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1. Introduction. The object of our study is partitions with designated
summands. They are constructed by taking ordinary partitions and tag-
ging exactly one of each part size. Thus there are 15 partitions of 5 with
designated summands:

5′, 4′ + 1′, 3′ + 2′, 3′ + 1′ + 1, 3′ + 1 + 1′, 2′ + 2 + 1′,

2 + 2′+ 1′, 2′+ 1′+ 1 + 1, 2′+ 1 + 1′+ 1, 2′+ 1 + 1 + 1′, 1′+ 1 + 1 + 1 + 1,

1 + 1′ + 1 + 1 + 1, 1 + 1 + 1′ + 1 + 1, 1 + 1 + 1 + 1′ + 1, 1 + 1 + 1 + 1 + 1′.

The total number of partitions of n with designated summands is denoted
by PD(n). Hence PD(5) = 15.

We shall also study PDO(n), the total number of partitions of n with
designated summands in which all parts are odd. Thus PDO(5) = 8.

While these objects have not appeared in the literature before, they
are tacitly considered by P. A. MacMahon [13] in his work on generalized
divisor sums. Indeed, MacMahon’s An,k is the number of partitions of n
with designated summands wherein exactly k different magnitudes occur
among all the parts. MacMahon [13, Section 17] is able to connect An,k
with numerous divisor sum identities due to Glaisher [7], Ramanujan [15]
and others. However, MacMahon neglected the very interesting case wherein
the number of different magnitudes of parts is suppressed. We shall consider
the generating functions:

(1.1) pd(q) =
∞∑

n=0

PD(n)qn,

and

(1.2) pdo(q) =
∞∑

n=0

PDO(n)qn.
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In Section 2, we shall show (among other things) that

(1.3) pd(q) =
η(6z)

η(z)η(2z)η(3z)
,

where

(1.4) η(z) = q1/24
∞∏

n=1

(1− qn),

and

(1.5) q := e2πiz .

Also

(1.6) pdo(q) =
η(4z)η2(6z)

η(z)η(3z)η(12z)
.

We examine q-series identities in Section 3, and in Section 4 we relate PD(n)
and PDO(n) to several well-known partition functions. As a result, we can
easily deduce that PDO(n) is even unless either n is 0 or n is a perfect
square not divisible by 3.

Section 5 is devoted to arithmetic properties of partitions with designated
summands and in Section 6 we investigate some modular relations.

2. The generating functions

Theorem 1. Suppose S is a set of positive integers. Denote by PDS(n)
the number of partitions of n with designated summands all of whose parts
lie in S, and denote by pdS(q) the generating function for PDS(n). Then

(2.1) pdS(q) =
∏

n∈S

1− q6n

(1− qn)(1− q2n)(1− q3n)
.

Proof. We see immediately that

pdS(q) =
∏

n∈S
(1 + qn + 2q2n + 3q3n + 4q4n + . . .)

=
∏

n∈S

(
1 +

qn

(1− qn)2

)
=
∏

n∈S

1− qn + q2n

(1− qn)2

=
∏

n∈S

1 + q3n

(1− qn)2(1 + qn)
=
∏

n∈S

1− q6n

(1− qn)(1− q2n)(1− q3n)
.

Corollary 2. Equality (1.3) is valid.

Proof. This is the case S = N, the set of all positive integers.
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Corollary 3. If Sk is the set of all positive integers not divisible by k,
then

pdSk(q) = pd(q)/pd(qk).

Proof. This assertion is the specialization of Theorem 1 to Sk.

Corollary 4. Equality (1.6) is valid.

Proof. This follows directly from Corollary 3 with k = 2.

Indeed we might note that if S consists of all positive integers congruent
to one of a1, . . . , aj modulo k, and if S is symmetric (i.e. whenever α ∈ S
then all positive integers ≡ −α (mod k) are in S), then pdS(q) is a modular
function. The subsequent sections are restricted to the instances of pdS(q)
that seem to have the most interest, namely pd(q) and pdo(q).

