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Fractional integrals of modular forms
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1. Introduction. Among the wealth of lovely dualities inherent in the
theory of automorphic forms, perhaps the most captivating is the one con-
necting forms of weight k and 2− k. Sometimes called Serre Duality, at its
core this link reveals simply that the (1−k)th derivative of an automorphic
form of integer weight k < 1 is itself an automorphic form of weight 2− k.
This implies, of course, that the (k − 1)-fold integral of an automorphic
form of integer weight k > 1 is also an interesting automorphic object. This
function, called an Eichler integral, transforms like a form of weight 2 − k
modulo a period polynomial of degree at most k− 2 in its modular relation.
The validity of these statements, which hold for integer weights only, will
be explained below. But what about other real weights?

In 1993 it occurred to the author that fractional integration could be a
key tool for mapping forms of noninteger weight to certain integrals of dual
weight. Some of the results presented here date back to 1994, whereas others
are more recent. For simplicity we work on the full modular group. All of
the theorems extend to more general groups, but there certain entire forms
(such as Eisenstein series) of noninteger weight also have to be accomodated.

In this paper we first consider the effect of fractional integration (the
appropriate number of times, perhaps negative) on a modular form of arbi-
trary weight and multiplier system, with a possible principal part at infin-
ity. We call the resulting function a “generalized Eichler integral”, and in
Section 2 we describe fully its behavior under modular transformations. Al-
though rather complicated, this transformation law simplifies dramatically
for generalized Eichler integrals of cusp forms (see Corollary 3). And in Sec-
tion 3 we show that this relation also reduces somewhat when one starts
with Poincaré series having a pole at ∞.

In Section 4 we demonstrate a rather simple nexus between these “polar
Poincaré series” and Niebur modular integrals (the definition of which is
recalled in the same section). This mapping from polar Poincaré series to
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Niebur modular integrals consists of combining fractional integration with
conjugation of the multiplier system. It is almost a triviality to show that
the resulting function, which we call a “conjugate Eichler integral”, is in
fact a Niebur modular integral. Connected with this type of integral there
is yet another function, an “auxiliary integral”, which we examine in Sec-
tion 5. We conclude the paper with some natural questions which are not
addressed here. We also mention that recently Zagier [17, 18] has studied
the semi-integrals (i.e., fractional integrals of half-integer order) of certain
entire modular forms of half-integer weight. His work, which is related to
some of our previous results on Niebur modular integrals of small weight
[9–11], includes beautiful new identities that are linked to enumeration of
invariants arising out of knot theory. We feel that there remains much to be
uncovered along the lines of our investigation.

We now provide the promised substantiation of the rudimentary facts
concerning the well known case of integer weight forms. Let F be any func-
tion of the complex variable z and assume that it can be differentiated r
times, where r is a nonnegative integer. Then it is not difficult to verify (by
induction on r) that

(1) F (r)(V z)

=
r∑

j=0

(
r

j

)
Γ (w + r)
Γ (w + j)

γr−j(γz + δ)w+r+j d
j

dzj
{(γz + δ)−wF (V z)},

where V =
( ∗ ∗
γ δ

)
∈ SL(2,C) and w is a complex number. Setting w = 1− r

we obtain the important special case

(γz + δ)−r−1F (r)(V z) =
dr

dzr
{(γz + δ)r−1F (V z)},

which was observed by Bol [1] in 1949. The latter equality can also be proved
by invoking Cauchy’s Integral Formula. Obviously, if F is an automorphic
form of integer weight k < 1 on a suitable group Γ, then Bol’s Identity tells
us that

F (1−k)(V z) = (γz + δ)2−kF (1−k)(z), ∀V ∈ Γ,
and secures the assertions in our opening paragraph. If needed a multiplier
system in weight k may be inserted gratis into the above equality. Since k
and 2− k share the same parity, the claims still hold. (And this is actually
a crucial point in the context of fractional differentiation and integration of
noninteger weight forms.)

We add that in 1953 Maass [5] introduced his weight-raising operator

δw =
∂

∂z
+

w

2yi
,

which maps a form of weight w to a form of weight w+ 2. (To some readers
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this may be more familiar then Bol’s work.) Here y = Im z, w is complex
and the form need not be holomorphic. Now, if we consider δrw = δw+2r−2 ◦
· · · ◦ δw+2 ◦ δw for r ∈ Z+, and δ0

w equal to the identity, it is straightforward
to check that

δrw =
r∑

j=0

(
r

j

)
Γ (w + r)
Γ (w + j)

(2yi)j−r
∂j

∂zj

and that it maps a form of weight w to one of weight w + 2r. So, we see
anew that δ1−k

k = d1−k/dz1−k maps a form to a form. For much more on
classical Eichler integrals, we suggest the seminal works of Eichler [2] and
Shimura [15], as well as the paper by Kohnen & Zagier [4].

2. Generalized Eichler integrals. We let

f(τ) =
∞∑

n=−µ
ane

2πi(n+κ)τ , τ ∈ H (upper half-plane),(2)

be a modular form of real weight k and multiplier system (MS) v on Γ (1),
the full modular group. The function v maps matrices to the unit circle and
the parameter κ is determined by v(S) = e2πiκ, 0 ≤ κ < 1, where S =

( 1 1
0 1

)
.

