarrow+\infty} \frac{M(f, r)}{q^{r}}<\frac{1}{e \ln q}
$$

Then $f$ is a polynomial in $\mathbb{F}_{q}(T)[X]$.
In order to extend this last result to any entire function, Laurence Delamette proved:

Theorem 5 ([8, Théorème 3]). Let $\varepsilon>0$. There exists $q(\varepsilon)>0$ such that for every finite field $\mathbb{F}_{q}$ with $q>q(\varepsilon)$ elements, every entire function $f$
on $\Omega$ such that

$$
f\left(\mathbb{F}_{q}[T]\right) \subset \mathbb{F}_{q}[T], \quad \varlimsup_{r \rightarrow+\infty} \frac{M(f, r)}{q^{r}}<\frac{1}{e \ln q q^{\varepsilon}}
$$

is a polynomial in $\mathbb{F}_{q}(T)[X]$.
In this paper, we prove two results. The first one shows that Car's theorem for entire functions is true with the bound $1 / e \ln q$ (and Car gave an example that proves that this constant is optimal).

THEOREM 6. Let $f$ be an entire function on $\Omega$ such that

$$
f\left(\mathbb{F}_{q}[T]\right) \subset \mathbb{F}_{q}[T], \quad \varlimsup_{r \rightarrow+\infty} \frac{M(f, r)}{q^{r}}<\frac{1}{e \ln q}
$$

Then $f$ is a polynomial in $\mathbb{F}_{q}(T)[X]$.
Our second result is an analog for $\mathbb{F}_{q}[T]$ of Gel'fond's theorem:
Theorem 7. Let $f$ be an entire function on $\Omega$ and let $H \in \mathbb{F}_{q}[T]$ be a polynomial of degree $h \geq 1$. If, for all $n \in \mathbb{N}$, $f\left(H^{n}\right) \in \mathbb{F}_{q}[T]$ and

$$
\varlimsup_{r \rightarrow+\infty} \frac{M(f, r)}{r^{2}}<\frac{1}{4 h}
$$

then $f$ is a polynomial in $\mathbb{F}_{q}(T)[X]$. Moreover, the constant $1 / 4 h$ is optimal.
2. Car-Pólya's theorem. Let $R$ be a domain with quotient field $K$ and let $E$ be a subset of $R$. We denote by $\operatorname{Int}(E, R)($ or $\operatorname{Int}(R)$ if $E=R)$ the $R$-module formed by the polynomials which take values in $R$ on $E$ :

$$
\operatorname{Int}(E, R)=\{P \in K[X] \mid P(E) \subset R\}
$$

Here, we consider the case when $E=R=\mathbb{F}_{q}[T]$. Denote by $u_{0}=0, u_{1}, \ldots$ $\ldots, u_{q-1}$ the elements of $\mathbb{F}_{q}$. Mireille Car defines (see [3]) a one-to-one correspondence between $\mathbb{N}$ and $\mathbb{F}_{q}[T]$ in the following way: for every $n \in \mathbb{N}$, let $n=\sum_{i=0}^{s} n_{i} q^{i}$ be its $q$-adic expansion. Then, put

$$
u_{n}=\sum_{i=0}^{s} u_{n_{i}} T^{i}
$$

We recall that Bhargava's factorials for $\mathbb{F}_{q}[T]$ are given by (see $[2, \S 7]$ or $[1]$ for a straightforward proof)

$$
n!!_{\mathbb{F}_{q}[T]}^{\mathcal{B}}=\prod_{k=0}^{n-1}\left(u_{n}-u_{k}\right)
$$

Then, the sequence of polynomials

$$
\prod_{k=0}^{n-1} \frac{X-u_{k}}{u_{n}-u_{k}}
$$

is a basis of the $\mathbb{F}_{q}[T]$-module $\operatorname{Int}\left(\mathbb{F}_{q}[T]\right)$.

We recall the definition of Carlitz factorials (see [7]). For every $i \in \mathbb{N}$, put

$$
D_{i}=\prod_{\substack{\left.P \in \mathbb{F}_{q} q T\right] \\ \operatorname{deg} P<i}}\left(T^{i}+P\right) .
$$

For every $n \in \mathbb{N}$ with $q$-adic expansion $n=\sum_{i=0}^{s} n_{i} q^{i}$, the Carlitz $n$th factorial is defined by

$$
n!\stackrel{\mathbb{F}}{q}_{\mathcal{C}}^{\mathcal{C}}[T]=\prod_{i=0}^{s} D_{i}^{n_{i}}
$$

We know that (see $[2, \S 7]$ )

$$
\begin{equation*}
\left.n!\mathbb{F}_{q}[T]\right]=\xi_{n} \times n!{\stackrel{1}{\mathbb{F}_{q}}[T]}_{\mathcal{B}}^{\mathcal{C}} \quad \text { with } \xi_{n} \in \mathbb{F}_{q}^{\times} . \tag{2}
\end{equation*}
$$

Therefore, the sequence of polynomials

$$
\binom{X}{n}=\frac{\prod_{k=0}^{n-1}\left(X-u_{i}\right)}{n!!_{\mathbb{F}_{q}}[T]}
$$

is a basis of the $\mathbb{F}_{q}[T]$-module $\operatorname{Int}\left(\mathbb{F}_{q}[T]\right)$. From now on, for simplicity, the Carlitz $n$th factorial will be denoted by $n!$. There is no risk of confusion, because it will be the only one used. The degree of $n!$ is

$$
\begin{equation*}
\operatorname{deg}(n!)=\sum_{i=0}^{s} i n_{i} q^{i} \tag{3}
\end{equation*}
$$

We have the relation (see [14])

$$
\begin{equation*}
\frac{n!}{(n-1)!}=L_{e(n)} \tag{4}
\end{equation*}
$$

where $e(n)$ denotes the highest power of $q$ dividing $n$ and, for every $m \in \mathbb{N}$, $L_{m}$ is the polynomial defined by

$$
L_{m}=\prod_{j=1}^{m}\left(T^{q^{j}}-T\right) .
$$

The degree of $L_{m}$ is

$$
\begin{equation*}
\operatorname{deg}\left(L_{m}\right)=\frac{q^{m+1}-q}{q-1} . \tag{5}
\end{equation*}
$$

For every $n, k \in \mathbb{N}$, we define the elements $a_{n, k}$ and $b_{n, k}$ of $\mathbb{F}_{q}[T]$ by

$$
\begin{align*}
X^{n} & =\sum_{k=0}^{n} b_{n, k}\binom{X}{k},  \tag{6}\\
n!\binom{X}{n} & =\sum_{k=0}^{n}(-1)^{n-k} a_{n, k} X^{k} . \tag{7}
\end{align*}
$$

Hence, for all $k>n$ and $k<0$, we have $b_{n, k}=a_{n, k}=0$. We see that $b_{n, 0}=a_{n, 0}=0$ for all $n \in \mathbb{N}^{*}$.