3. q-Series for pd(q) and pdo(q). There are several reasons for con-
sidering q-series expansions of these generating functions. Often such ex-
pansions provide efficient algorithms for the calculation of their coefficients.
This turns out to be the case for both pd(q) (see (3.4)) and pdo(q) (see
(3.13)). In addition, we occasionally uncover new mysteries. In our present
study, it is quite mysterious that the q-series (3.3) and (3.12) which seem to
have complex coefficients, in fact do not.

Theorem 5. For |q| < 1 and ζ = eπi/3,

pd(q) =
(ζq; q)∞(ζ−1q; q)∞

(q; q)2∞
(3.1)

= 1 +
∞∑

n=1

(−q3; q3)n−1q
n

(q; q)n(q2; q2)n−1(1− qn)
(3.2)

= 1 + ζ
∞∑

n=1

(
(ζq; q)n−1

(q; q)n

)3

(1− ζq2n)(−1)nq(
n+1

2 )ζ−n(3.3)

=
∑∞
n=0 q

(n+1
2 ) − 3

∑∞
n=0 q

(3n+2
2 )

∑∞
n=0(−1)n(2n+ 1)q(

n+1
2 )

,(3.4)

where

(3.5) (a; q)n = (1− a)(1− aq) . . . (1− aqn−1).

Proof. By (1.3),

pd(q) =
(q6; q6)∞

(q; q)∞(q2; q2)∞(q3; q3)∞
=

(−q3; q3)∞
(q; q)2∞(−q; q)∞

=
(ζq; q)∞(ζ−1q; q)∞

(q; q)2∞
,
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which proves (3.1). Identity (3.2) may be rewritten as follows:

(3.6)
∞∑

n=0

(ζ; q)n(ζ−1; q)n
(q; q)n(q; q)n

=
(ζq; q)∞(ζ−1q; q)∞

(q; q)∞(q; q)∞
,

and in this form we see that it is a specialization of the q-analog of Gauss’s
theorem [2, p. 20, Cor. 2.4, a = ζ, b = ζ−1, c = q]. Identity (3.3) may be
rewritten as follows:

(3.7) lim
t→0

∞∑

n=0

(ζ; q)3
n

(q; q)3
n

· 1− ζq2n

1− ζ · (t−1; q)n
(ζqt; q)n

(
tζq

ζ2

)n
=

(ζ−1q; q)∞(ζq; q)∞
(q; q)∞(q; q)∞

,

and in this form we see that it is a specialization of the limiting form of
Jackson’s theorem [6, p. 238, (II.20)].

To obtain (3.4), we first note that

(3.8)
(−1)n(ζ−n − ζn+1)

1− ζ =





1 if n ≡ 0 (mod 3),

−2 if n ≡ 1 (mod 3),

1 if n ≡ 2 (mod 3).

Hence by Jacobi’s triple product [6, p. 239, (II.28)],

(ζq; q)∞(ζ−1q; q)∞
(q; q)2∞

=
(q; q)∞(ζ; q)∞(ζ−1q; q)∞

(1− ζ)(q; q)3∞

=
∑∞
n=0(−1)nq(

n+1
2 )ζ−n/(1− ζ)

(q; q)3∞

=
∑∞
n=0 q

(n+1
2 )((−1)n(ζ−n − ζn+1)/(1− ζ))

∑∞
n=0(−1)n(2n+ 1)q(

n+1
2 )

(by [9, p. 285, Th. 357])

=
∑∞
n=0 q

(n+1
2 ) − 3

∑∞
n=0 q

(3n+2
2 )

∑∞
n=0(−1)n(2n+ 1)q(

n+1
2 )

.

From (3.4) we immediately deduce a computationally fast recurrence for
PD(n).

Corollary 6. For n ≥ 0,

(3.9)
∑

j≥0

PD
(
n−

(
j + 1

2

))
(−1)j(2j + 1)

=





0 if n 6= triangular number ,

1 if n =
(
m+1

2

)
and m 6≡ 1 (mod 3),

−2 otherwise.

