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The Bernoulli polynomials Bn(x) are defined by the generating series
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Bn−ixi where Br = Br(0) is the rth Bernoulli

number. In fact, Br are rational numbers defined recursively by B0 = 1 and∑n−1
i=0
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)
Bi = 0 for all n ≥ 2. The first few are:

B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30,

and Br = 0 for r odd > 1.
The Bernoulli polynomials Bn(x) are related to the sums of nth powers

of natural numbers as follows. For any n ≥ 1, the sum 1n + 2n + · · ·+ kn is
a polynomial function Sn(k) of k and

Sn(x) =
Bn+1(x+ 1)−Bn+1

n+ 1
.

In this paper, for nonzero rational numbers a, b and rational polynomials
C(y), we study the Diophantine equation

aBm(x) = bBn(y) + C(y)

with m ≥ n > degC + 2. More generally, we look for rational solutions
x, y with bounded denominators. One says that an equation f(x) = g(y)
has infinitely many rational solutions with bounded denominators if there
exists a positive integer λ such that f(x) = g(y) has infinitely many rational
solutions x, y satisfying x, y ∈ 1

λZ. Equations of the type f(x) = g(y) for
f(x) = x(x+1) · · · (x+m−1) and various polynomials g(y) have been studied
extensively during the last decade. Also the special case when g(y) = yn−r,
where r is any rational number, was studied earlier in [2]. We have proved
there that in this case there are effective finiteness results for x ∈ Z and
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y ∈ Q. Note that our results in this paper do not give effective results as
in [2]. In [4], we have some results for general g.

In this paper, we prove:

Main Theorem. For any polynomial C(y) ∈ Q[y] and m ≥ n >
degC + 2, the equation

aBm(x) = bBn(y) + C(y)

has only finitely many rational solutions with bounded denominators except
when m = n, a = ±b and C(y) ≡ 0; in these exceptional cases, there are
infinitely many rational solutions with bounded denominators if , and only
if , a = b or a = −b and m = n is odd.

In particular , if c is a nonzero constant , then the equation

aBm(x) = bBn(y) + c

has only finitely many solutions for all m,n > 2.

Remarks. (a) The condition n > degC + 2 in the theorem is optimal
as can be seen from the fact that the equation

B3

(
2x− 1

2

)
= 8B3(y) +

3
2
y − 3

4

has infinitely many rational solutions corresponding to x = 2y − 1/2.
(b) The particular case of the theorem when a = n, b = m,n 6= m and

the polynomial C(y) is the constant nBm−mBn, has been discussed in [1].

We shall make extensive use of the following theorem of Bilu & Tichy:

Theorem. For nonconstant polynomials f(x), g(x) ∈ Q[x], the following
are equivalent :

(a) The equation f(x) = g(y) has infinitely many rational solutions with
bounded denominators.

(b) We have f = φ(f1(λ)) and g = φ(g1(µ)), where λ(x), µ(x) ∈ Q[X]
are linear polynomials, φ(x) ∈ Q[X], and (f1(x), g1(x)) is a standard
pair over Q such that the equation f1(x) = g1(y) has infinitely many
rational solutions with bounded denominators.

Standard pairs are defined as follows. In what follows, a and b are nonzero
elements of some field, m and n are positive integers, and p(x) is a nonzero
polynomial (which may be constant):

• A standard pair of the first kind is

(xt, axrp(x)t) or (axrp(x)t, xt),

where 0 ≤ r < t, (r, t) = 1 and r + deg p(x) > 0.
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• A standard pair of the second kind is

(x2, (ax2 + b)p(x)2) or ((ax2 + b)p(x)2, x2).

• A standard pair of the third kind is

(Dk(x, at),Dt(x, ak)),

where (k, t) = 1. Here Dt is the tth Dickson polynomial.
• A standard pair of the fourth kind is

(a−t/2Dt(x, a), b−k/2Dk(x, a)),

where (k, t) = 2.
• A standard pair of the fifth kind is

((ax2 − 1)3, 3x4 − 4x3) or (3x4 − 4x3, (ax2 − 1)3).

By a standard pair over a field k, we mean that a, b ∈ k, and p(x) ∈ k[x].

The theorem of Bilu and Tichy above shows the relevance of the following
definition:

A decomposition of a polynomial F (x) ∈ C[x] is an equality of the form
F (x) = G1(G2(x)), where G1(x), G2(x) ∈ C[x]. The decomposition is called
nontrivial if degG1 > 1, degG2 > 1.