Recall that the Fourier expansion (2) is a consequence of the definition of
a modular form, which requires f to be holomorphic in H, meromorphic at
∞ and to satisfy the modular relation

f(τ)− v(V )(γτ + δ)−kf(V τ) = 0(3)

for all V =
( ∗ ∗
γ δ

)
∈ Γ (1) and τ ∈ H. Throughout our work we employ

the convention −π ≤ arg(·) < π to dictate branch selection. We denote the
principal part at∞ of f by f∞. If f has no constant term, then we say that
it is “constant-free”. Note that on the full modular group f is constant-free
except perhaps when k is an even integer and v ≡ 1. (We remark, however,
that a form on Γ (1) of weight 2 is always constant-free. To see this, recall
that nontrivial entire forms on Γ (1) of weight 2 and v ≡ 1 do not exist, but
constant-free forms of this weight and MS, with any prescribed principal
part, do exist on Γ (1).) Below we shall study the effect of a certain operator
on f.

Specifically, we consider the (k − 1)th fractional integral of f, which we
define by

F (τ) =
∞∑

n=−µ

an
[−2πi(n+ κ)]k−1 e

2πi(n+κ)τ , τ ∈ H,(4)

where f is assumed to be constant-free for k > 1. (This is also the (1− k)th
fractional derivative of f.) We call F the generalized Eichler integral of f.
When k is an integer greater than 1, then F + possibly a constant term
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becomes the familiar Eichler integral of f . This term, which we omit for
succinctness, is discussed briefly at the end of the next two sections. Likewise,
when k is a nonpositive integer, then F reduces to the “Bol derivative” of f.
(Actually, these statements concerning integer weights are true modulo a
possible constant factor.) Observe that we have not chosen a normalization
and, moreover, that our definition is in general not equivalent (in the sense
of merely multiplying by a constant) to one which replaces the denominator
[−2πi(n+κ)]k−1 with [2πi(n+κ)]k−1. For cusp forms the two definitions are
equivalent, however. It is clear that F is holomorphic in H and meromorphic
at ∞. Its modular behavior, which is far from obvious, requires that we
possess an integral representation for F.

Our formulation essentially coincides with Weyl’s notion [16] of frac-
tional integration. (For more on the fractional calculus, we recommend
[6], although everything we use here is rather self-evident.) Specifically, for
1 < k < 2, it is true that

F (τ) =
1

Γ (k − 1)

∞�

τ

f(z)(z − τ)k−2 dz,(5)

where the path of integration is horizontal. For other values of k convergence
difficulties arise and it is wise to separate f into its analytic and principal
parts. The former can be integrated along any path which goes up to infinity
in Im z > Im τ, and the latter along any path which goes down to infinity in
Im z < Im τ. (That is, for k > 1, we simply bend the path in (5) up or down,
respectively.) The precise integral representations which we use to establish
the following two theorems are given by (7) for k > 1 and by (11) for k ≤ 1.

Theorem 1. Let f be a constant-free modular form of real weight
k > 1, and denote by F its generalized Eichler integral , given by the Fourier
expansion (4). Also, let f∞ be the (possibly trivial) principal part of f. Then
F satisfies the relation

F (τ)− v(V )(γτ + δ)k−2e−2πiN1k F (V τ)

=
1

Γ (k − 1)

{ i∞�

V −1(∞)

[
f(z)− f∞(z)− f∞(V z)

v(V )(γz + δ)k

]
(z − τ)k−2e2πiN2k dz

+ e−2πiN1k
−i∞�

V −1(∞)

[
e2πikf∞(z) +

f∞(V z)
v(V )(γz + δ)k

]
(z − τ)k−2 dz

+ (1− e−2πiN1k)
i∞�

τ

f∞(V z)
v(V )(γz + δ)k

(z − τ)k−2 dz

+ (1− e2πi(1−N1)k)
−i∞�

τ

f∞(z)(z − τ)k−2 dz

}
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for all V =
( ∗ ∗
γ δ

)
∈ Γ (1), γ > 0, and τ ∈ H, where

N1 = N1(τ, V ) =
{

1 if Re τ ≤ V −1(∞),

0 if Re τ > V −1(∞),

N2 = N2(z − τ) =
{

1 if −π ≤ arg(z − τ) < −π/2,

0 if −π/2 ≤ arg(z − τ) < π.

(All the paths of integration are vertical.)

Before we prove Theorem 1, we make some remarks. We first observe
that the function on the left side of the above relation (sort of a period
for f) is holomorphic in H \ (V −1(∞), i∞). We also comment on the case
γ ≤ 0, which is not included above, but can be easily reckoned. If γ = 0
(i.e., V is a translation), then clearly F (V τ) = v(V )F (τ). Also, since V
and −V induce the same transformation, the relations for γ < 0 and γ > 0
are equivalent to each other. To actually write down one from the other,
recall that the consistency condition for multiplier systems tells us that
v(V )(γτ+δ)k = v(−V )(−γτ−δ)k. For γ 6= 0 this implies that v(V )v(−V ) =
(−γτ − δ)−k(γτ + δ)k = esign(γ)πik (since the argument of −1 is −π) and
hence

v(V )(γτ + δ)k−2 = esign(γ)2πikv(−V )(−γτ − δ)k−2.(6)

The rest is obvious.