Corollary 7. PD(3n+ 2) ≡ 0 (mod 3).
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Proof. By (3.4), we see that

pd(q) ≡
∑∞
n=0 q

(n+1
2 )

(q; q)3∞
(mod 3) ≡

∑∞
n=0 q

(n+1
2 )

(q3; q3)∞
(mod 3)

but this last expression has no powers of q ≡ 2 (mod 3) in its expansion.

Theorem 8. For |q| < 1 and ζ = eπi/3,

pdo(q) =
(ζq; q2)∞(ζ−1q; q2)∞

(q; q2)2∞
(3.10)

= 1 +
∞∑

n=1

(−q6; q6)n−1q
n

(q; q)2n(−q2; q2)n−1
(3.11)

= 1− ζ
∞∑

n=1

(ζq; q)2n−1(ζq2; q2)n−1(−1)nqn
2

(q; q)2n(q; q2)n
(3.12)

=

∑∞
n=−∞ q

(3n)2 −∑∞n=−∞ q
(3n+1)2

1 + 2
∑∞
n=1(−1)nqn2 .(3.13)

Proof. By Corollary 3 with k = 2

pdo(q) = pd(q)/pd(q2)(3.14)

=
(ζq; q)∞(ζ−1q; q)∞

(q; q)2∞
· (q2; q2)∞

(ζq2; q2)∞(ζ−1q2; q2)∞
(3.15)

=
(ζq; q2)∞(ζ−1q; q2)∞

(q; q2)2∞
.(3.16)

Identity (3.11) may be rewritten as follows:

(3.17)
∞∑

n=0

(ζ; q2)n(ζ−1; q2)n
(q2; q2)n(q; q2)n

qn =
(ζ−1q; q2)∞(ζq; q2)∞

(q; q2)∞(q; q2)∞
,

and in this form we see that it is a specialization of the q-analog of Gauss’s
theorem [2, p. 20, Cor. 2.4, q replaced by q2, a = ζ, b = ζ−1, c = q].

Identity (3.12) may be rewritten as follows:

lim
t→0

∞∑

n=0

(ζ/q; q2)n
(q2; q2)n

· 1− ζq2n−1

1− ζ/q · (ζ; q2)2
n

(q; q2)2
n

· (t−1; q2)n
(ζqt; q2)n

tnqnζ−n

=
(ζq; q2)∞(ζ−1q; q2)∞

(q; q2)∞(q; q2)∞
,

and in this form we see that it is a specialization of the limiting form of
Jackson’s theorem [6, p. 238, (II.20)].

To obtain (3.13) we note that

(3.18) (−ζ)n + (−ζ)−n =
{

2 if n ≡ 0 (mod 3),

−1 otherwise.
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Hence by Jacobi’s triple product,

(ζq; q2)∞(ζ−1q; q2)∞
(q; q2)2∞

=
(q2; q2)∞(ζq; q2)∞(ζ−1q; q2)∞

(q2; q2)∞(q; q2)2∞

=

∑∞
n=−∞(−1)nqn

2
ζn∑∞

n=−∞(−1)nqn2

=
1 +

∑∞
n=1 q

n2
((−ζ)n + (−ζ)−n)

1 + 2
∑∞
n=1(−1)nqn2

=

∑∞
n=−∞ q(3n)2 −∑∞n=−∞ q

(3n+1)2

1 + 2
∑∞
n=1(−1)nqn2 .

From (3.13) we immediately deduce a computationally fast recurrence
for PDO(n).

Corollary 9. For n ≥ 0,

(3.19) PDO(n) + 2
∑

j≥1

PDO(n− j2)(−1)j =





0 if n is not a square,

1 if n = 0,

2 if n = (3m)2,

−1 otherwise.

Corollary 10. PDO(n) is odd precisely when either n is 0 or a square
not divisible by 3.

Proof. By (3.13),

pdo(q) ≡ 1−
∞∑

n=−∞
q(2n+1)2

(mod 2).

4. Relations to other partition functions. In this section we shall
consider three classical partition functions with an extensive literature.

M(q) will denote the generating function for partitions without 1’s and
without any two parts differing by 1. It is a theorem of MacMahon [12, p. 54]
(see also [1]) that

(4.1) M(q) =
∞∏

n6≡±0,1 (mod 6)

(1− qn)−1 =
(−q3; q3)∞
(q2; q2)∞

.

