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A note on the ideal class group
of the cyclotomic Zp-extension
of a totally real number field

by

Humio Ichimura (Yokohama)

1. Introduction. Let p be a fixed prime number (not necessarily odd),
k a fixed totally real number field, and k∞/k the cyclotomic Zp-extension.
Let kn be the nth layer of k∞/k with k0 = k, and An the Sylow p-subgroup
of the ideal class group of kn. Denote by

A∞ = lim−→An

the inductive limit with respect to the inclusion maps kn → km (n < m).
It is conjectured that A∞ = {0} (see Greenberg [1]). Let Ã0 be the image
of A0 in A∞. Concerning the conjecture, Greenberg [1, Theorem 1] proved
the following:

Theorem 1. Assume that there is only one prime ideal of k over p and
that it is totally ramified in k∞. Then A∞ = {0} if Ã0 = {0}.

The purpose of the present note is to give (1) the following rather
stronger version of this theorem (under the same assumptions), and (2) cor-
responding assertions when p splits completely in k. Let Γ = Gal(k∞/k),
and AΓ∞ the elements of A∞ fixed by Γ . Clearly, Ã0 ⊆ AΓ∞.

Theorem 2. Under the assumptions of Theorem 1, AΓ∞/Ã0 = {0}.
Theorem 1 follows from Theorem 2 and the following assertion which is

known to specialists.

Proposition 1. Under the general setting of this section, A∞ = {0} if
and only if AΓ∞ = {0}.

Let Ln be the maximal pro-p abelian extension over kn such that Ln ⊇
k∞ and Ln/k∞ is unramified, and let Fn be the Hilbert p-class field of kn.
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Clearly, we have Fnk∞ ⊆ Ln. It is known (Sumida [6, Lemma 1]) that if the
equality Fnk∞ = Ln holds for some n = n0, then it holds for all n ≥ n0.
For this, see also Lemma 3 and (1) in Section 3.

Theorem 3. Assume that p splits completely in k and that the Leopoldt
conjecture holds for (k, p). Then AΓ∞/Ã0 = {0} if Fnk∞ = Ln for some n.

Corresponding to Theorem 1, we obtain, from Theorem 3 and Proposi-
tion 1, the following:

Theorem 4. Under the assumptions of Theorem 3, A∞={0} if Ã0 ={0}
and Fnk∞ = Ln for some n.

In the previous paper [2, Propositions 1, 3], we proved the assertions of
Theorems 2, 3 when p is odd and k is a real abelian field with [k : Q] not
divisible by p.

We show Theorem 2 by re-arranging some arguments in [1, pp. 267–
269]. We can say that Theorem 2 is essentially contained in [1]. We show
Theorem 3 similarly to [2, Proposition 3], using some skillful arguments of
[1, p. 270].

Remark 1. (1) Under the assumptions of Theorem 1, it is known and
easy to show that Fnk∞ = Ln for all n. (2) The sufficient condition for
A∞ = {0} in Theorem 4 is also necessary. This is because A∞ = {0} if
and only if L =

⋃
n Ln is a finite extension over k∞ (cf. [1, Proposition 2]).

(3) Taya [8, Theorem 4] gave a condition for A∞ = {0} similar to Theorem 4
when p is odd and k is a real quadratic field in which p splits. In [7], Sumida
proved an assertion on the p-ideal class group of k∞ similar to Theorem 4.
His theorem is given in a very general setting where k is not necessarily
totally real, p does not necessarily split completely in k, and k∞/k is an
arbitrary Zp-extension.

Remark 2. At present, we have many numerical examples of (k, p) with
A∞ = {0} but no counterexamples (see Kraft and Schoof [4], Kurihara [5],
Sumida and the author [3]). For example, it is known that A∞ = {0} when
p = 3 and k = Q(

√
d) for all square free integers d with 1 < d < 104

([3, Proposition]). However, the conjecture is not yet proved to be true in
general.

2. Proof of Theorem 2. In this section, we show Theorem 2 by re-
arranging some arguments of [1, pp. 267–269]. In what follows, we assume
that the prime ideals of k over p are totally ramified in k∞. Let En be the
group of units of kn. The following lemma is proved in [1, p. 269, line 15].