Proof of Theorem 1. A calculation shows that for k > 1,

F (τ) =
1

Γ (k − 1)

{ i∞�

τ

[f(z)− f∞(z)](z − τ)k−2 dz(7)

+
−i∞�

τ

f∞(z)(z − τ)k−2 dz
}
.

The term by term integration is routinely justified by the favorable conver-
gence properties of the Fourier expansion of f. This integral representation
is our starting point for establishing the transformation behavior of F.

Although the relation governing this behavior is complicated, its proof
is largely an exercise in branching considerations and contour deformations.
From (7) it follows that

F (V τ) =
1

Γ (k − 1)

{ V −1(∞)�

τ

[f(V u)− f∞(V u)](V u− V τ)k−2 du

(γu+ δ)2(8)

+
V −1(∞)�

τ

f∞(V u)(V u− V τ)k−2 du

(γu+ δ)2

}
,
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where the two paths of integration form the unique circle (or line) orthogonal
to the real axis and passing through τ and V −1(∞). The first contour is a
hyperbolic geodesic (euclidean minor arc or line segment) in H, whereas the
second is its complement (euclidean major arc or union of two rays) which
originates in H but enters V −1(∞) through the lower half-plane. Observe
that along the first contour arg(V u− V τ) equals π/2, but along the second
it equals −π/2. Now,

(V u− V τ)k−2 =
(u− τ)k−2

(γu+ δ)k−2(γτ + δ)k−2 e
2πiNk,(9)

where

2πN = arg(V u− V τ)− arg(u− τ) + arg(γu+ δ) + arg(γτ + δ)

and N is an integer-valued function to be determined shortly. Using (3) and
(9) in (8) we obtain

(10) − v(V )(γτ + δ)k−2F (V τ)

=
1

Γ (k − 1)

{ τ�

V −1(∞)

[
f(u)− f∞(V u)

v(V )(γu+ δ)k

]
(u− τ)k−2e2πiNk du

+
τ�

V −1(∞)

f∞(V u)
v(V )(γu+ δ)k

(u− τ)k−2e2πiNk du

}
,

where the paths are unaltered except for their reversed orientations.
We next find the value of N on the two contours. For arbitrary γ,

|2πN | < 4π and so N ∈ {−1, 0, 1}. It is best to consider the two paths
together. Recall that their union is a circle (or line). We start with u in the
lower half-plane, where clearly N = 0. Assume from now on that γ > 0.
As we move up through the branch point at u = V −1(∞), we see that
arg(V u − V τ) + arg(γu + δ) jumps from −π/2 − π/2 to π/2 + π/2 and
hence N jumps from 0 to 1. Similarly, if the branch cut emanating from
u = V −1(∞) intersects the circle, then as we move up through this antipo-
dal point, we see that arg(γu+ δ) changes from −π to π and so N increases
from 0 to 1. Additionally, if the branch cut from u = τ intersects the circle,
then as we move clockwise through this point of intersection, we find that
arg(u−τ) leaps from −π to π and so N decreases from 1 to 0. No other jump
discontinuities are possible, and so this completely specifies N. We organize
these facts, which are valid for γ > 0, as follows. For the first contour, N = 1
unless Re τ > V −1(∞) and Imu > Im τ, in which case N = 0. Analogously,
for the second contour, N = 0 unless Re τ < V −1(∞) and 0 < Imu ≤ Im τ,
in which case N = 1. (One could perform a parallel analysis for γ < 0, in
which case the value N = −1 would arise.)
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The above facts and Cauchy’s Theorem allow us to join (7) and (10) to
deduce for Re τ ≤ V −1(∞) that

F (τ)− v(V )(γτ + δ)k−2e−2πikF (V τ)

=
1

Γ (k − 1)

{ i∞�

V −1(∞)

[
f(z)− f∞(z)− f∞(V z)

v(V )(γz + δ)k

]
(z − τ)k−2 dz

+
−i∞�

V −1(∞)

f∞(z)(z − τ)k−2 dz +
i∞�

τ

f∞(V z)
v(V )(γz + δ)k

(z − τ)k−2 dz

+ e−2πik
τ�

V −1(∞)

f∞(V z)
v(V )(γz + δ)k

(z − τ)k−2e2πiNk dz

}
,

where the paths of integration are vertical lines except for the last one which
is still a major arc (or union of two rays). But deformation (if needed) of
this contour coupled with trivial estimates reveals that the ultimate integral
(without the factor preceding it) equals

−i∞�

V −1(∞)

f∞(V z)
v(V )(γz + δ)k

(z − τ)k−2 dz −
i∞�

τ

f∞(V z)
v(V )(γz + δ)k

(z − τ)k−2 dz,

and secures the proof for Re τ ≤ V −1(∞).
Similarly, we find for Re τ > V −1(∞) that

F (τ)− v(V )(γτ + δ)k−2F (V τ)

=
1

Γ (k − 1)

{ i∞�

V −1(∞)

[
f(z)− f∞(z)− f∞(V z)

v(V )(γz + δ)k

]
(z − τ)k−2e2πiN2k dz

+
−i∞�

V −1(∞)

f∞(V z)
v(V )(γz + δ)k

(z − τ)k−2 dz +
−i∞�

τ

f∞(z)(z − τ)k−2 dz

+
τ�

V −1(∞)

f∞(z)(z − τ)k−2e2πiNk dz

}
,

where N2 is defined in Theorem 1 and the last contour is a minor arc.
Rewriting and deforming yields the result wanted and concludes the proof
altogether.