S(q) will denote the generating function for partitions in which parts
differ by at least 3 and multiples of 3 differ by at least 4. Schur [16] has
shown that

(4.2) S(q) =
∞∏

n6≡±2,3 (mod 6)

(1− qn)−1 =
(−q; q)∞

(−q3; q3)∞
.
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Our final generating function, Φ2(q), is related to more complicated ob-
jects, generalized Frobenius partitions, and we refer the reader to [3] for an
introduction to this topic. Φ2(q) is the generating function for generalized
Frobenius partitions wherein any number can appear on each row as a part
at most twice. In [3, (5.11)], it is shown that

Φ2(q) =
∞∏

n=1

1
(1− qn)(1− q12n−10)(1− q12n−2)(1− q12n−3)(1− q12n−2)

=

∑∞
m=−∞ q(3m)2 −∑∞m=−∞ q(3m+1)2

(q; q)2∞
(by [3, (10.4)]).

Given the above generating functions, we can easily combine these for-
mulas with those of Sections 2 and 3 to deduce the following:

Theorem 11. For |q| < 1,

pd(q)(q; q)∞ = M(q),(4.3)

pd(q)S(q) =
1

(q; q)2∞
,(4.4)

pdo(q) = (q2; q2)∞Φ2(q).(4.5)

Proof. Identity (4.3) follows from (4.1) and (1.3); identity (4.4) follows
from (4.2) and (1.3). Finally identity (4.5) follows from (4.3) and (3.13).

It should be observed that these relationships are quite simple and sug-
gest the possibility of our obtaining insight for partitions with designated
summands from these classical partition functions.

5. Arithmetic properties. Because of their relationships with eta
functions and modular forms, partition functions typically feature many
interesting arithmetic properties. Our work on partitions with designated
summands has produced infinite families of partitions whose generating
functions are products of eta functions, and in this section we will give
a sample of some divisibility and congruence properties for some of these
partition functions. To work in the context of modular forms, we require the
following facts:

Proposition 12 (Gordon, Hughes, Newman, Ligozat [8], [11], [14]). Let

f(z) =
∏

1≤δ|N
ηrδ(δz)

be a product of eta functions which satisfies the following criteria:
∑

δ|N
δrδ ≡ 0 (mod 24);(i)
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∑

δ|N

N

δ
rδ ≡ 0 (mod 24);(ii)

(iii) For each d |N , ∑

δ|N
(d, δ)2 rδ

δ
≥ 0.

Then f(z) ∈ Mk(Γ0(N), χ) if k = 1
2

∑
rδ ∈ N and χ is the quadratic char-

acter defined by

(5.1) χ(l) =
(

(−1)k
∏
δrδ

l

)
.

Here Mk(Γ0(N), χ) is the C-vector space of holomorphic modular forms
of weight k, level N , and Nebentypus character χ . Conditions (i)–(ii) ensure
that f

(
az+b
cz+d

)
= χ(d)(cz+d)kf(z) for all z with Im(z) > 0 and for all integers

a, b, c, d such that ad− bc = 1 and N | c. Condition (iii) guarantees that f is
“holomorphic at the cusps.” For more on the basic theory of modular forms,
see Koblitz [10]. We recall the following well-known facts about modular
forms and their Fourier expansions.

Proposition 13 [10]. Suppose that f(z) ∈ Mk(Γ0(N), χ) with Fourier
expansion f(z) =

∑∞
n=0 a(n)qn. For any positive integer t,

(i) f(z)|T (t) :=
∞∑

n=0

∑

d|gcd(t,n)

χ(d)dk−1a

(
tn

d2

)
qn

is the Fourier expansion of a modular form in Mk(Γ0(N), χ).

(ii) f(z)|V (t) :=
∞∑

n=0

a(n)qtn

is the Fourier expansion of a modular form in Mk(Γ0(tN), χ).