LEMMA 8. The $b_{n, k}$ and $a_{n, k}$ satisfy the recurrence relations

$$
\begin{align*}
a_{r+1, k} & =u_{r} a_{r, k}+a_{r, k-1},  \tag{8}\\
b_{r, k} & =L_{e(k)} b_{r-1, k-1}+u_{k} b_{r-1, k} . \tag{9}
\end{align*}
$$

Proof. 1) Using (7), we have

$$
\begin{aligned}
\left(X-u_{0}\right)\left(X-u_{1}\right) \cdots & \cdots\left(X-u_{r}\right) \\
& =\sum_{k=0}^{r}(-1)^{r-k} a_{r, k} X^{k+1}-u_{r} \sum_{k=0}^{r}(-1)^{r-k} a_{r, k} X^{k} \\
& =\sum_{k=1}^{r+1}(-1)^{r-k+1} a_{r, k-1} X^{k}-u_{r} \sum_{k=0}^{r}(-1)^{r-k} a_{r, k} X^{k}
\end{aligned}
$$

and by identification

$$
a_{r+1, k}=a_{r, k-1}+u_{r} a_{r, k}
$$

2) Using (4) and (6), we may write

$$
\begin{aligned}
X^{r}=X^{r-1} X & =\sum_{k=0}^{r-1} b_{r-1, k} \frac{\left(X-u_{0}\right)\left(X-u_{1}\right) \cdots\left(X-u_{k-1}\right)\left(X-u_{k}+u_{k}\right)}{k!} \\
& =\sum_{k=0}^{r-1} b_{r-1, k}\binom{X}{k+1} L_{e(k+1)}+\sum_{k=0}^{r-1} b_{r-1, k} u_{k}\binom{X}{k}
\end{aligned}
$$

We begin to give upper bounds for the degrees of $b_{r, k}$ and $a_{r, k}$.
Lemma 9. Let $r, s, k \in \mathbb{N}$ be such that $r \in \mathbb{N}^{*}$ and $k \in\left[q^{s}, q^{s+1}[\right.$. Then

$$
\operatorname{deg}\left(b_{r, k}\right) \leq(r-k) s+\sum_{j=1}^{s}\left(\left[\frac{k}{q^{j}}\right]-\left[\frac{k}{q^{j+1}}\right]\right) \frac{q^{j+1}-q}{q-1}
$$

Proof. We prove the inequality by induction on $r$. We may assume that $0 \leq q^{s} \leq r$. Clearly, the lemma is true for $r=1$.

We first assume that $k \in] q^{s}, q^{s+1}[$. By Lemma 8, we have

$$
\operatorname{deg}\left(b_{r, k}\right) \leq \max \left(\operatorname{deg}\left(b_{r-1, k-1}\right)+\operatorname{deg}\left(L_{e(k)}\right), \operatorname{deg}\left(u_{k}\right)+\operatorname{deg}\left(b_{r-1, k}\right)\right)
$$

By the induction hypothesis, we have

$$
\operatorname{deg}\left(b_{r-1, k-1}\right) \leq(r-k) s+\sum_{j=1}^{s}\left(\left[\frac{k-1}{q^{j}}\right]-\left[\frac{k-1}{q^{j+1}}\right]\right) \frac{q^{j+1}-q}{q-1}
$$

For every $n \in \mathbb{N},\left[n / q^{j}\right]-\left[n / q^{j+1}\right]$ is the number of integers $\leq n$ divisible by $q^{j}$ and not by $q^{j+1}$ :

$$
\left[\frac{n}{q^{j}}\right]-\left[\frac{n}{q^{j+1}}\right]=\#\left\{m \in \mathbb{N} \mid 1 \leq m \leq n \text { and } q^{j} \| m\right\}
$$

where the symbol $\|$ means "exactly divisible by". However, if $j \neq e(k)$ then
$\#\left\{n \in \mathbb{N} \mid 1 \leq n \leq k\right.$ and $\left.q^{j} \| n\right\}=\#\left\{n \in \mathbb{N} \mid 1 \leq n \leq k-1\right.$ and $\left.q^{j} \| n\right\}$, and if $j=e(k)$ then
$\#\left\{n \in \mathbb{N} \mid 1 \leq n \leq k\right.$ and $\left.q^{j} \| n\right\}=1+\#\left\{n \in \mathbb{N} \mid 1 \leq n \leq k-1\right.$ and $\left.q^{j} \| n\right\}$. So, if $j \neq e(k)$ then

$$
\left[\frac{k-1}{q^{j}}\right]-\left[\frac{k-1}{q^{j+1}}\right]=\left[\frac{k}{q^{j}}\right]-\left[\frac{k}{q^{j+1}}\right],
$$

and if $j=e(k)$ then

$$
\left[\frac{k-1}{q^{e(k)}}\right]-\left[\frac{k-1}{q^{e(k)+1}}\right]=\left[\frac{k}{q^{e(k)}}\right]-\left[\frac{k}{q^{e(k)+1}}\right]-1
$$

By (5), we have

$$
\operatorname{deg}\left(L_{e(k)}\right)=\frac{q^{e(k)+1}-q}{q-1}
$$

It follows that

$$
\begin{aligned}
\sum_{j=1}^{s}\left(\left[\frac{k-1}{q^{j}}\right]-\left[\frac{k-1}{q^{j+1}}\right]\right) \frac{q^{j+1}-q}{q-1} & +\operatorname{deg}\left(L_{e(k)}\right) \\
= & \sum_{j=1}^{s}\left(\left[\frac{k}{q^{j}}\right]-\left[\frac{k}{q^{j+1}}\right]\right) \frac{q^{j+1}-q}{q-1}
\end{aligned}
$$