What about the analog of Theorem 1 for forms of lower weight? Conver-
gence difficulties require the use of fractional differentiation. Since deriva-
tives annihilate constants, there is no need to assume that f is constant-free
in
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Theorem 2. Let f be a modular form, with (possibly trivial) principal
part f∞, of real weight k ≤ 1, and denote by F its generalized Eichler in-
tegral , given by (4). Also, let m be the smallest integer greater than 1 − k.
Then F satisfies the relation

F (τ)− v(V )(γτ + δ)k−2 e−2πiN1kF (V τ)

=
(−1)m

Γ (k +m− 1)

{ i∞�

V −1(∞)

dm

dzm

[
f(z)− f∞(z)− f∞(V z)

v(V )(γz + δ)k

]

×(z − τ)k+m−2e2πiN2k dz

+ e−2πiN1k
−i∞�

V −1(∞)

dm

dzm

[
e2πikf∞(z) +

f∞(V z)
v(V )(γz + δ)k

]
(z − τ)k+m−2 dz

+ (1− e−2πiN1k)
i∞�

τ

dm

dzm

[
f∞(V z)

v(V )(γz + δ)k

]
(z − τ)k+m−2 dz

+ (1− e2πi(1−N1)k)
−i∞�

τ

dm

dzm
[f∞(z)](z − τ)k+m−2 dz

}

for all V =
( ∗ ∗
γ δ

)
∈ Γ (1), γ > 0, and τ ∈ H, where N1 and N2 are defined

as in Theorem 1. (As before, the paths of integration are vertical.)

Proof. Except for some technical hurdles, the proof here resembles the
one just given. Obvious convergence problems force us to modify the integral
representation which was used for k > 1. From (4), we see that F, the
(1 − k)th fractional derivative of f, equals (−1)m times the (k + m − 1)th
fractional integral of the mth ordinary derivative of f. This means that

F (τ) =
(−1)m

Γ (k +m− 1)

{ i∞�

τ

[f (m)(z)− f (m)
∞ (z)](z − τ)k+m−2 dz(11)

+
−i∞�

τ

f (m)
∞ (z)(z − τ)k+m−2 dz

}
,

which is valid for k ≤ 1. From (11) and (9) it follows that

(12) − v(V )(γτ + δ)k+m−2F (V τ)

=
(−1)m

Γ (k +m− 1)

{ τ�

V −1(∞)

f (m)(V u)− f (m)
∞ (V u)

v(V )(γu+ δ)k+m (u− τ)k+m−2e2πiNk du

+
τ�

V −1(∞)

f
(m)
∞ (V u)

v(V )(γu+ δ)k+m (u− τ)k+m−2e2πiNk du

}
,
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where the two paths of integration are exactly as in the proof of Theorem 1.
That is, the first contour is a hyperbolic geodesic in H, whereas the second
is its complement with respect to the generalized circle. Obviously, the value
of N on the two contours remains as before.

In order to marry (11) and (12) we need to rewrite the right side of the
latter equality. From (1) we obtain

(13) − v(V )(γτ + δ)k+m−2F (V τ)

=
(−1)m

Γ (k +m− 1)

m∑

j=0

(
m

j

)
Γ (k +m)
Γ (k + j)

γm−j

×
{ τ�

V −1(∞)

(γu+ δ)j
dj

duj

[
f(u)− f∞(V u)

v(V )(γu+ δ)k

]
(u− τ)k+m−2e2πiNk du

+
τ�

V −1(∞)

(γu+ δ)j
dj

duj

[
f∞(V u)

v(V )(γu+ δ)k

]
(u− τ)k+m−2e2πiNk du

}

=
(−1)m

Γ (k +m− 1)
(γτ + δ)m

×
{ τ�

V −1(∞)

dm

dum

[
f(u)− f∞(V u)

v(V )(γu+ δ)k

]
(u− τ)k+m−2e2πiNk du

+
τ�

V −1(∞)

dm

dum

[
f∞(V u)

v(V )(γu+ δ)k

]
(u− τ)k+m−2e2πiNk du

}
,

where we used integration by parts (the right number of times) on each
of the terms in the sum indexed by j. Note that each of these integrals is
indeed convergent. Finally, joining (13) with (11) exactly as we did in the
demonstration of Theorem 1 completes the proof.

When f is a cusp form we have the following much simpler result.

Corollary 3. Let f be a cusp form of any real weight k and denote
by F its generalized Eichler integral , given by the Fourier expansion (4). If
k > 1, then F satisfies the relation

F (τ)− v(V )(γτ + δ)k−2e−2πiN1kF (V τ)

=
1

Γ (k − 1)

i∞�

V −1(∞)

f(z)(z − τ)k−2e2πiN2k dz,
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and if k ≤ 1, then F satisfies the relation

F (τ)− v(V )(γτ + δ)k−2e−2πiN1k F (V τ)

= − 1
Γ (k)

i∞�

V −1(∞)

f ′(z)(z − τ)k−1e2πiN2k dz.

Both cases hold for all V =
( ∗ ∗
γ δ

)
∈ Γ (1), γ > 0, and τ ∈ H, where N1 and

N2 are defined as before.

Proof. Since f is constant-free and f∞ ≡ 0, the case k > 1 follows from
Theorem 1. Similarly, the case k ≤ 1 follows from Theorem 2 and the fact
that there are no nontrivial cusp forms of nonpositive weight.