The operators T (t) are the Hecke operators for integral weight modular
forms. Note that as a special case of part (i) of this proposition we find that
for any t |N ,

f(z)|U(t) :=
∞∑

n=0

a(tn)qn

is the Fourier expansion of a modular form in Mk(Γ0(N), χ).

Proposition 14 [18]. Suppose f(z) =
∑∞
n=0 a(n)qn ∈ Mk(Γ0(N), χ)

satisfies:
(i) a(n) ∈ Z for all n,
(ii) a(n) ≡ 0 (modM) for all n ≤ 1 + (kN/12)

∏
p|N (1 + 1/p).

Then a(n) ≡ 0 (modM) for all n.
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Lemma 15. Suppose that f =
∑∞
n=0 a(n)qn, g =

∑∞
n=0 d(mn)qmn with

d(0) = 1, and

fg =
∞∑

n=0

b(n)qn.

Then:

(i) If a(mn + r) ≡ 0 (modM) for 0 ≤ n ≤ B, then b(mn + r) ≡ 0
(modM) for 0 ≤ n ≤ B.

(ii) If b(mn + r) ≡ 0 (modM) for all n, then a(mn+ r) ≡ 0 (modM)
for all n.

Proof. Both facts follow quickly after writing the coefficient of qmn+r

from fg in two ways:

b(mn+ r) = a(mn+ r) +
∑

k≥1

d(mk)a(m(n− k) + r).

Part (i) is obvious and part (ii) comes from a simple induction argument.

We begin with a theorem about the divisibility of PDp(n) when p is
prime. The notation PDp(n) is for the number of partitions of n with desig-
nated summands wherein no part is divisible by p. Recall that we say almost
all natural numbers have a property P if

lim
N→∞

#{n ≤ N : P (n)}
N

= 1.

Theorem 16. If p is any prime and r any nonnegative integer , then
almost all n have the property that PDp(n) is divisible by pr.

Proof. It is a theorem of Serre [17] that for any positive integerm, almost
all of the Fourier coefficients of an integer weight holomorphic modular form
are divisible by m. Hence the theorem will follow if we can find, for each p
and sufficiently large r, modular forms Fr,p(z) such that

Fr,p(z) ≡
∞∑

n=0

PDp(n)qn (mod pr).

To this end we define, for all r, p with r ≥ 1 and (p, 6) = 1,

Fr,p(z) :=
η(6z)η(pz)η(2pz)η(3pz)ηp

r

(z)
η(z)η(2z)η(3z)η(6pz)ηpr−1(pz)

.

One can demonstrate that

Fr,p(z) ∈Mpr−1(p−1)/2(Γ0(72p), χ)
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(where the character χ is defined in Proposition 12) by verifying the condi-
tions of Proposition 12: It is easy to find that

∑

δ|72p

δrδ = 0

and ∑

δ|72p

72p
δ
rδ = 24(5− 5p+ 3pr+1 − 3pr−1).

For condition (iii), notice that for any d | 72p,

∑ (d, δ)2
rδ

δ

depends only on (d, 6p). In the table below are shown the divisors of 6p
and the corresponding sums. They are all nonnegative, which completes the
proof for p 6= 2, 3.

d | 6p ∑
(d, δ)2rδ/δ

d = 1 5(1− p)/(3p) + pr − pr−2

d = 2 8(1− p)/(3p) + pr − pr−2

d = 3 3(1− p)/p+ pr − pr−2

d = 6 pr − pr−2

d = p 5(p− 1)/3
d = 2p 8(p− 1)/3
d = 3p 3(p− 1)
d = 6p 0

We shall omit the details for the cases p = 2, 3 which do not quite fit the
argument above. Still it is routine to show that

Gr,2(z) :=
η2(6z)η(4z)η2r(z)

η(z)η(3z)η(12z)η2r−1(2z)
≡
∞∑

n=0

PDO(n)qn (mod 2r)

is in M2r−2(Γ0(144), χtriv) for r ≥ 2 and that

Hr,3(z) :=
η2(6z)η(9z)η3r(z)

η(z)η(2z)η(18z)η3r−1(3z)
≡
∞∑

n=0

PD3(n)qn (mod 3r)

is in M3r−1(Γ0(108), χ) for all r.