Lemma 1. Under the assumptions of Theorem 1, the order |E0/Nn/0En|
is bounded as n→∞. Here, Nn/0 is the norm map from k×n to k×.
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Let In be the group of fractional ideals of kn, and I∞ the inductive
limit of In with respect to the inclusion maps kn → km (n < m). We often
regard ideals of kn as elements of I∞. For an ideal A ∈ In (0 ≤ n ≤ ∞),
[A]n denotes the ideal class of kn represented by A. We put Bn = AΓn , the
elements of An invariant under the action of Γ . The following lemma is a
detailed version of [1, Corollary].

Lemma 2. Assume that the assumptions of Theorem 1 hold or that the
Leopoldt conjecture holds for (k, p). Let h′ be the non-p-part of the class
number of k. Then, for any natural numbers m, l and any prime ideal P
of km over p, the ideal Ph′ becomes a plth power of a principal ideal in I∞.

Proof. It is known that the order of Bn is bounded as n → ∞ under
the assumption of the lemma. For this, see [1, Proposition 1] and line 14
of [1, p. 269]. Let t be an integer such that pt is a multiple of |Bn| for
all n. There exists a unique prime ideal P̃ of km+l+t over P, and the ideal
class [P̃h′ ]m+l+t is contained in Bm+l+t, because the primes of k over p are
totally ramified in k∞. Then Ph′ = (P̃h′pt)p

l

, and P̃h′pt is a principal ideal
of km+l+t. The assertion follows from this.

Proof of Theorem 2. We fix a topological generator γ of Γ . Assume that
the assumptions of Theorem 1 hold. Let [A]∞ be an element of AΓ∞ with
A ∈ I∞. We have Aγ−1 = (x) for some x ∈ k×∞. Take an integer n such that
A ∈ In and x ∈ k×n . We have ε = Nn/0x ∈ E0. By Lemma 1, we see that

Nm/0x = εp
m−n ∈ Nm/0Em

for a sufficiently large m ≥ n. Then Nm/0x = Nm/0η for some η ∈ Em.
From this, xη−1 = yγ−1 for some y ∈ k×m, and hence

Aγ−1 = (xη−1) = (yγ−1).

Therefore, the ideal A(y)−1 of km is Γ -invariant. Then we see that A(y)−1 =
BC for some B ∈ I0 and a product C of prime ideals of km over p. Therefore,
by Lemma 2, we see that [A]h

′
∞ ∈ Ã0. From this, we obtain AΓ∞/Ã0 = {0}.

Proof of Proposition 1. Though this is more or less known, we give a
proof for the sake of completeness. It suffices to show that the condition
A∞ 6= {0} implies AΓ∞ 6= {0}. Assume that A∞ 6= {0}. Let Hn be the kernel
of the natural map An → A∞. As A∞ 6= {0}, An/Hn 6= {0} for some n.
Then we see that there exists a class [A]n ∈ An with A ∈ In such that
[A]n /∈ Hn but [A]γ−1

n ∈ Hn. This is because p-groups acting on p-groups
have nontrivial fixed points. Therefore, we obtain AΓ∞ 6= {0}.

Remark 3. Let Dn be the classes in An which contain a product of
prime ideals of kn over p. We have Dn ⊆ Bn since the primes of k over p
are totally ramified in k∞. Assume that the Leopoldt conjecture holds for
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(k, p). Then, in [1, p. 270], it is shown that A∞ = {0} when Bn = Dn for
all sufficiently large n. This assertion also follows from Proposition 1 and
Lemma 2.

3. Proof of Theorem 3. Let p and k be as in Section 1. For a prime
ideal p of kn over p, let kn,p be the completion of kn at p, and Un,p the group
of principal units of kn,p. Denote by Un =

∏
p|p Un,p the group of semi-local

units of kn at p, where p runs over the primes of kn over p. We put

Vn =
⋂

m≥n
Nm/nUm

and
Ũn =

{
(up) ∈ Un

∣∣∣
∏

p|p
(up, km/kn, p) = 1, ∀m ≥ n

}
.

Here, Nm/n is the norm map from k×m to k×n , and (∗, km/kn, p) denotes
the norm residue symbol at p for the extension km/kn. We have Vn ⊆ Ũn
by local class field theory. Let En be, as before, the group of units of kn.
Embed k×n diagonally into the product

∏
p|p k

×
n,p, and let En be the closure

of En∩Un in Un. We see that En ⊆ Ũn by the product formula for the norm
residue symbols. On the quotient group Ũn/VnEn, the following assertion
holds, which is essentially contained in [6].