We remark that the right-hand sides of the above transformation laws
are reminiscent of the periods found in Niebur’s work [7]. This connection
will be explored in Section 4. Furthermore, we note that to make Corollary 3
valid for all γ, it suffices to simply extend the definition of N1 as follows:

N1 = N1(τ, V ) =
{

0 if γ = 0,

N1(τ,−V )− 1 if γ < 0.

(This follows from a remark made after the statement of Theorem 1.)
We close this section by recording the important special case of integral

weight.

Corollary 4. Let f be a modular form of integer weight k and assume
that f is constant-free if k > 1. Denote by F its generalized Eichler integral.
If k > 1, then F is an Eichler integral , which satisfies the relation

F (τ)− v(V )(γτ + δ)k−2F (V τ)

=
1

(k − 2)!

{ i∞�

V −1(∞)

[
f(z)− f∞(z)− f∞(V z)

v(V )(γz + δ)k

]
(z − τ)k−2 dz

+
−i∞�

V −1(∞)

[
f∞(z) +

f∞(V z)
v(V )(γz + δ)k

]
(z − τ)k−2 dz

}

for all V =
( ∗ ∗
γ δ

)
∈ Γ (1) and τ ∈ H. If k ≤ 1, then F is a modular form of

weight 2− k and MS v.

Proof. The case k > 1 follows right away from Theorem 1, whereas the
case k ≤ 1 follows readily from either Bol’s Identity or from redoing the
proof of Theorem 2 or from observing that the relation stated in Theorem 2



Fractional integrals of modular forms 53

reduces to

F (τ)− v(V )(γτ + δ)k−2F (V τ)

=
i∞�

V −1(∞)

d2−k

dz2−k

[
f(z)− f∞(z)− f∞(V z)

v(V )(γz + δ)k

]
dz

+
−i∞�

V −1(∞)

d2−k

dz2−k

[
f∞(z) +

f∞(V z)
v(V )(γz + δ)k

]
dz,

and calculating that this constant function vanishes identically.

Note that the right side of the modular relation for k > 1 is a polynomial
of degree at most k−2. Additionally, if f∞ 6≡ 0, then it is known that F+A0
could itself be a modular form. The constant term A0 is zero except perhaps
when κ = 0. Under this assumption, it is arbitrary for k = 2, but for other
positive even integers it possesses a canonical value which depends upon k
and f∞. We shall probe this further below.

3. Fractional integrals of Poincaré series. When k > 2 then it is
classical knowledge that Petersson’s Poincaré series

fν(τ) = fν(τ ; k, v) =
1
2

∑

c,d∈Z
(c,d)=1

e2πi(ν+κ)Mτ

v(M)(cτ + d)k
, τ ∈ H,(14)

where ν is an integer and M =
( ∗ ∗
c d

)
∈ Γ (1), converges absolutely and is a

modular form of weight k and MS v on the full modular group. If ν+κ > 0,
then fν is a cusp form and the modular behavior of its generalized Eichler
integral is already described fully in Corollary 3. If ν + κ = 0, then fν
is a (normalized) Eisenstein series of even weight (since we are on Γ (1))
and its Eichler integral is rather well understood. If ν + κ < 0, then we
call fν a “polar Poincaré series” and observe that it is a constant-free form
which permits the following refinement of Theorem 1. In order to avoid some
technical intricacies, we suppose that the multiplier system is nonsingular.
As aforementioned, this restriction applies to even integer weights only.

Theorem 5. Let fν , ν < 0 and κ 6= 0, be defined by (14) and denote by
Fν its generalized Eichler integral. Then Fν satisfies the relation

Fν(τ)− v(V )(γτ + δ)k−2 e−2πiN1k Fν(V τ)

=
1

Γ (k − 1)

{
e−2πiN1k

−i∞�

V −1(∞)

[e2πikf−ν (z, V ) + f+
ν (z, V )](z − τ)k−2 dz
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+ (1− e−2πiN1k)
i∞�

τ

f+
ν (z, V )(z − τ)k−2 dz

+ (1− e2πi(1−N1)k)
−i∞�

τ

f−ν (z, V )(z − τ)k−2 dz
}
,

for all V =
( ∗ ∗
γ δ

)
∈ Γ (1), γ > 0, and τ ∈ H, where N1 = N1(τ, V ) is defined

in Theorem 1. (Note that the paths of integration are vertical and the last
term equals zero for Re τ ≤ V −1(∞).) Here

f−ν (w, V ) = f−ν (w, V ; k, v) = e2πi(ν+κ)w +
∑

c,d∈Z, c>0
(c,d)=1

M−1(∞)<V −1(∞)

e2πi(ν+κ)Mw

v(M)(cw + d)k

with w ∈ C \ (−∞, V −1(∞)), and

f+
ν (w, V ) = f+

ν (w, V ; k, v) =
∑

c,d∈Z, c>0
(c,d)=1

M−1(∞)≥V −1(∞)

e2πi(ν+κ)Mw

v(M)(cw + d)k

with w ∈ C \ [V −1(∞),∞).