Although Theorem 16 already contains a strong statement about PDO(n)
modulo powers of 2, one can obtain more specific information using Hecke
operators. For example, we find by an application of Sturm’s criterion that

pdo(q)|T (p) ≡ 0 (mod 4)

for many small primes including p = 7, 11, 19, 23, 31. This implies that

PDO(pn)− PDO(n/p) ≡ 0 (mod 4)
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for all such primes p and all nonnegative integers n, which immediately gives
infinitely many congruences in arithmetic progressions modulo 4. The same
techniques can be employed to produce specific information about any of
the functions pdp(q) modulo pr, if desired.

Next we focus on some congruence properties of partitions with desig-
nated summands. We shall demonstrate a technique that can be used to
computationally verify congruences for these partition functions and give
some examples for the generating functions pd(q) and pdo(q). The first step
is to combine Propositions 13 and 14 and Lemma 15 into a useful criterion.
This technique was employed by Eichhorn and Ono [4] to prove congruence
properties of modular functions.

Theorem 17. Suppose that

f(z) :=
∞∑

n=0

a(n)qn ·
∏

ηrtδ(tδz) :=
∞∑

n=0

r(n)qn ∈Mk(Γ0(N), χ)

and that a(tn− b) ≡ 0 (modM) for all

n ≤ B := 1 +
kN

12

∏

p|N

(
1 +

1
p

)

where b = (
∑
tδrtδ)/24. Then a(tn− b) ≡ 0 (modM) for all n.

Proof. By the remark following Proposition 13,

f(z)|U(t) =
∞∑

n=0

r(tn)qn ∈Mk(Γ0(N), χ)

so r(tn) ≡ 0 (modM) for all n if r(tn) ≡ 0 (modM) for all n ≤ B by
Proposition 14. Now, by the first part of Lemma 15, this will happen if
a(tn−b) ≡ 0 (modM) for all n ≤ B, which in turn will imply that a(tn−b) ≡
0 (modM) for all n by the second part of Lemma 15.

The above theorem successfully transfers Sturm’s criterion from modular
forms to other series under suitable conditions. We begin with one detailed
argument.

Corollary 18. For all nonnegative integers n,

(5.2) PD(12n+ 10) ≡ 0 (mod 8).

Proof. Define the η-product f(z) by

f(z) :=
η(6z)η16(12z)η3(24z)η4(36z)η7(72z)

η(z)η(2z)η(3z)

=
∞∑

n=0

PD(n)qn · η16(12z)η3(24z)η4(36z)η7(72z) ∈M14(Γ0(72), χf )
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according to Proposition 12. In the notation of Theorem 17,

b =
12 · 16 + 3 · 24 + 4 · 36 + 7 · 72

24
= 38

and hence if PD(12n−38) ≡ 0 (mod 8) for all n ≤ 169 then PD(12n−38) ≡ 0
(mod 8) for all n. It has been verified computationally that PD(12n+10) ≡ 0
(mod 8) for all n ≤ 165, which implies the congruence (5.2) for all n.

We have found numerous congruences for partitions with designated
summands which can be proven computationally using exactly the same
argument as in Corollary 18. The work is in finding the right modular form
f(z) which implies the desired congruence by an application of Theorem 17.
Below we list many congruence properties and the weight k, level N , holo-
morphic modular forms f(z) used to verify the congruences.

Corollary 19. The following congruences are implied by the existence
of the corresponding holomorphic modular forms f(z) and a sufficient com-
putation.

