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A note on the ideal class group
of the cyclotomic Z,-extension
of a totally real number field

by

Humio IcHIMURA (Yokohama)

1. Introduction. Let p be a fixed prime number (not necessarily odd),
k a fixed totally real number field, and ko /k the cyclotomic Z,-extension.
Let k,, be the nth layer of ko, /k with kg = k, and A,, the Sylow p-subgroup
of the ideal class group of k,. Denote by

A =lim A,
—
the inductive limit with respect to the inclusion maps k, — ky,, (n < m).

It is conjectured that A, = {0} (see Greenberg [1]). Let Ay be the image
of Ap in A. Concerning the conjecture, Greenberg [1, Theorem 1] proved
the following:

THEOREM 1. Assume that there is only one prime ideal of k over p and
that it is totally ramified in koo. Then As = {0} if Ao = {0}.

The purpose of the present note is to give (1) the following rather
stronger version of this theorem (under the same assumptions), and (2) cor-
responding assertions when p splits completely in k. Let I' = Gal(kso/k),
and Al the elements of A, fixed by I'. Clearly, Ay C AL

THEOREM 2. Under the assumptions of Theorem 1, AL /Ay = {0}.

Theorem 1 follows from Theorem 2 and the following assertion which is
known to specialists.

PROPOSITION 1. Under the general setting of this section, Ao, = {0} if
and only if AL = {0}.

Let L,, be the maximal pro-p abelian extension over k, such that L, D
ks and L, /koo is unramified, and let F;, be the Hilbert p-class field of k,,.
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Clearly, we have F) koo C Ly,. It is known (Sumida [6, Lemma 1]) that if the
equality F,ko = L, holds for some n = ng, then it holds for all n > ng.
For this, see also Lemma 3 and (1) in Section 3.

THEOREM 3. Assume that p splits completely in k and that the Leopoldt
conjecture holds for (k,p). Then AL JAg = {0} if Fkoo = L, for some n.

Corresponding to Theorem 1, we obtain, from Theorem 3 and Proposi-
tion 1, the following:

THEOREM 4. Under the assumptions of Theorem 3, Ao, ={0} if Ag={0}
and F,ks = L, for some n.

In the previous paper [2, Propositions 1, 3], we proved the assertions of
Theorems 2, 3 when p is odd and k is a real abelian field with [k : Q] not
divisible by p.

We show Theorem 2 by re-arranging some arguments in [1, pp. 267—
269]. We can say that Theorem 2 is essentially contained in [1]. We show
Theorem 3 similarly to [2, Proposition 3], using some skillful arguments of
[1, p. 270].

REMARK 1. (1) Under the assumptions of Theorem 1, it is known and
easy to show that F,k. = L, for all n. (2) The sufficient condition for
As = {0} in Theorem 4 is also necessary. This is because A, = {0} if
and only if L = J,, L, is a finite extension over ko, (cf. [1, Proposition 2]).
(3) Taya [8, Theorem 4] gave a condition for Ao, = {0} similar to Theorem 4
when p is odd and k is a real quadratic field in which p splits. In [7], Sumida
proved an assertion on the p-ideal class group of k., similar to Theorem 4.
His theorem is given in a very general setting where k is not necessarily
totally real, p does not necessarily split completely in k, and ko /k is an
arbitrary Z,-extension.

REMARK 2. At present, we have many numerical examples of (k, p) with
Ao = {0} but no counterexamples (see Kraft and Schoof [4], Kurihara [5],
Sumida and the author [3]). For example, it is known that Ao, = {0} when
p = 3 and k = Q(+/d) for all square free integers d with 1 < d < 10*
([3, Proposition]). However, the conjecture is not yet proved to be true in
general.

2. Proof of Theorem 2. In this section, we show Theorem 2 by re-
arranging some arguments of [1, pp. 267-269]. In what follows, we assume
that the prime ideals of k over p are totally ramified in k... Let E,, be the
group of units of k,,. The following lemma is proved in [1, p. 269, line 15].