We remark that f−ν (w, V ) is holomorphic in C\ (−∞, V −1(∞)], whereas
f+
ν (w, V ) is holomorphic in C \ R only. This is a clear consequence of our

argument convention. We could remove this asymmetry by altering the def-
inition of f+

ν . (Just replace the condition c > 0 with c < 0 to get a function
which is holomorphic in C \ [V −1(∞),∞). The two functions coincide in H,
but differ by a constant factor in H.) Ultimately, however, the results would
be equivalent.

Proof of Theorem 5. Once again, we shall rely on Theorem 1. Observe
that for w ∈ H,

fν(w) = e2πi(ν+κ)w +
∑

c,d∈Z, c>0
(c,d)=1

e2πi(ν+κ)Mw

v(M)(cw + d)k
= f−ν (w, V ) + f+

ν (w, V )

and so
i∞�

V −1(∞)

[
fν(z)− e2πi(ν+κ)z − e2πi(ν+κ)V z

v(V )(γz + δ)k

]
(z − τ)k−2 e2πiN2k dz

=
i∞�

V −1(∞)

[f−ν (z, V )− e2πi(ν+κ)z](z − τ)k−2e2πiN2k dz
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+
i∞�

V −1(∞)

[
f+
ν (z, V )− e2πi(ν+κ)V z

v(V )(γz + δ)k

]
(z − τ)k−2e2πiN2k dz.

(N2 is defined in Theorem 1.) Denote the last two integrals by I1 and I2,
respectively. We can rewrite them by deforming their contours. For Re τ ≤
V −1(∞), which implies that N2 = 0, we rotate the first contour clockwise
(about the fixed point z = V −1(∞)) to get

I1 =
−i∞�

V −1(∞)

[f−ν (z, V )− e2πi(ν+κ)z](z − τ)k−2 dz,

whereas we bend the second path counterclockwise to obtain

I2 = e−2πik
−i∞�

V −1(∞)

[
f+
ν (z, V )− e2πi(ν+κ)V z

v(V )(γz + δ)k

]
(z − τ)k−2 dz

+ (1− e−2πik)
i∞�

τ

[
f+
ν (z, V )− e2πi(ν+κ)V z

v(V )(γz + δ)k

]
(z − τ)k−2 dz.

Note that the first term in I2 took into account the jump discontinuity
associated with crossing the real axis (itself the union of the infinitude of
overlapping branch cuts emanating from points to the right of z = V −1(∞))
and the second term in I2 arose from dealing with the branch point at z = τ.
Similarly, for Re τ > V −1(∞) we push the first path clockwise to get

I1 = e2πik
−i∞�

V −1(∞)

[f−ν (z, V )− e2πi(ν+κ)z](z − τ)k−2 dz

+ (1− e2πik)
−i∞�

τ

[f−ν (z, V )− e2πi(ν+κ)z](z − τ)k−2 dz

and the second contour counterclockwise to produce

I2 =
−i∞�

V −1(∞)

[
f+
ν (z, V )− e2πi(ν+κ)V z

v(V )(γz + δ)k

]
(z − τ)k−2 dz,

where in both cases we used the definition of N2. Observe that as |z| → ∞
in the appropriate regions pertaining to our deformations, all of the above
integrands approach zero in a manner that permits us to rotate contours
with impunity. (Here the condition that κ 6= 0 is crucial!) The rest of the
proof follows without difficulty from Theorem 1 in combination with our
new expressions for I1 and I2.

As a welcome byproduct of our work, we rediscover the following pretty
result of Knopp [3] concerning the interrelationships of period polynomials
connected with Eichler integrals of Poincaré series.
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Corollary 6. Let fν , κ 6= 0, be a Poincaré series of integer weight
k > 2 and denote its Eichler integral by Fν . Furthermore, let

pV (τ ; ν, k, v) = Fν(τ)− v(V )(γτ + δ)k−2Fν(V τ),

where V =
( ∗ ∗
γ δ

)
∈ Γ (1), be the associated period polynomials. Then for

all V ,
pV (τ ; ν, k, v) = [pV (τ ; ν ′, k, v)]−, τ ∈ C,

where ν ′ = −ν − 1 and [·]− denotes complex conjugation.

Proof. If ν + κ > 0, then clearly

pV (τ ; ν, k, v) =
1

(k − 2)!

i∞�

V −1(∞)

fν(z)(z − τ)k−2 dz,(15)

and if ν + κ < 0, then Theorem 5 tells us that

(16) pV (τ ; ν, k, v)

=
1

(k − 2)!

−i∞�

V −1(∞)

[f−ν (z, V ) + f+
ν (z, V )](z − τ)k−2 dz

=
1

(k − 2)!

{ i∞�

V −1(∞)

[
f−ν (u, V ) + f+

ν (u, V )
]
(u− τ)k−2 du

}−

=
1

(k − 2)!

[ i∞�

V −1(∞)

fν′(z; k, v)(z − τ)k−2 dz
]−
,

where we used the key identity

f−ν (w, V ) + f+
ν (w, V ) = f−ν′ (w, V ; k, v) + f+

ν′ (w, V ; k, v) = fν′(w; k, v),

which is valid for w ∈ H. The proof now follows from comparison of (15)
and (16).