Therefore

$$
\operatorname{deg}\left(b_{r-1, k-1} L_{e(k)}\right) \leq(r-k) s+\sum_{j=1}^{s}\left(\left[\frac{k}{q^{j}}\right]-\left[\frac{k}{q^{j+1}}\right]\right) \frac{q^{j+1}-q}{q-1}
$$

Since $\operatorname{deg}\left(u_{k}\right)=s$, we have

$$
\begin{aligned}
\operatorname{deg}\left(b_{r-1, k}\right)+\operatorname{deg}\left(u_{k}\right) & \leq(r-1-k) s+s+\sum_{j=1}^{s}\left(\left[\frac{k}{q^{j}}\right]-\left[\frac{k}{q^{j+1}}\right]\right) \frac{q^{j+1}-q}{q-1} \\
& \leq(r-k) s+\sum_{j=1}^{s}\left(\left[\frac{k}{q^{j}}\right]-\left[\frac{k}{q^{j+1}}\right]\right) \frac{q^{j+1}-q}{q-1}
\end{aligned}
$$

We now assume that $k=q^{s}$. Then

$$
\operatorname{deg}\left(b_{r, q^{s}}\right) \leq \max \left(\operatorname{deg}\left(b_{r-1, q^{s}-1}\right)+\frac{q^{s+1}-q}{q-1}, \operatorname{deg}\left(b_{r-1, q^{s}}\right)+s\right)
$$

By the induction hypothesis, we have

$$
\begin{aligned}
& \operatorname{deg}\left(b_{r-1, q^{s}-1}\right)+\frac{q^{s+1}-q}{q-1} \\
& \quad \leq\left(r-q^{s}\right)(s-1)+\sum_{j=1}^{s-1}\left(\left[\frac{q^{s}-1}{q^{j}}\right]-\left[\frac{q^{s}-1}{q^{j+1}}\right]\right) \frac{q^{j+1}-q}{q-1}+\frac{q^{s+1}-q}{q-1}
\end{aligned}
$$

For $1 \leq j \leq s-1$, we have the equality
$\#\left\{n \in \mathbb{N} \mid 1 \leq n \leq q^{s}-1\right.$ and $\left.q^{j} \| n\right\}=\#\left\{n \in \mathbb{N} \mid 1 \leq n \leq q^{s}\right.$ and $\left.q^{j} \| n\right\}$, and so

$$
\left[\frac{q^{s}-1}{q^{j}}\right]-\left[\frac{q^{s}-1}{q^{j+1}}\right]=\left[\frac{q^{s}}{q^{j}}\right]-\left[\frac{q^{s}}{q^{j+1}}\right]
$$

As a consequence,

$$
\begin{aligned}
\sum_{j=1}^{s-1}\left(\left[\frac{q^{s}-1}{q^{j}}\right]-\left[\frac{q^{s}-1}{q^{j+1}}\right]\right) \frac{q^{j+1}-q}{q-1} & +\frac{q^{s+1}-q}{q-1} \\
= & \sum_{j=1}^{s}\left(\left[\frac{q^{s}}{q^{j}}\right]-\left[\frac{q^{s}}{q^{j+1}}\right]\right) \frac{q^{j+1}-q}{q-1}
\end{aligned}
$$

Since $\left(r-q^{s}\right) \geq 0$, we have $\left(r-q^{s}\right)(s-1) \leq\left(r-q^{s}\right) s$, and

$$
\operatorname{deg}\left(b_{r-1, q^{s}-1} L_{e\left(q^{s}\right)}\right) \leq\left(r-q^{s}\right) s+\sum_{j=1}^{s}\left(\left[\frac{q^{s}}{q^{j}}\right]-\left[\frac{q^{s}}{q^{j+1}}\right]\right) \frac{q^{j+1}-q}{q-1}
$$

Moreover,

$$
\operatorname{deg}\left(b_{r-1, q^{s}}\right)+s \leq\left(r-q^{s}\right) s+\sum_{j=1}^{s}\left(\left[\frac{q^{s}}{q^{j}}\right]-\left[\frac{q^{s}}{q^{j+1}}\right]\right) \frac{q^{j+1}-q}{q-1}
$$

Proposition 10. For all $r, k \in \mathbb{N}^{*}$ such that $1 \leq k \leq r$, we have

$$
\begin{equation*}
\operatorname{deg}\left(b_{r, k}\right) \leq r \log _{q} k \tag{10}
\end{equation*}
$$

Proof. Let $s$ be the integer such that $k \in\left[q^{s}, q^{s+1}[\right.$. We compute

$$
\begin{aligned}
S= & \sum_{j=1}^{s}\left(\left[\frac{k}{q^{j}}\right]-\left[\frac{k}{q^{j+1}}\right]\right) \frac{q^{j+1}-q}{q-1} \\
= & \frac{1}{q-1}\left(q \sum_{j=1}^{s}\left[\frac{k}{q^{j}}\right] q^{j}-\sum_{j=1}^{s-1}\left[\frac{k}{q^{j+1}}\right] q^{j+1}\right. \\
& \left.-q\left(\sum_{j=1}^{s}\left[\frac{k}{q^{j}}\right]-\sum_{j=1}^{s-1}\left[\frac{k}{q^{j+1}}\right]\right)\right) \\
= & \sum_{j=1}^{s}\left[\frac{k}{q^{j}}\right] q^{j} \leq \sum_{j=1}^{s} \frac{k}{q^{j}} q^{j} \leq k s
\end{aligned}
$$

By Lemma 9, we easily deduce that $\operatorname{deg}\left(b_{r, k}\right) \leq r s-k s+k s \leq r s \leq r \log _{q} k$.