Congruence f(z) ∈Mk(Γ0(N), χf ) (k,N)

PD(24n+ 18) ≡ 0 (mod 24) η(6z)η27(24z)η24(48z)η(72z)η4(144z)
η(z)η(2z)η(3z) (27, 144)

PD(12n+ 6) ≡ 0 (mod 4) η(6z)η16(12z)η4(24z)η4(36z)η4(72z)
η(z)η(2z)η(3z) (13, 72)

PDO(9n+ 6) ≡ 0 (mod 3) η2(6z)η(4z)η8(9z)η8(54z)η2(108z)
η(z)η(3z)η(12z) (9, 108)

PDO(12n+ 10) ≡ 0 (mod 3) η2(6z)η(4z)η12(12z)η4(24z)η8(48z)
η(z)η(3z)η(12z) (12, 48)

PDO(12n+ 6) ≡ 0 (mod 3) η2(6z)η(4z)η12(12z)η12(72z)
η(z)η(3z)η(12z) (12, 72)

PDO(24n+ 16) ≡ 0 (mod 3) η2(6z)η(4z)η16(24z)η8(48z)
η(z)η(3z)η(12z) (12, 48)

PDO(24n) ≡ 0 (mod 3) η2(6z)η(4z)η24(24z)
η(z)η(3z)η(12z) (12, 144)

There are undoubtedly many more simple congruences for the functions
listed above and indeed for every member of our infinite families of gen-
erating functions which are η-products. The profusion of these arithmetic
properties, especially for small moduli, suggests the likelihood of finding
combinatorial explanations. Such a revelation could perhaps lead to the
discovery and classification of families of congruences and a deeper under-
standing of partitions with designated summands.

6. Modular relations. In this section we consider the generating func-
tions for PD(n) and PDO(n) in certain arithmetic progressions. We show
that many of these generating functions are infinite products and also dem-
onstrate that the phenomenon in Andrews’ tenth problem [3, 5] on Frobenius
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partitions arises in the study of partitions with designated summands. Each
of the Theorems 21–24 was observed by applying Euler’s algorithm for infi-
nite products [2, p. 98]. An application of Sturm’s criterion guarantees that
our observation was, in fact, a proof.

Theorem 20.
∞∑

n=0

PD(2n)qn =
(q4; q4)2

∞(q6; q6)5
∞

(q; q)3∞(q2; q2)∞(q3; q3)3∞(q12; q12)2∞
,

∞∑

n=0

PD(2n+ 1)qn =
(q2; q2)5

∞(q12; q12)2
∞

(q; q)5∞(q3; q3)∞(q4; q4)2∞(q6; q6)∞
.

Proof. By Proposition 12, the equality

η11(2z)η(6z)
η(z)η(3z)

=
η9(2z)η2(8z)η5(12z)
η(4z)η3(6z)η2(24z)

+
η7(2z)η5(4z)η2(24z)
η(6z)η2(8z)η(12z)

is an equality between modular forms in M5
(
Γ0(72),

(−1
·
))

and hence is
verified by comparing the first 61 terms on each side. Multiply both sides
by η−12(2z) to obtain

∞∑

n=0

PD(2n)q2n +
∞∑

n=0

PD(2n+ 1)q2n+1

=
η(6z)

η(z)η(2z)η(3z)

=
(q8; q8)2

∞(q12; q12)5
∞

(q2; q2)3∞(q4; q4)∞(q6; q6)3∞(q24; q24)2∞

+ q · (q4; q4)5
∞(q24; q24)2

∞
(q2; q2)5∞(q6; q6)∞(q8; q8)2∞(q12; q12)∞

and the theorem follows.

In an identical fashion we obtain Theorems 21 and 22.

Theorem 21.
∞∑

n=0

PDO(2n)qn =
(q4; q4)2

∞(q6; q6)4
∞

(q ; q)2∞(q3; q3)2∞(q12; q12)2∞
,

∞∑

n=0

PDO(2n+ 1)qn =
(q2; q2)6

∞(q12; q12)2
∞

(q ; q)4∞(q4; q4)2∞(q6; q6)2∞
.

Proof. The equality

η12(2z)η(4z)η2(6z)
η(z)η(3z)η(12z)

=
η10(2z)η2(8z)η4(12z)

η2(6z)η2(24z)
+
η8(2z)η6(4z)η2(24z)

η2(8z)η2(12z)
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is an equality between modular forms in M6(Γ0(144), χtriv) and hence is
verified by checking the first 145 terms on each side. The claim follows
immediately as in Theorem 20 after multiplying both sides by η−12(2z).