Our proof of the above result (by way of integral representations and
contour bending) appears to be new. A more delicate version of our analysis
can be performed to handle the case of Knopp’s Theorem when the param-
eter κ vanishes. In this case it follows that for all V ∈ Γ (1) and ν < 0,

pV (τ ; ν, k, 1) = [pV (τ ; ν ′, k, 1)]− − A0(ν, k)[1− (γτ + δ)k−2], τ ∈ C,
where ν ′ = −ν and A0(ν, k) is the canonical nonzero constant which emerges.
This relation tells us that for ν < 0 and κ = 0, it is appropriate to define
the Eichler integral of fν by Fν + A0(ν, k). This allows for the possibility
that the integral is actually a form.
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4. Niebur modular integrals. A Niebur modular integral on Γ (1) of
weight k and MS v is a function H which is holomorphic in H, meromorphic
at ∞, and for which there exists a cusp form G of weight 2 − k and MS v
such that

H(τ)− v(V )(γτ + δ)−kH(V τ) =
[ i∞�

V −1(∞)

G(z)(z − τ)−k dz
]−

for all V =
( ∗ ∗
γ δ

)
∈ Γ (1) and τ ∈ H. As before, [·]− denotes complex

conjugation, the integration path is vertical and the right side is identically
zero if V is a translation. Clearly, this definition accomodates all modular
forms (of any weight) as well as certain Eichler integrals of integer weight.
Specifically, it includes the Eichler integrals of forms which are finite linear
combinations of polar Poincaré series. (To see this, examine Niebur’s original
work [7].) For noninteger weights, it is transparent that a generalized Eichler
integral is not a Niebur modular integral. This stems from the fact that for
such weights, v and v cannot simultaneously be multiplier systems with
respect to Γ (1).

We now provide a simple link between polar Poincaré series of real weight
and Niebur modular integrals of dual weight. Let fν , ν < 0 and κ 6= 0, be
defined by (14), so that

fν(τ) = e2πi(ν+κ)τ +
∑

n+κ>0

an(ν, k, v)e2πi(n+κ)τ , τ ∈ H,(17)

is its Fourier expansion. We define the conjugate Eichler integral of fν by

F ∗ν (τ) =
e2πi(ν+κ′)τ

[−2πi(ν + κ′)]k−1(18)

+
∑

n+κ′>0

an(ν, k, v)
[−2πi(n+ κ′)]k−1 e

2πi(n+κ′)τ ,

where τ ∈ H and κ′ = 1 − κ. (The case κ = 0 was already discussed at
the end of the previous section.) Observe that when k is an integer, then of
course F ∗ν is itself an Eichler integral. In fact, if its “supplementary Fourier
series” (as defined by Knopp [3]) vanishes identically, then F ∗ν is a modular
form. For general k note that the conjugate Eichler integral is merely the
generalized Eichler integral with the multiplier system conjugated. That is,
v gets replaced by v and so κ gets replaced by κ′.

Furthermore, the two operations of fractional integration (k − 1 times)
and conjugation of multiplier system are commutative. But we caution
that the validity of this statement evaporates if we work with the origi-
nal Poincaré series for fν rather than its Fourier expansion. To see this note
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that

1
2

∑

c,d∈Z
(c,d)=1

e2πi(ν+κ′)Mτ

v(M)(cτ + d)k

=
(1 + e2πik)

2

{
e2πi(ν+κ′)τ +

∑

c,d∈Z, c>0
(c,d)=1

e2πi(ν+κ′)Mτ

v(M)(cτ + d)k

}
,

where we used (6) and the fact that v(−I)(−1)k = e−2πik, which follows from
the condition v(−I)(−1)k = 1. Since the above series vanishes identically
for half-integer weights, it is rather evident that in general commutativity
does not hold if the operators act on the original Poincaré series. For integer
weights it remains true, since then (and only then) both v and v are mul-
tiplier systems. The situation can be rectified easily, of course, by starting
with the series

e2πi(ν+κ)τ +
∑

c,d∈Z, c>0
(c,d)=1

e2πi(ν+κ)Mτ

v(M)(cτ + d)k
,

which is equivalent to our previous formulation which commenced with the
Fourier expansion for fν .

We now provide the main upshot of this section.

Theorem 7. Let fν , ν < 0 and κ 6= 0, be a Poincaré series of weight
k > 2 and denote by F ∗ν its conjugate Eichler integral , given by the Fourier
expansion (18). Then F ∗ν is a Niebur modular integral of weight 2 − k and
MS v.

Proof. The proof follows quickly from known explicit formulas for the
Fourier coefficients of the relevant functions. Specifically, Petersson [8]
showed that the Fourier expansion of the polar fν is given by (17), where

an(ν, k, v) = 2πi−k
(
n+ κ

|ν + κ|

)(k−1)/2

×
∞∑

c=1

A(c; ν, n, k, v)
c

Ik−1

(
4π
c

√
|ν + κ|(n+ κ)

)
.

Here Ik−1 is the modified Bessel function of the first kind and

A(c; ν, n, k, v) =
c−1∑

−d=0
(c,d)=1

v(M)e(2πi/c)[(ν+κ)a+(n+κ)d],

with M =
( a ∗
c d

)
∈ Γ (1), is the generalized Kloosterman sum. From this and
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(18) we obtain the (normalized) conjugate Eichler integral

[−2πi(ν + κ′)]k−1F ∗ν (τ) = e2πi(ν+κ′)τ +
∑

n+κ′>0

an(ν, 2− k, v)e2πi(n+κ′)τ ,

where

an(ν, 2− k, v) = 2πik−2
( |ν + κ′|
n+ κ′

)(k−1)/2

×
∞∑

c=1

A(c; ν, n, 2− k, v)
c

Ik−1

(
4π
c

√
|ν + κ′|(n+ κ′)

)
.