Lemma 11. Let $r, k \in \mathbb{N}^{*}, l, s \in \mathbb{N}$ be such that $r \in\left[q^{l}, q^{l+1}[\right.$ and $k \in$ [ $q^{s}, q^{s+1}[$. Then

$$
\operatorname{deg}\left(a_{r, k}\right) \leq r l-\frac{q}{q-1}\left(q^{l}-q^{s}\right)-s q^{s}-\left(k-q^{s}\right) l .
$$

Proof. We may assume $s \leq l$. The proof is by induction on $r$. The lemma is true for $r=q^{l}$, by the following result of Carlitz [6, Theorem 2.1]:

$$
q^{l}!\binom{X}{q^{l}}=\sum_{i=0}^{l}(-1)^{r-i}\left[\begin{array}{l}
l \\
i
\end{array}\right] X^{q^{i}},
$$

where

$$
\left[\begin{array}{c}
l \\
i
\end{array}\right]=\frac{D_{l}}{D_{i} L_{l-i}^{q^{i}}}=a_{q^{\prime}, q^{i}} .
$$

By (3) and (5) (see also [4, Lemma IV.4(ii)]), for all $0 \leq i \leq l$, we have

$$
\operatorname{deg}\left(a_{q^{l}, q^{i}}\right)=l q^{l}-i q^{i}-q^{i} \frac{q^{l-i+1}-q}{q-1}
$$

and, for every $i$ which is not power of $q, \operatorname{deg}\left(a_{q^{l}, i}\right)=-\infty$. By Lemma 8 , we have

$$
\operatorname{deg}\left(a_{r+1, k}\right) \leq \max \left(l+\operatorname{deg}\left(a_{r, k}\right), \operatorname{deg}\left(a_{r, k-1}\right)\right) .
$$

We first assume that $k \in] q^{s}, q^{s+1}[$. It is a straightforward exercise to verify that

$$
\operatorname{deg}\left(a_{r+1, k}\right) \leq(r+1) l-\frac{q}{q-1}\left(q^{l}-q^{s}\right)-s q^{s}-\left(k-q^{s}\right) .
$$

We now assume that $k=q^{s}$. Then, by induction,

$$
\begin{aligned}
l+\operatorname{deg}\left(a_{r, q^{s}}\right) & \leq l+r l-\frac{q}{q-1}\left(q^{l}-q^{s}\right)-s q^{s} \leq(r+1) l-\frac{q}{q-1}\left(q^{l}-q^{s}\right)-s q^{s}, \\
\operatorname{deg}\left(a_{r, q^{s}-1}\right) & \leq r l-\frac{q}{q-1}\left(q^{l}-q^{s-1}\right)-(s-1) q^{s-1}-\left(q^{s}-q^{s-1}-1\right) l .
\end{aligned}
$$

The following inequality holds because $l \geq s-1$ :

$$
\frac{q}{q-1} q^{s}-s q^{s} \geq \frac{q}{q-1} q^{s-1}-(s-1) q^{s-1}-\left(q^{s}-q^{s-1}\right) l .
$$

Hence,

$$
\operatorname{deg}\left(a_{r, q^{s}-1}\right) \leq r l-\frac{q}{q-1}\left(q^{l}-q^{s}\right)-s q^{s}+l
$$

From this, we deduce
Proposition 12. Let $r, k \in \mathbb{N}^{*}$ be such that $1 \leq k \leq r$. Then

$$
\operatorname{deg}\left(\frac{a_{r, k}}{r!}\right) \leq-\log _{q} r+\frac{2 q-1}{q-1} k-k \log _{q} k .
$$

Proof. Let $\sum_{j=0}^{l} r_{j} q^{j}$ be the $q$-adic expansion of $r$ and let $s \in \mathbb{N}$ be such that $k \in\left[q^{s}, q^{s+1}[\right.$. By Lemma 11 and (3), we have

$$
\begin{aligned}
\operatorname{deg}\left(\frac{a_{r, k}}{r!}\right) & \leq l \sum_{j=0}^{l} r_{j} q^{j}-\frac{q}{q-1}\left(q^{l}-q^{s}\right)-s q^{s}-\left(k-q^{s}\right) l-\sum_{j=0}^{l} j r_{j} q^{j} \\
& \leq \sum_{j=0}^{l}(q-1) q^{j}(l-j)-\frac{q}{q-1}\left(q^{l}-q^{s}\right)-s q^{s}-\left(k-q^{s}\right) l \\
& \leq-\frac{l(q-1)+q}{q-1}+\frac{q}{q-1} q^{s}-k s
\end{aligned}
$$

Since $-l \leq 1-\log _{q} r$ and $-s \leq 1-\log _{q} k$, we get

$$
\begin{aligned}
\operatorname{deg}\left(\frac{a_{r, k}}{r!}\right) & \leq 1-\log _{q} r-\frac{q}{q-1}+\frac{q}{q-1} k+k\left(1-\log _{q} k\right) \\
& \leq-\log _{q} r-\frac{1}{q-1}+\frac{2 q-1}{q-1} k-k \log _{q} k
\end{aligned}
$$

Proposition 13. Let $x \in \Omega$ be of degree $\delta$ and $r \in \mathbb{N}^{*}$. Then

$$
\begin{equation*}
\operatorname{deg}\binom{x}{r} \leq-\log _{q} r+\frac{q^{(2 q-1) /(q-1)+\delta}}{e \ln q} \tag{11}
\end{equation*}
$$

Proof. By Proposition 12, for all $k \in \mathbb{N}^{*}$ we have

$$
\operatorname{deg}\left(\frac{a_{r, k}}{r!} x^{k}\right) \leq k \delta-\log _{q} r+\frac{2 q-1}{q-1} k-k \log _{q} k
$$

Moreover, for all $k \geq 1$, it is easy to verify that

$$
k \delta+\frac{2 q-1}{q-1} k-k \log _{q} k \leq \frac{q^{(2 q-1) /(q-1)+\delta}}{e \ln q}
$$

Inequality (11) follows from

$$
\binom{x}{r}=\sum_{k=0}^{r}(-1)^{r-k} \frac{a_{r, k}}{r!} x^{k}
$$

Let $g(X)=\sum_{n=0}^{k} c_{n} X^{n}$ be a polynomial of $\Omega[X]$ of degree $k$. We have

$$
g(X)=\sum_{n=0}^{k} c_{n} \sum_{j=0}^{n} b_{n, j}\binom{X}{j}=\sum_{j=0}^{+\infty} \sum_{n=0}^{+\infty} c_{n} b_{n, j}\binom{X}{j}
$$

where $c_{n}=0$ when $n>k$ and $b_{n, j}=0$ when $j>n$. We put

$$
\Delta_{j}(g)=\sum_{n \geq 0} c_{n} b_{n, j}=\sum_{n \geq j} c_{n} b_{n, j}
$$

and so

$$
\begin{equation*}
g(X)=\sum_{j \geq 0} \Delta_{j}(g)\binom{X}{j} \tag{12}
\end{equation*}
$$