Two decompositions F (x) = G1(G2(x)) and F (x) = H1(H2(x)) are
called equivalent if there exists a linear polynomial l(x) ∈ C[x] such that
G1(x) = H1(l(x)) and H2(x) = l(G2(x)). A polynomial is called decom-
posable if it has at least one nontrivial decomposition, and indecomposable
otherwise.

We shall also use the following result due to Bilu et al. [1]:

Theorem. Let m ≥ 2. Then

(i) Bm(x) is indecomposable if m is odd ,
(ii) if m = 2k, then any nontrivial decomposition of Bm(x) is equivalent

to Bm(x) = h((x− 1/2)2).

Proof of the Main Theorem. We note once for all that we may assume
a = 1 as we may replace b by b/a and the polynomial C(y) by C(y)/a, and
the assertions remain the same.

First, we deal with the case m = n.

Case 1: m = n and m is an odd integer. In this case, the equation looks
like

(1) Bm(x) = bBm(y) + C(y).

Assume that (1) has infinitely many rational solutions with bounded de-
nominators. Then by [3],

Bm(x) = φ(f1(λ(x))), bBm(y) + C(y) = φ(g1(µ(y))),
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where λ(x), µ(x) ∈ Q[X] are linear polynomials, φ(x) ∈ Q[X], and the pair
(f1(x), g1(x)) is a standard pair over Q such that f1(x) = g1(y) has infinitely
many rational solutions with bounded denominators. Now as m is an odd
integer, Bm(x) is indecomposable by [1]. Therefore, either degφ(x) = m and
deg f1(x) = 1, or degφ(x) = 1 and deg f1(x) = m.

(i) Let deg φ(x) = m. Then Bm(x) = φ(Ax + B) for some A,B ∈ Q.
Therefore for some u, v ∈ Q, Bm(ux+v) = φ(x). This gives bBm(x)+C(x) =
Bm(rx+ s). Hence

C(x) = Bm(rx+ s)− bBm(x).

As degC(x) < m−2, the coefficients of xm, xm−1 and xm−2 are zero on the
left hand side of the above equation.

Equating the coefficients of xm on both sides, we get rm = b. We have a
contradiction already when b is not an mth power in Q. If it is an mth power,
then there is a unique rational solution r of rm = b as m is odd. Similarly,
equating the coefficients of xm−1 on both sides, we get s = (1− r)/2. Finally,
the coefficient of xm−2 gives

0 =
m(m− 1)rm−2

2

(
s2 − s+

1− r2

6

)
.

Inserting the value of s, we get r2 = 1, i.e., r = ±1. Clearly, the two values of
s corresponding to r = 1 and r = −1 are, respectively, s = 0 and s = 1. But
both of these imply that C is identically zero because Bm(1−x) = −Bm(x)
for odd m.

(ii) Suppose deg φ(x) = 1 and deg f1(x) = m. Then, as m is an odd
integer, (f1(x), g1(x)) can be a standard pair of either the first or third
kind. Since here (deg f1,deg g1) = m 6= 1, (f1(x), g1(x)) can only be of the
first kind. So either f1(x) = xm or g1(x) = xm. Now let φ(x) = φ0 + φ1(x)
for some φ0, φ1 ∈ Q. Therefore, either

Bm(rx+ s) = φ0 + φ1x
m or bBm(rx+ s) + C(rx+ s) = φ0 + φ1x

m

for some r, s ∈ Q with r 6= 0. As degC(x) < m− 2, the coefficients of xm−1

and xm−2 on the left hand side of the above equations come only from the
Bm part. Equating the coefficients of xm−2, we get 6s2 − 6s+ 1 = 0, s ∈ Q,
which is not possible.

Therefore when m = n and m is an odd integer equation (1) has only
finitely many solutions unless b = ±1 and C ≡ 0.

Case 2: m = n is an even integer 2d. In this case, the equation becomes

(2) B2d(x) = bB2d(y) + C(y).

Assume that it has infinitely many rational solutions with bounded denom-



Diophantine equations with Bernoulli polynomials 29

inators. Then, as in the previous case, by [3] we have

B2d(x) = φ(f1(λ(x))), bB2d(y) + C(y) = φ(g1(µ(y))),

where λ(x), µ(x), φ(x) and (f1(x), g1(x)) are as before. As m is even, by
[1], either the above is not a nontrivial decomposition (that is, deg φ = 2d
or deg φ = 1), or B2d(x) is equivalent to φ((x− 1/2)2), where degφ(x) = d.