LEMMA 1. Under the assumptions of Theorem 1, the order |Ey/N,, o Ey|
is bounded as n — oo. Here, N,, o is the norm map from k) to k*.
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Let I,, be the group of fractional ideals of k,, and I, the inductive
limit of I,, with respect to the inclusion maps k,, — k., (n < m). We often
regard ideals of k,, as elements of I,. For an ideal 2 € I, (0 < n < o0),
[2],, denotes the ideal class of k,, represented by 2. We put B, = AL the
elements of A,, invariant under the action of I'. The following lemma is a
detailed version of [1, Corollary].

LEMMA 2. Assume that the assumptions of Theorem 1 hold or that the
Leopoldt congecture holds for (k,p). Let h' be the non-p-part of the class
number of k. Then, for any natural numbers m, I and any prime ideal P
of ky, over p, the ideal ‘Bh/ becomes a p'th power of a principal ideal in I.

Proof. It is known that the order of B,, is bounded as n — oo under
the assumption of the lemma. For this, see [1, Proposition 1] and line 14
of [1, p. 269]. Let ¢ be an integer such that p' is a multiple of |B,| for
all n. There exists a unique prime ideal ‘B of k114 over P, and the ideal
class [%hl]m_i'_l_i_t is contained in By, 4+, because the primes of k over p are
totally ramified in koo. Then P" = (‘i‘h/pt)pl, and P"'?" is a principal ideal
of kpm1iy¢. The assertion follows from this. m

Proof of Theorem 2. We fix a topological generator « of I'. Assume that
the assumptions of Theorem 1 hold. Let [2],, be an element of Al  with
A € I.. We have A7~ = (z) for some x € kX . Take an integer n such that
A eI, and x € k. We have ¢ = N,, o € Ey. By Lemma 1, we see that

Nm/ox = €pm7n € Nm/OEm

for a sufficiently large m > n. Then N, ,0x = Ny,,on for some n € E,,.
From this, 2n~1 = y7~! for some y € kX, and hence

W= (a7 = (7).

Therefore, the ideal 2(y) ! of k,, is I-invariant. Then we see that 2(y) ! =
B for some B € Iy and a product € of prime ideals of k,, over p. Therefore,
by Lemma 2, we see that [2]”. € Ay. From this, we obtain A /Ay = {0}. =

Proof of Proposition 1. Though this is more or less known, we give a
proof for the sake of completeness. It suffices to show that the condition
Ao # {0} implies AL # {0}. Assume that A, # {0}. Let H,, be the kernel
of the natural map A, — As. As A, # {0}, A,,/H,, # {0} for some n.
Then we see that there exists a class [2],, € A, with 2 € I, such that
[A],, ¢ H, but [])~! € H,. This is because p-groups acting on p-groups
have nontrivial fixed points. Therefore, we obtain AL, # {0}. =

REMARK 3. Let D, be the classes in A,, which contain a product of

prime ideals of k,, over p. We have D,, C B,, since the primes of k over p
are totally ramified in k.. Assume that the Leopoldt conjecture holds for
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(k,p). Then, in [1, p. 270], it is shown that A, = {0} when B,, = D,, for
all sufficiently large n. This assertion also follows from Proposition 1 and
Lemma 2.

3. Proof of Theorem 3. Let p and k be as in Section 1. For a prime
ideal p of k,, over p, let k,, , be the completion of k,, at p, and &, , the group
of principal units of k,, ,. Denote by i,, = Hp‘ » Uy, p the group of semi-local
units of k,, at p, where p runs over the primes of k, over p. We put

m>n

and

i, = {(up) Eﬂn‘ H(up,km/kzn,p) =1, Vm > n}

plp

Here, N,,/,, is the norm map from k) to k;, and (x,k,,/k,,p) denotes
the norm residue symbol at p for the extension k,,/k,. We have U,, C i,
by local class field theory. Let E, be, as before, the group of units of k,.