Let $f(X)=\sum_{n \geq 0} c_{n} X^{n}$ be an entire function on $\Omega$. Let $j$ be a non-negative integer. If $\lim _{n \rightarrow+\infty} \operatorname{deg}\left(c_{n} b_{n, j}\right)=-\infty$, we put

$$
\Delta_{j}(f)=\sum_{n \geq 0} c_{n} b_{n, j}
$$

Theorem 14. Let $f$ be an entire function on $\Omega$ and let

$$
\tau(f)=\varlimsup_{r \rightarrow+\infty} \frac{M(f, r)}{q^{r}}
$$

If $\tau(f)<1 / e \ln q$, then
(13) $\Delta_{j}(f)$ exists for all $j \in \mathbb{N}$,

$$
\begin{align*}
& \sum_{j \geq 0} \Delta_{j}(f)\binom{x}{j} \text { converges for all } x \in \Omega  \tag{14}\\
& f(x)=\sum_{j \geq 0} \Delta_{j}(f)\binom{x}{j} \text { for all } x \in \Omega \tag{15}
\end{align*}
$$

Proof. Let $\tau \in \mathbb{R}^{+}$be such that $\tau(f)<\tau<1 / e \ln q$, and let $j \in \mathbb{N}$. By [4, Proposition III.1], there exists $N_{1} \in \mathbb{N}$ such that, for all $n \geq N_{1}$, we have

$$
\begin{equation*}
\operatorname{deg}\left(c_{n}\right) \leq n \theta-n \log _{q} n \tag{16}
\end{equation*}
$$

where $\theta=\log _{q}(e \tau \ln q)<0$. Let $j \geq N_{1}$ and $n \geq j$. By (10) and (16), we have

$$
\operatorname{deg}\left(c_{n} b_{n, j}\right) \leq n \theta-n \log _{q} n+n \log _{q} j
$$

We deduce that $\lim _{n \rightarrow+\infty} \operatorname{deg}\left(c_{n} b_{n, j}\right)=-\infty$. This proves (13) and for $j \geq N_{1}$,

$$
\begin{equation*}
\operatorname{deg}\left(\Delta_{j}(f)\right) \leq \theta j \tag{17}
\end{equation*}
$$

Let $x \in \Omega$ be of degree $\delta$. By (11) and (17), we have

$$
\operatorname{deg}\left(\Delta_{j}(f)\binom{x}{j}\right) \leq-\log _{q} j+\frac{q^{(2 q-1) /(q-1)+\delta}}{e \ln q}+\theta j
$$

hence $\lim _{j \rightarrow+\infty} \operatorname{deg}\left(\Delta_{j}(f)\binom{x}{j}\right)=-\infty$ and (14) holds.
We put
$\bar{f}(X)=\sum_{j \geq 0} \Delta_{j}(f)\binom{X}{j}, \quad f_{N}(X)=\sum_{n=0}^{N-1} c_{n} X^{n}, \quad \bar{f}_{N}(X)=\sum_{j=0}^{N-1} \Delta_{j}(f)\binom{X}{j}$.

Let $x \in \Omega$ be of degree $\delta$ and $A \in \mathbb{R}^{+}$. We have $\lim _{N \rightarrow+\infty} f(x)-f_{N}(x)=0$. Therefore, there exists $N_{2} \in \mathbb{N}$ such that

$$
\begin{equation*}
\operatorname{deg}\left(f(x)-f_{N}(x)\right) \leq-A \quad \text { for all } N \geq N_{2} \tag{18}
\end{equation*}
$$

In the same way, there exists $N_{3} \in \mathbb{N}$ such that

$$
\begin{equation*}
\operatorname{deg}\left(\bar{f}(x)-\bar{f}_{N}(x)\right) \leq-A \quad \text { for all } N \geq N_{3} . \tag{19}
\end{equation*}
$$

Let $N$ be an integer $\geq N_{1}$. With (12), we have

$$
f_{N}(x)-\bar{f}_{N}(x)=\sum_{j=0}^{N-1}\left[\Delta_{j}\left(f_{N}\right)-\Delta_{j}(f)\right]\binom{x}{j} .
$$

Clearly, $\Delta_{0}\left(f_{N}\right)=\Delta_{0}(f)$ and, for all $1 \leq j \leq N-1$,

$$
\Delta_{j}\left(f_{N}\right)-\Delta_{j}(f)=\sum_{n \geq N} c_{n} b_{n, j} .
$$

For all $n \geq N, \operatorname{deg}\left(c_{n} b_{n, j}\right) \leq n\left(\theta+\log _{q} j\right)-n \log _{q} n \leq N \theta$. Hence,

$$
\begin{aligned}
\operatorname{deg}\left(\Delta_{j}\left(f_{N}\right)-\Delta_{j}(f)\right) & \leq N \theta \\
\operatorname{deg}\left(\left(\Delta_{j}\left(f_{N}\right)-\Delta_{j}(f)\right)\binom{x}{j}\right) & \leq N \theta-\log _{q} j+\frac{q^{(2 q-1) /(q-1)+\delta}}{e \ln q} \\
\operatorname{deg}\left(\left(f_{N}-\bar{f}_{N}\right)(x)\right) & \leq N \theta+\frac{q^{(2 q-1) /(q-1)+\delta}}{e \ln q}
\end{aligned}
$$

Therefore, there exists $N_{4} \in \mathbb{N}$ such that

$$
\begin{equation*}
\operatorname{deg}\left(f_{N}(x)-\bar{f}_{N}(x)\right) \leq-A \quad \text { for all } N \geq N_{4} . \tag{20}
\end{equation*}
$$

By (18)-(20), for all $N \geq \max \left(N_{1}, N_{2}, N_{3}, N_{4}\right)$ we have

$$
\operatorname{deg}(f(x)-\bar{f}(x)) \leq-A
$$

As a consequence, $\operatorname{deg}(f(x)-\bar{f}(x))=-\infty$ and $f(x)=\bar{f}(x)$, that is,

$$
f(x)=\sum_{n \geq 0} \Delta_{n}(f)\binom{x}{n}
$$

Theorem 15. Let $f$ be an entire function on $\Omega$ such that

$$
f\left(\mathbb{F}_{q}[T]\right) \subset \mathbb{F}_{q}[T], \quad \varlimsup_{r \rightarrow+\infty} \frac{M(f, r)}{q^{r}}<\frac{1}{e \ln q} .
$$