In the former case, if deg φ = 2d, then we have

B2d(rx+ s) = bB2d(x) + C(x)

for some r, s ∈ Q with r 6= 0. Comparing the coefficients of x2d, x2d−1, x2d−2

we have r2d = b, r = 1−2s, and s(s−1) = 0. This gives rx+s = x or 1−x,
and so b = 1 and C(x) ≡ 0 since B2d(x) = B2d(1− x).

If deg φ = 1, then since both f1, g1 have degree 2d > 2, the standard pair
(f1, g1) must be of the first kind. Thus, we have r, s ∈ Q with r 6= 0 so that
either

B2d(rx+ s) = φ0 + φ1x
2d

or
bB2d(rx+ s) + C(rx+ s) = φ0 + φ1x

2d.

Clearly, either of these implies that s2 − s+ 1/6 = 0 exactly as in Case 1.
Now, we consider the case when deg φ = d; then

B2d(rx+ s) = φ((x− 1/2)2) for some r, s ∈ Q,
bB2d(x) + C(x) = φ(kx2 + lx+m) for some k, l,m ∈ Q with k 6= 0.

Let φ(x) = φ0 + φ1x+ · · ·+ φdx
d.

We digress to make a simple observation:

Lemma. If B2d(rx + s) = φ((x − 1/2)2) for some r, s ∈ Q with r 6= 0,
then (r, s) = (1, 0) or (−1, 1). In particular , B2d(x) = φ((x− 1/2)2).

Proof. By comparing the coefficients of x2d and x2d−1 on both sides, it
easily follows that (r, s) = (1, 0) or (−1, 1). As B2d(x) = B2d(1−x), we have
B2d(x) = φ((x− 1/2)2).

Returning to our case, by the Lemma, we have B2d(x) = φ((x− 1/2)2).
Therefore

bφ((x− 1/2)2) = φ(kx2 + lx+m)− C(x).

Also, the equality B2d(x) = φ((x− 1/2)2) gives

x2d − dx2d−1 +
d(2d− 1)

6
x2d−2 + · · ·

= φ0 + φ1

(
x− 1

2

)2

+ · · ·+ φd

(
x− 1

2

)2d

.

By comparing the coefficients of x2d in this equation, we get φd = 1. Further,
the coefficients of x2d−1 give φd−1 = −d(2d− 1)/12.
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Now consider the equation, bφ((x − 1/2)2) = φ(kx2 + lx + m) − C(x).
We have

b

(
φ0 + φ1

(
x− 1

2

)2

+ · · ·+ φd

(
x− 1

2

)2d)

= φ0 + φ1(kx2 + lx+m) + · · ·+ φd(kx2 + lx+m)d − C(x).

As degC(x) < 2d− 2, the coefficients of x2d, x2d−1, x2d−2 do not have any
contribution from C(x).

By comparing the coefficients of x2d on both sides, we get bφd = φdk
d.

This implies kd = b, which either has no solutions in rational k or one or
two solutions according as d is odd or even.

By comparing the coefficients of x2d−1 on both sides we get

bφd

(
2d

2d− 1

)(−1
2

)
= φd

(
d

d− 1

)
kd−1l.

This gives k = −l.
By comparing the coefficients of x2d−2 we get

φd−1

(
1− 1

k

)
= d

(
m

k
− 1

4

)
.

Inserting the value of φd−1, we get m = (2d− 1 + (4− 2d)k)/12.
Therefore, in this case

kx2 + lx+m = kx2 − kx+
2d− 1 + (4− 2d)k

12
.

By Bilu–Tichy’s theorem, if equation (2) has infinitely many rational solu-
tions with bounded denominators, then

(
x− 1

2

)2

= ky2 − ky +
2d− 1 + (4− 2d)k

12

has infinitely many rational solutions with bounded denominators. This is
seen to be equivalent to considering the equation

X2 − kY 2 =
(2d− 1)(1− k)

12
.

Unless the right hand side is zero, such an equation has only finitely many
rational solutions with bounded denominators, by Dirichlet’s unit theorem.
Now, the right hand side is zero if, and only if, k = 1 and then we have
b = 1, l = −1, m = 1/4, and C(x) = φ(kx2 + lx + m) − φ((x − 1/2)2) is
identically zero.