Embed k¢ diagonally into the product Hp‘ » k. and let €, be the closure

of £, N, in U,. We see that &, C ﬁn by the product formula for the norm
residue symbols. On the quotient group ,, /%, &, the following assertion
holds, which is essentially contained in [6].

LEMMA 3. If the equality ﬁﬂ = 0, &, holds for some n = nyg, then it
holds for all n > nyg.

Proof. Let m > n. Using local class field theory, we can show that the
inclusion map k;° — k,; induces an isomorphism

0, /B, 22 8, /D
For details, see [6, p. 695, line 17]. The assertion follows from this as F,, C
E, =

Let M,, be the maximal pro-p abelian extension over k,, unramified out-
side p, and let L,,, F;, be the extensions of k,, defined in Section 1. From the
definitions, we have F, ko C L, C M,. It is known that the reciprocity law
map induces isomorphisms

Gal(M, /Fokoo) 2 8, /€, and Gal(M,/L,) = V,&,/¢,.

For the former, see [9, Corollary 13.6], and for the latter, see [6, Proposi-
tion 1] or [3, Lemma 3]. From the above, one obtains the following isomor-
phism:

(1) Gal(Ly /Fokoso) = i, /B, &,y
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Proof of Theorem 3. We assume that p splits completely in k£ and that
the Leopoldt conjecture holds for (k,p). We also assume that F, koo = L,
for some integer ng. Let [A], be an element of AL with 2 € I,. We have

@ 2 = (@)

for some = € k2 . Here, v is the fixed topological generator of I'. Take an
integer n such that n > ng, A € I,, and = € k). By (2), z is relatively
prime to p. Embedding k,¢ into the product lep k., diagonally, we can
also regard x as an element of i, (by raising 2 and z to the (p — 1)st power
if necessary). By (2), we obtain

(3) Nn/0$ € Ey.

From this, we see that for any m > n,

H(mv km/knvp) = H(Nn/(]kam/kap/) =1

plp plp
by the product formula for the norm residue symbols. Here, p runs over the

primes of k,, over p, and p’ = pNk. Therefore, we obtain x € ﬁn It is known
([1, p. 265]) that

(4) Eon" c g

for some integer [ > 0 as a consequence of the Leopoldt conjecture for (k, p).
Since n > ng and F, koo = Ly, we obtain i, = U, ¢, from Lemma 3 and
(1). Then, as z € i, we have

(5) r = (Nyyi/nv)e mod ﬂﬁl

for some v € U, ; and € € E,,.

Now, we distinguish the cases whgﬂre p is odd and where p = 2. First, let
p be odd. We see that N,, ok, = b for any m since p is odd and p splits
completely in k. Therefore, we obtain

N, o = Ny, j0e mod ilgnH

from (5). By (3), (4) and this congruence, we obtain N,, ,o(ze~1) = nP" for
some 1 € Ey, and hence Nn/o(me_ln_l) = 1. Therefore, xzetn=! = ¢!
for some y € kX. From this and (2), it follows that the ideal 2(y) ! of k,, is
I-invariant. Then we can write 2(y) ™! = B¢ for some ideal B of k and a
product € of prime ideals of k,, over p. From this and Lemma 2, we obtain
[2]" = [B]" € Ay. The desired assertion follows from this when p is odd.

oo

Next, let p = 2. Then we see that Nm/ou?n = il%m+1 for any m since p

2n+1

splits completely in k. Thus, by (3)—(5), we obtain Nn/g(:v2€_2) =7 for
some 7 € Eo, and hence, N, o(ze~'n~1) = £1. Let ¢ be a primitive 2"**nd
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root of unity, and put

§=CHCH1+TT 2= (C-D/(E =)
We easily see that 6 € B, and N,, 00 = —1. Therefore, we have

Nojo(ze™'n™") =1 or N,z 'n7'6) = 1.

Using this, we obtain the desired assertion by an argument similar to the
casep>3. m
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