Then $f$ is a polynomial of $\mathbb{F}_{q}(T)[X]$. Moreover, $1 / e \ln q$ is optimal.
Proof. By Theorem 14, we have

$$
\forall x \in \Omega, \quad f(x)=\sum_{j \geq 0} \Delta_{j}(f)\binom{x}{j} .
$$

Consequently, the $\Delta_{j}(f)$ form the solution of the following linear system:

$$
\begin{aligned}
f\left(u_{0}\right) & =\Delta_{0}(f) \\
f\left(u_{1}\right) & =\Delta_{0}(f)\binom{u_{1}}{0}+\Delta_{1}(f)\binom{u_{1}}{1} \\
& \vdots \\
f\left(u_{n}\right) & =\Delta_{0}(f)\binom{u_{n}}{0}+\Delta_{1}(f)\binom{u_{n}}{1}+\cdots+\Delta_{n}(f)\binom{u_{n}}{n}
\end{aligned}
$$

For all $n \in \mathbb{N}, f\left(u_{n}\right) \in \mathbb{F}_{q}[T],\binom{u_{n}}{n} \in \mathbb{F}_{q}^{\times}$and, for all $0 \leq j<n,\binom{u_{n}}{j} \in \mathbb{F}_{q}[T]$. By induction, we deduce that for all $j \in \mathbb{N}, \Delta_{j}(f) \in \mathbb{F}_{q}[T]$. Moreover, we know that, for $j$ large enough, $\operatorname{deg}\left(\Delta_{j}\right) \leq \theta j$. Therefore, for $j$ large enough, $\Delta_{j}(f)$ is a polynomial of negative degree, that is, $\Delta_{j}(f)=0$. As a consequence, $f$ is a polynomial of $\mathbb{F}_{q}(T)[X]$.

Finally, recall that in $[4, \S \mathrm{VI}], \mathrm{M}$. Car shows that the exponential type of the entire function

$$
f(z)=\sum_{n \geq 0}\binom{z}{q^{n}}
$$

is $1 / e \ln q$, that $f\left(\mathbb{F}_{q}[T]\right) \subset \mathbb{F}_{q}[T]$, and that $f$ is not a polynomial. This proves that the upper bound $1 / e \ln q$ is optimal.
3. The analog of Gel'fond's theorem. In this section, we show how to modify the proof from the previous section to show the following:

Theorem 16. Let $f: \Omega \rightarrow \Omega$ be an entire function and let $H \in \mathbb{F}_{q}[T]$ be of degree $h \geq 1$. If, for all $n \in \mathbb{N}, f\left(H^{n}\right) \in \mathbb{F}_{q}[T]$ and

$$
\varlimsup_{r \rightarrow+\infty} \frac{M(f, r)}{r^{2}}<\frac{1}{4 h}
$$

then $f$ is a polynomial in $\mathbb{F}_{q}(T)[X]$. Moreover, the bound $1 / 4 h$ is optimal.
Let $E=\left\{H^{n} \mid n \in \mathbb{N}\right\}$. As for the case of $\operatorname{Int}\left(\left\{t^{n} \mid n \in \mathbb{N}\right\}, \mathbb{Z}\right)$ where $t$ is an integer $\geq 2$ (see [11, Théorème 3]), one shows that the sequence of polynomials

$$
\binom{X}{n}_{E}=\prod_{k=0}^{n-1} \frac{X-H^{k}}{H^{n}-H^{k}}
$$

is a basis of the $\mathbb{F}_{q}[T]$-module $\operatorname{Int}\left(E, \mathbb{F}_{q}[T]\right)$. Here

$$
n!_{E}=\prod_{k=0}^{n-1}\left(H^{n}-H^{k}\right)
$$

Analogously to Section 2 , we define the elements $a_{n, k}$ and $b_{n, k}$ of $\mathbb{F}_{q}[T]$ with similar formulas

$$
\begin{aligned}
X^{n} & =\sum_{k=0}^{n} b_{n, k}\binom{X}{k}_{E} \\
n!\binom{X}{n}_{E} & =\sum_{k=0}^{n}(-1)^{n-k} a_{n, k} X^{k} .
\end{aligned}
$$

Lemma 8 is then replaced by
Lemma 17. The $a_{r, k}$ and $b_{r, k}$ satisfy the recurrence relations

$$
\begin{align*}
a_{r+1, k} & =H^{r} a_{r, k}+a_{r, k-1}  \tag{21}\\
b_{r, k} & =H^{k-1}\left(H^{k}-1\right) b_{r-1, k-1}+H^{k} b_{r-1, k} \tag{22}
\end{align*}
$$

By induction on $r$, we prove the following proposition that corresponds to Propositions 10, 12 and 13.

Proposition 18. For all $r \in \mathbb{N}^{*}$ and $1 \leq k \leq r$,

$$
\begin{align*}
\operatorname{deg}\left(b_{r, k}\right) & \leq r k h  \tag{23}\\
\operatorname{deg}\left(a_{r, k}\right) & =(r-1)(r-k) h \tag{24}
\end{align*}
$$

and, for all $x \in \Omega$ and $r \geq 1+\operatorname{deg}(x) / h$,

$$
\begin{equation*}
\operatorname{deg}\left(\binom{x}{r}_{E}\right) \leq-r h \tag{25}
\end{equation*}
$$

Proposition 19. Let $f(X)=\sum_{n \geq 0} c_{n} X^{n}$ be an entire function on $\Omega$ and let $\tau \in \mathbb{R}^{+}$be such that

$$
\varlimsup_{r \rightarrow+\infty} \frac{M(f, r)}{r^{2}}<\tau
$$

Then there exists $N \in \mathbb{N}$ such that, for all $n \geq N$,

$$
\operatorname{deg}\left(c_{n}\right) \leq-\frac{n^{2}}{4 \tau}
$$

Proof. By (1), there exists $\varrho \in \mathbb{R}^{+}$such that

$$
r \geq \varrho \Rightarrow \sup _{n \in \mathbb{N}}\left\{n r+\operatorname{deg}\left(c_{n}\right)\right\} \leq \tau r^{2}
$$