Therefore when m = n = 2d, equation (2) has only finitely many rational
solutions with bounded denominators unless b = 1 and C ≡ 0.
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Case 3: m > n > degC(y) + 2 and m is odd. The equation is

(3) Bm(x) = bBn(y) + C(y).

Suppose that (3) has infinitely many rational solutions with bounded de-
nominators. Then again by [3] we have

Bm(x) = φ(f1(λ(x))), bBn(y) + C(y) = φ(g1(µ(y))),

where λ(x), µ(x), φ(x) and (f1(x), g1(x)) are as before.
As m is an odd integer, Bm(x) is indecomposable by [1]. Therefore, either

deg φ(x) = m and deg f1(x) = 1, or deg φ(x) = 1 and deg f1(x) = m.
If degφ(x) = m, then n = mdeg g1(µ(x)). Since deg g1(µ(x)) ≥ 1, we

get n ≥ m, which is a contradiction.
Hence degφ(x) = 1. This implies deg f1(x) = m and g1(y) = n. Let

φ(x) = φ0 +φ1x for some rational numbers φ0, φ1. As m is odd, the standard
pair (f1, g1) can only be of the first or third kind.

(i) Suppose (f1, g1) is a standard pair of the first kind. Then either
f1(x) = xm or g1(x) = xn. Therefore, either

Bm(rx+ s) = φ(xm) = φ0 + φ1x
m

or
bBn(rx+ s) + C(rx+ s) = φ(xn) = φ0 + φ1x

n.

As degC(x) < n− 2, the coefficients of xn, xn−1, xn−2 in the last equation
are the same as those of bBn(rx+s). Therefore, either the coefficient of xm−2

in Bm(rx+ s) is zero or the coefficient of xn−2 in bBn(rx+ s) + C(rx+ s)
is zero. As in the previous case, this gives 6s2 − 6s+ 1 = 0, s ∈ Q, which is
not possible. Therefore (f1, g1) cannot be a standard pair of the first kind.

(ii) Suppose (f1, g1) is a standard pair of the third kind. That is, (f1, g1)
= (Dm(x, αn),Dn(x, αm)) and (m,n) = 1. Therefore, Bm(rx + s) = φ0 +
φ1Dm(x, αn). This means

n∑

i=0

(
n

i

)
Bn−i(rx+ s)i = φ0 + φ1

[m/2]∑

i=0

dm,i(xm−2i),

where dm,i = m
m−i

(
m−i
i

)
(−αn)i. We will compare the coefficients on both

sides.
Equating the coefficients of xm on both sides, we have rm = φ1. The

coefficient of xm−1 on the right hand side is zero, and so we get(
m

1

)
rm−1s+

(
m

m− 1

)
B1r

m−1 = 0.

This gives s = 1/2. The coefficients of xm−2 give

m(m− 1)
12

rm−2(6s2 − 6s+ 1) =
m

m− 1

(
m− 1

1

)
(−αn)φ1,
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which on simplification yields r2αn = (m− 1)/24. By considering the coef-
ficients of xm−4 and using the values of φ1, r2αn, we get m = 9/2, which is
a contradiction. Hence (f1, g1) cannot be a standard pair of the third kind
either.

This implies that when m > n > degC(y)+2 and m is odd, equation (3)
can have only finitely many rational solutions with bounded denominators.

Case 4: m > n > degC(y) + 2 and m is an even integer 2d. Assume
that the equation

(4) Bm(x) = bBn(y) + C(y)

has infinitely many rational solutions with bounded denominators. Then
again, by [3], B2d(x) = φ(f1(λ(x))) and bBn(y)+C(y) = φ(g1(µ(y))), where
λ(x), µ(x), φ(x) and (f1(x), g1(x)) are as before. As m is even, by [1], either
the above decomposition is trivial or B2d(x) is equivalent to φ((x− 1/2)2),
where degφ(x) = d and bBn(y) + C(y) = φ(g1(µ(y))).

We first consider the case of a trivial decomposition forB2d; that is, either
deg φ = 1 or deg φ = 2d. The latter cannot happen because degφ divides n
which is < 2d. Suppose degφ = 1. Then deg f1 = 2d and deg g1 = n. Now,
since 2d > n > 2, the standard pair is not of the second kind. If it is of the
first kind, we have r, s ∈ Q with r 6= 0 and either

B2d(rx+ s) = φ0 + φ1x
2d

or
bBn(rx+ s) + C(rx+ s) = φ0 + φ1x

n.