Lemma 3. If the equality Ũn = VnEn holds for some n = n0, then it
holds for all n ≥ n0.

Proof. Let m > n. Using local class field theory, we can show that the
inclusion map k×n → k×m induces an isomorphism

Ũn/Vn
∼= Ũm/Vm.

For details, see [6, p. 695, line 17]. The assertion follows from this as En ⊆
Em.

Let Mn be the maximal pro-p abelian extension over kn unramified out-
side p, and let Ln, Fn be the extensions of kn defined in Section 1. From the
definitions, we have Fnk∞ ⊆ Ln ⊆Mn. It is known that the reciprocity law
map induces isomorphisms

Gal(Mn/Fnk∞) ∼= Ũn/En and Gal(Mn/Ln) ∼= VnEn/En.

For the former, see [9, Corollary 13.6], and for the latter, see [6, Proposi-
tion 1] or [3, Lemma 3]. From the above, one obtains the following isomor-
phism:

(1) Gal(Ln/Fnk∞) ∼= Ũn/VnEn.
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Proof of Theorem 3. We assume that p splits completely in k and that
the Leopoldt conjecture holds for (k, p). We also assume that Fn0k∞ = Ln0

for some integer n0. Let [A]∞ be an element of AΓ∞ with A ∈ I∞. We have

(2) Aγ−1 = (x)

for some x ∈ k×∞. Here, γ is the fixed topological generator of Γ . Take an
integer n such that n ≥ n0, A ∈ In and x ∈ k×n . By (2), x is relatively
prime to p. Embedding k×n into the product

∏
p|p k

×
n,p diagonally, we can

also regard x as an element of Un (by raising A and x to the (p−1)st power
if necessary). By (2), we obtain

(3) Nn/0x ∈ E0.

From this, we see that for any m ≥ n,
∏

p|p
(x, km/kn, p) =

∏

p|p
(Nn/0x, km/k, p

′) = 1

by the product formula for the norm residue symbols. Here, p runs over the
primes of kn over p, and p′ = p∩k. Therefore, we obtain x ∈ Ũn. It is known
([1, p. 265]) that

(4) E0 ∩ Up
n+l

0 ⊆ Ep
n+1

0

for some integer l ≥ 0 as a consequence of the Leopoldt conjecture for (k, p).
Since n ≥ n0 and Fn0k∞ = Ln0 , we obtain Ũn = VnEn from Lemma 3 and
(1). Then, as x ∈ Ũn, we have

(5) x ≡ (Nn+l/nv)ε mod Up
l

n

for some v ∈ Un+l and ε ∈ En.
Now, we distinguish the cases where p is odd and where p = 2. First, let

p be odd. We see that Nm/0Um = U
pm

0 for any m since p is odd and p splits
completely in k. Therefore, we obtain

Nn/0x ≡ Nn/0ε mod Up
n+l

0

from (5). By (3), (4) and this congruence, we obtain Nn/0(xε−1) = ηp
n

for
some η ∈ E0, and hence Nn/0(xε−1η−1) = 1. Therefore, xε−1η−1 = yγ−1

for some y ∈ k×n . From this and (2), it follows that the ideal A(y)−1 of kn is
Γ -invariant. Then we can write A(y)−1 = BC for some ideal B of k and a
product C of prime ideals of kn over p. From this and Lemma 2, we obtain
[A]h

′
∞ = [B]h

′
∞ ∈ Ã0. The desired assertion follows from this when p is odd.

Next, let p = 2. Then we see that Nm/0U2
m = U2m+1

0 for any m since p

splits completely in k. Thus, by (3)–(5), we obtain Nn/0(x2ε−2) = η2n+1
for

some η ∈ E0, and hence, Nn/0(xε−1η−1) = ±1. Let ζ be a primitive 2n+2nd
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root of unity, and put

δ = ζ2 + ζ + 1 + ζ−1 + ζ−2 = (ζ5 − 1)/(ζ3 − ζ2).

We easily see that δ ∈ En and Nn/0δ = −1. Therefore, we have

Nn/0(xε−1η−1) = 1 or Nn/0(xε−1η−1δ) = 1.

Using this, we obtain the desired assertion by an argument similar to the
case p ≥ 3.
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