For all $n \in \mathbb{N}, \operatorname{deg}\left(c_{n}\right) \leq \tau r^{2}-n r$ if $r \geq \varrho$. Consequently,

$$
\operatorname{deg}\left(c_{n}\right) \leq \inf _{r \geq \varrho}\left\{\tau r^{2}-n r\right\}=-\frac{n^{2}}{4 \tau}
$$

if $n \geq 2 \tau \varrho$.
As in Section 2, if $j$ is an integer such that $\lim _{n \rightarrow+\infty} \operatorname{deg}\left(c_{n} b_{n, j}\right)=-\infty$, we define $\Delta_{j}^{E}(f)$ by

$$
\Delta_{j}^{E}(f)=\sum_{n \geq 0} c_{n} b_{n, j}
$$

Let

$$
\tau \in] \varlimsup_{r \rightarrow+\infty} \frac{M(f, r)}{r^{2}}, \frac{1}{4 h}[.
$$

For all $x \in \Omega$ and for $j \in \mathbb{N}$ large enough,

$$
\begin{align*}
\operatorname{deg}\left(\Delta_{j}^{E}(f)\right) & \leq\left(h-\frac{1}{4 \tau}\right) j^{2}  \tag{26}\\
\operatorname{deg}\left(\Delta_{j}^{E}(f)\binom{x}{j}\right) & \leq\left(h-\frac{1}{4 \tau}\right) j^{2}-h j \tag{27}
\end{align*}
$$

As a consequence, $\sum_{j \geq 0} \Delta_{j}^{E}(f)\binom{x}{j}_{E}$ converges for every $x \in \Omega$ and we prove as in Theorem 14 that

$$
f(x)=\sum_{j \geq 0} \Delta_{j}^{E}(f)\binom{x}{j}_{E}
$$

Then we may end the proof of Theorem 16 analogously to Car-Pólya's theorem. Now, we give an example which proves that the upper bound $1 / 4 h$ is optimal.

Proposition 20. The function $\Psi(z)=\sum_{n \geq 0}\binom{z}{n}_{E}$ is an entire function on $\Omega$ such that
(1) $\varlimsup_{r \rightarrow+\infty} \frac{M(f, r)}{r^{2}}=\frac{1}{4 h}$,
(2) $\Psi\left(H^{n}\right) \in \mathbb{F}_{q}[T]$ for all $n \in \mathbb{N}$,
(3) $\Psi$ is not a polynomial in $\Omega[X]$.

Proof. By (25), the function $\Psi$ is well defined on $\Omega$. Clearly, $\Psi\left(H^{m}\right) \in$ $\mathbb{F}_{q}[T]$ for all $m \in \mathbb{N}$, since for every $m, n \in \mathbb{N}$, we have $\binom{H^{m}}{n}_{E}=0$ when $n>m$ and $\binom{H^{m}}{n} \in \mathbb{F}_{q}[T]$ when $n \leq m$. This proves the second assertion of the proposition.

Let $z \in \Omega$. We can write

$$
\Psi(z)=\sum_{r \geq 0} \sum_{k=0}^{r}(-1)^{r-k} \frac{a_{r, k}}{r!} z^{k}
$$

It follows from (24) that $\sum_{r \geq k}(-1)^{r-k} a_{r, k} / r!$ exists and that

$$
\begin{equation*}
\operatorname{deg}\left(\sum_{r \geq k}(-1)^{r-k} \frac{a_{r, k}}{r!}\right)=-k^{2} h \tag{28}
\end{equation*}
$$

and so

$$
\sum_{k \geq 0}\left[\sum_{r \geq k}(-1)^{r-k} \frac{a_{r, k}}{r!}\right] z^{k} \text { converges. }
$$

Now, we prove that

$$
\begin{equation*}
\Psi(z)=\sum_{k \geq 0}\left[\sum_{r \geq k}(-1)^{r-k} \frac{a_{r, k}}{r!}\right] z^{k} \tag{29}
\end{equation*}
$$

For all $r, k \in \mathbb{N}$, we put

$$
v_{r, k}=(-1)^{r-k} \frac{a_{r, k}}{r!} z^{k}
$$

Of course, $v_{r, k}=0$ if $k>r$. For every $R \in \mathbb{N}$, we may write

$$
\begin{aligned}
\Psi(z)- & \sum_{k \geq 0} \sum_{r \geq k} v_{r, k} \\
& =\left(\sum_{r \geq 0} \sum_{k=0}^{r} v_{r, k}-\sum_{r=0}^{R} \sum_{k=0}^{r} v_{r, k}\right)+\left(\sum_{r=0}^{R} \sum_{k=0}^{r} v_{r, k}-\sum_{k \geq 0} \sum_{r \geq k} v_{r, k}\right) .
\end{aligned}
$$

Clearly,

$$
\sum_{k \geq 0} \sum_{r \geq k} v_{r, k}-\sum_{r=0}^{R} \sum_{k=0}^{r} v_{r, k}=\sum_{k \geq 0} \sum_{r \geq R} v_{r, k}
$$

Consequently,

$$
\Psi(z)-\sum_{k \geq 0} \sum_{r \geq k} v_{r, k}=\sum_{r \geq R} \sum_{k=0}^{r} v_{r, k}-\sum_{k \geq 0} \sum_{r \geq R} v_{r, k}
$$

For $R$ large enough and $r \geq R$, we have $\operatorname{deg}\left(v_{r, k}\right) \leq-R h$. We see that both sums in the previous difference tend to zero as $R$ tends to infinity. Equality (29) is proved and $\Psi$ is an entire function on $\Omega$. From (1), (28) and (29), we have

$$
\varlimsup_{r \rightarrow+\infty} \frac{M(f, r)}{r^{2}}=\frac{1}{4 h}
$$

This proves the first part of the proposition.
Finally, $\Psi$ is not a polynomial of $\Omega[X]$ since the quadratic type of any polynomial of $\Omega[X]$ equals zero. This proves the third assertion.

In [4, Corollary IV. 8 and Corollary V.2], Car studied entire functions on $\Omega$ which are constant on $\mathbb{F}_{q}[T]$. In [5, Theorem 3], Thiery showed:

ThEOREM 21. Let $f: \Omega \rightarrow \Omega$ be an entire function, and let $A \in \Omega$. If

$$
f\left(\mathbb{F}_{q}[T]\right)=\{A\}, \quad \varlimsup_{r \rightarrow+\infty} \frac{M(f, r)}{q^{r}}<\frac{q^{q /(q-1)}}{e \ln q}
$$

then $f$ is the constant function $A$. Moreover, $q^{q /(q-1)} / e \ln q$ is optimal.
Here, we are interested in entire functions which are constant on $E$, that is, an analog for geometric sequences.