In both cases, we have a contradiction as before.
If (f1, g1) is of the third or fourth kind, the very same computation done

in Case 3 gives a contradiction as it shows that 2d = 9/2.
If (f1, g1) is of the fifth kind, then 2d = 6, n = 4 and

B6(x) = φ0 + φ1(a(rx+ s)2 − 1)3.

This means that the derivative B′6(x) has a multiple root; however, B′6(x) =
6B5(x) and one knows that Bodd(x) has only simple roots by a result of
Brillhart.

Alternatively, even by direct computation, comparison of the coefficients
of x6, x5 and x4 gives r2 = 12/5a, s = −r/2, φ1 = (5/12)3 and then the
coefficients of x2 do not match.

Hence, we are left with the case of a nontrivial decomposition; that
is degφ = d. Hence n = ddeg g1(µ(y)). As 2d = m > n, this implies
deg g1(µ(y)) = 1. Therefore d = n = m/2. Hence we have

bBn(ux+ v) + C(ux+ v) = φ(x), B2n(x) = φ(rx+ s)2
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for some rational numbers u, v, r, s, u 6= 0, r 6= 0. By eliminating φ(x), we
get

B2n(x) = bBn(kx2 + lx+m) + C(kx2 + lx+m).

We now use the property B2n(x + 1) − B2n(x) = 2nx2n−1 of Bernoulli
polynomials; we have

bBn(k(x+ 1)2 + l(x+ 1) +m)− bBn(kx2 + lx+m)

+C(k(x+ 1)2 + l(x+ 1) +m)− C(kx2 + lx+m) = 2nx2n−1.

Since degC < n − 2, we get 2 degC − 1 < 2n − 5. Hence in the above
equation, there is no contribution from C(x) in the coefficients of x2n−i,
i = 0, . . . , 5. Consider the coefficients of x2n−i, i = 0, . . . , 5, in the equation

bBn(k(x+ 1)2 + l(x+ 1) +m)− bBn(kx2 + lx+m) = 2nx2n−1.

The coefficient of x2n−1 is

2n = b

(
n

n− 1

)
kn−1(2k + l)− b

(
n

n− 1

)
kn−1l.

This implies knb = 1.
Assume that b is an nth power in Q; otherwise we are already through.

The coefficient of x2n−2 being 0 implies

0 =
(

n

n− 1

)
kn−1(k + l +m)−

(
n

n− 1

)
kn−1m

+
(

n

n− 2

)
kn−2(2k + l)2 −

(
n

n− 2

)
kn−2l2.

This gives k = −l.
The vanishing of the coefficient of x2n−3 gives

0 =
(
n

2

)
kn−2(2k+ l)m−

(
n

2

)
kn−22lm+

(
n

3

)
kn−3(2k+ l)3−

(
n

3

)
kn−3l3

+
(

n

n− 1

)(
n− 1
n− 2

)
B1k

n−2(2k + l)−
(

n

n− 1

)(
n− 1
n− 2

)
B1k

n−2l.

Simplifying this we get m = 1/2− k(n− 2)/6. Finally, using the vanishing
of the coefficient of x2n−5 gives us

(2n− 1)(n− 4)k2 + 15 = 0.

This immediately shows n < 4. The only possibility is n = 3, but this gives
k2 = 3 and is impossible for a rational k.

Therefore when m > n > degC + 2 and m is even then equation (4) has
only finitely many rational solutions with bounded denominators.

This proves the theorem in all cases.
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equations and Bernoulli polynomials, Compositio Math. 131 (2002), 173–188.

[2] Yu. Bilu, M. Kulkarni and B. Sury, On the Diophantine equation x(x+1) · · · (x+m−1)
+ r = yn, Acta Arith. 113 (2004), 303–308.

[3] Yu. Bilu and R. F. Tichy, The Diophantine equation f(x) = g(y), ibid. 95 (2000),
261–288.

[4] M. Kulkarni and B. Sury, On the Diophantine equation x(x+1) · · · (x+m−1) = g(y),
Indag. Math. 14 (2003), 35–44.

Stat-Math Unit
Indian Statistical Institute
8th Mile, Mysore Road
Bangalore 560 059, India
E-mail: manisha@isibang.ac.in

sury@isibang.ac.in

Received on 5.1.2004 (4687)