Theorem 22.
∞∑

n=0

PDO(3n)qn =
(q2; q2)2

∞(q6; q6)4
∞

(q ; q)4∞(q12; q12)2∞
,

∞∑

n=0

PDO(3n+ 1)qn =
(q2; q2)4

∞(q3; q3)3
∞(q12; q12)∞

(q ; q)5∞(q4; q4)∞(q6; q6)2∞
,

∞∑

n=0

PDO(3n+ 2)qn = 2 · (q2; q2)3
∞(q6; q6)∞(q12; q12)∞

(q ; q)4∞(q4; q4)∞
.

Proof. The equality

η7(3z)η(4z)η2(6z)
η(z)η(12z)

=
η4(3z)η2(6z)η4(18z)

η2(36z)
+
η3(3z)η4(6z)η3(9z)η(36z)

η(12z)η2(18z)

+ 2 · η
4(3z)η3(6z)η(18z)η(36z)

η(12z)
is easily seen by Proposition 12 to be an equality between modular forms in
M4(Γ0(144), χtriv) and hence is verified by comparing the first 97 terms on
each side. Multiply both sides by η−8(3z) and the theorem follows.

The generating functions for PD(3n+ 0, 1, 2) do not have the same nice
properties as in the previous theorems. However, in one case we find some-
thing striking.

Theorem 23. Define numbers a(n) uniquely by
∞∑

n=0

PD(3n)qn =
∞∏

n=1

(1− qn)−a(n).

Then for all positive n we have

a(6n+ 1) = 5, a(6n+ 3) = 2, a(6n+ 5) = 5.

We remark that the sequence a(2n) begins

13, −14, 80, −338, 1741, −8902, 16669, . . .

Proof of Theorem 23. Our object is to show that
∞∑

n=0

PD(3n)qn = (q; q6)−5
∞ (q3; q6)−2

∞ (q5; q6)−5
∞ · F (q2)

for some series F . By Proposition 12, we know that the η-product

f(z) :=
η27(6z)η4(3z)
η(z)η(2z)η3(9z)
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is a modular form in M13(Γ0(18), χf ), and so is g(z) := f(z)|U(3). Moreover,

h(z) := g(z)− g(z)|U(2)|V (2)

is a modular form in M13(Γ0(36), χf ). An application of Sturm’s criterion
shows that h(z) = 0. In other words, g(z) =

∑
n≥1 c(n)q2n. To complete the

proof, observe that

g(z) =
η27(6z)η4(3z)
η(z)η(2z)η3(9z)

∣∣∣∣U(3)

= pd(q)|U(3) · q2(q2; q2)26
∞ ·

(q; q)5
∞

(q3; q3)3∞
and therefore

∞∑

n=0

PD(3n)qn = pd(q)|U(3) =
(q3; q3)3

∞
(q; q)5∞

· g(z)
q2(q2; q2)26∞

= (q; q6)−5
∞ (q3; q6)−2

∞ (q5; q6)−5
∞ · F (q2).

7. Conclusion. It should be clear that partitions with designated sum-
mands are objects with a great deal of structure. It has not been our purpose
to give an exhaustive account, but to offer a sample of their combinatorial,
functional, and arithmetic properties. By using various tagging schemes,
such as colored tags and restrictions on which parts can be designated,
one can obtain many more families of infinite product generating functions.
These undoubtedly have as many interesting properties as those discussed
here, and in specific cases they have further relationships with generalized
Frobenius partitions as well as with other types of partitions with designated
summands. Since all of these have generating functions which are essentially
eta functions, it should be worthwhile to consider the connections between
partitions with designated summands and other objects which are counted
by Fourier coefficients of modular forms.
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[17] J. P. Serre, Divisibilité de certaines fonctions arithmétiques, Enseign. Math. 22
(1976), 227–260.

[18] J. Sturm, On the congruence properties of modular forms, Lecture Notes in Math.
1240, Springer, Berlin, 1984, 275–280.

Department of Mathematics
Pennsylvania State University
University Park, PA 16802, U.S.A.
E-mail: andrews@math.psu.edu
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