Proposition 22. Let $f: \Omega \rightarrow \Omega$ be an entire function, let $A \in \Omega$ and let $H \in \mathbb{F}_{q}[T]$ be of degree $h \geq 1$. If

$$
f\left(H^{n}\right)=A \quad \text { for all } n \in \mathbb{N}, \quad \varlimsup_{r \rightarrow+\infty} \frac{M(f, r)}{r^{2}}<\frac{1}{2 h}
$$

then $f$ is the constant function $A$. Moreover, $1 / 2 h$ is optimal.
Proof. Following Thiery's proof, we assume $A=0$. By [10, Theorem 2.14], the function

$$
F(X)=\prod_{n \geq 0}\left(1-\frac{X}{H^{n}}\right)
$$

is well defined and is an entire function on $\Omega$. Again by [10, Theorem 2.14], $f$ admits a Weierstrass expansion

$$
f(X)=c X^{k} \prod_{\lambda \in \Lambda}\left(1-\frac{X}{\lambda}\right)^{n_{\lambda}}
$$

where $c \in \Omega^{*}, \Lambda$ is the set of non-zero roots of $f, k$ is the order of $f$ in 0 and $n_{\lambda}$ is the order of zero $\lambda$. Since $\left\{H^{n} \mid n \in \mathbb{N}\right\} \subset \Lambda$, for all $x \in \Omega$ we have

$$
f(X)=g(X) F(X)
$$

where $g$ is an entire function on $\Omega$. We get

$$
\varlimsup_{r \rightarrow+\infty} \frac{M(f, r)}{r^{2}} \geq \varlimsup_{r \rightarrow+\infty} \frac{M(F, r)}{r^{2}}+\varlimsup_{r \rightarrow+\infty} \frac{M(g, r)}{r^{2}}
$$

Hence, the following lemma finishes the proof.
Lemma 23. Let $F$ be the previous entire function, i.e.

$$
F(X)=\prod_{n \geq 0}\left(1-\frac{X}{H^{n}}\right)
$$

Then

$$
\varlimsup_{r \rightarrow+\infty} \frac{M(F, r)}{r^{2}}=\frac{1}{2 h}
$$

Proof. Let $z \in \Omega$ be of degree $r$. We have

$$
\begin{align*}
\operatorname{deg}(F(z)) & =\sum_{0 \leq n \leq[r / h]} \operatorname{deg}\left(1-\frac{z}{H^{n}}\right)  \tag{30}\\
& =\sum_{0 \leq n<[r / h]} \operatorname{deg}\left(\frac{z}{H^{n}}\right)+\delta_{[r / h], r / h} \operatorname{deg}\left(1-\frac{z}{H^{[r / h]}}\right)
\end{align*}
$$

where $\delta_{i, j}$ denotes the Kronecker symbol. We conclude that for all $r \geq 0$,

$$
\frac{M(f, r)}{r^{2}} \leq \frac{1}{2 h}+\frac{3}{2 r}
$$

Let $\left(r_{k}\right)_{k \in \mathbb{N}}$ be the sequence of positive integers defined by $r_{k}=(k+1) h-1 / 2$, and let $\left(z_{k}\right)_{k \in \mathbb{N}}$ be a sequence of elements of $\Omega \operatorname{such}$ that $\operatorname{deg}\left(z_{k}\right)=r_{k}$ for all $k \in \mathbb{N}$. Then, using (30), we obtain

$$
\frac{\operatorname{deg}\left(F\left(z_{k}\right)\right)}{r_{k}^{2}} \sim \frac{1}{2 h} \quad \text { as } k \rightarrow+\infty
$$

This proves the lemma.

## References

[1] D. Adam, Simultaneous orderings in function fields, to appear.
[2] M. Bhargava, P-orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math. 490 (1997), 101-127.
[3] M. Car, Répartition modulo 1 dans un corps de séries formelles sur un corps fini, Acta Arith. 69 (1995), 229-242.
[4] —, Pólya's theorem for $\mathbb{F}_{q}[T]$, J. Number Theory 66 (1997), 148-171.
[5] -, Gel'fond-Gramain's theorem for function fields, in: Finite Fields and Applications (Augsburg, 1999), Springer, Berlin, 2001, 70-80.
[6] L. Carlitz, On certain functions connected with polynomials in a Galois field, Duke Math. J. 1 (1935), 137-168.
[7] -, A set of polynomials, ibid. 6 (1940), 486-504.
[8] L. Delamette, Théorème de Pólya en caractéristique finie, Acta Arith. 106 (2003), 159-170.
[9] A. Gel'fond, Sur les fonctions entières, qui prennent des valeurs entières dans les points $\beta^{n}$, $\beta$ est un nombre entier positif et $n=1,2,3, \ldots$, Mat. Sb. 40 (1933), 42-47 (in Russian; abstract in French).
[10] D. Goss, Basic Structures of Function Field Arithmetic, Ergeb. Math. Grenzgeb. (3) 35, Springer, Berlin, 1996.
[11] F. Gramain, Fonctions entières d'une ou plusieurs variables complexes prenant des valeurs entières sur une progression géométrique, in: Cinquante ans de polynômes (Paris, 1988), Lecture Notes in Math. 1415, Springer, Berlin, 1990, 123-137.
[12] G. Pólya, Über ganzwertige ganze Funktionen, Rend. Circ. Mat. Palermo 40 (1915), 1-16.
[13] L. Schnirelmann, Sur les fonctions dans les corps normés et algébriquement fermés, Izv. Akad. Nauk SSSR Ser. Mat. 1938, 487-498 (in Russian; abstract in French).
[14] C. Wagner, Polynomials over $\operatorname{GF}(q, x)$ with integral-valued differences, Arch. Math. (Basel) 27 (1976), 495-501.

LAMFA UMR 6140
Université de Picardie Jules Verne
33 Rue Saint Leu
80000 Amiens Cedex 01, France
E-mail: david.adam@u-picardie.fr