But Niebur [7] proved that this expansion, which sometimes belongs to a
modular form (see [13]), always represents a modular integral of the type he
discovered.

With some modifications, Theorem 7 can be extended to smaller real
weights. In order to accomplish this, we need to consider the nonanalytic
Poincaré series

fν(τ |s) = fν(τ |s; k, v) =
1
2

∑

c,d∈Z
(c,d)=1

e2πi(ν+κ)Mτ

v(M)(cτ + d)k|cτ + d|s , τ ∈ H,

where Re s > 2− k, k is real and all other notation remains as before. It is
known from the work of Selberg [14] that fν(τ |s) has an analytic continu-
ation to a function which is meromorphic in the whole s-plane. Moreover,
it was established in [10] that for ν < 0 and 1 < k < 2 the special value
fν(τ) := fν(τ |0), which transforms like a modular form of weight k and
MS v, decomposes naturally into a sum of an analytic piece gν(τ) and a
remaining piece rν(τ) which is either nonanalytic or vanishes identically. It
turns out that rν transforms like a Niebur modular integral of weight k and
MS v. It is an “auxiliary integral”, a type of function which we examine
briefly in the next section. This implies that gν is a Niebur modular integral
of weight k and MS v on the full modular group. The cusp form associated
with gν is the negative of the cusp form connected with rν . Furthermore,
if rν vanishes identically, then of course gν ≡ fν is a modular form. (For
details on all of this, see [10].) Next, let the Fourier expansion of gν , ν < 0
and 1 < k < 2, be given by

gν(τ) = e2πi(ν+κ)τ +
∑

n+κ>0

bn(ν, k, v)e2πi(n+κ)τ , τ ∈ H.

In complete analogy to how we handled polar Poincaré series, define the
conjugate Eichler integral of gν by

G∗ν(τ) =
e2πi(ν+κ′)τ

[−2πi(ν + κ′)]k−1 +
∑

n+κ′>0

bn(ν, k, v)
[−2πi(n+ κ′)]k−1 e

2πi(n+κ′)τ ,(19)

where τ ∈ H and κ′ is defined as before. We have explained enough to state
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Theorem 8. Let gν , ν < 0, be the Niebur modular integral of weight k,
1 < k < 2, which is described above, and denote by G∗ν its conjugate Eichler
integral , given by the Fourier expansion (19). Then G∗ν is a Niebur modular
integral of weight 2− k and MS v.

Proof. As before, the proof follows right away from explicit formulas for
the Fourier coefficients of Niebur modular integrals of weight k and 2 − k.
The formula for gν is derived in [10]. From this we get the required expansion
for G∗ν , which in turn jives exactly with the formula presented in [11] for a
Niebur modular integral of weight 2− k.

We remark that it is not possible for both gν and G∗ν to be Niebur
modular integrals which are not modular forms. Otherwise, the product
of the two associated cusp forms would itself be a nontrivial cusp form of
weight two and MS identically one. But on the full modular group this is
not tenable! Observe that the other three possibilities (form & form, form
& nonform and nonform & form) are certainly possible and in fact do occur
infinitely often for every k & 2 − k pairing, where 1 < k < 2. For weight
k = 3/2 this statement can be formulated rather precisely as to which
multiplier systems and values of ν provide which possibility. The interested
reader should consult [10, Sect. 11].

5. Auxiliary integrals. We mention lastly yet another type of integral
connected with modular forms. Let f be a cusp form of weight k > 0 and
MS v on Γ (1) and define its auxiliary integral by

F(τ) =
[i∞�

τ

f(z)(z − τ)k−2 dz
]−
, τ ∈ H.

The function e2πiκF is periodic and it is not difficult to show that

F(τ) =
∑

n+κ>0

an
[2πi(n+ κ)]k−1

∞�

4π(n+κ)y

uk−2e−u du e−2πi(n+κ)τ ,

where an is the nth Fourier coefficient of f and y = Im τ. The integral in this
Fourier series is an incomplete gamma function. Observe that, for nontriv-
ial f, F is a nonanalytic function. Since there are no branching difficulties
to contend with, it is straightforward to find its behavior under modular
transformations. Specifically,

F(τ)− v(V )(γτ + δ)k−2F(V τ) =
[ i∞�

V −1(∞)

f(z)(z − τ)k−2 dz
]−

for all V =
( ∗ ∗
γ δ

)
∈ Γ (1) and τ ∈ H. This means that F transforms like a

Niebur modular integral of weight 2− k and MS v. Furthermore, it can be
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shown that if ν < 0 & κ 6= 0, then F ∗ν , the conjugate Eichler integral of the
Poincaré series fν , has the same period (modulo a possible constant factor)
as the auxiliary integral of the Poincaré series f−ν−1. As we explained some-
what in the previous section, both Niebur modular integrals and auxiliary
integrals arise naturally in the study of nonanalytic Poincaré series.

6. Concluding remarks. The aim of our investigation is to understand
the basic properties of fractional integrals of automorphic forms. On the full
modular group we have discussed the transformation laws of the pertinent
integrals. Although these relations are somewhat involved, the Fourier ex-
pansions of generalized Eichler integrals are not dramatically altered from
the original series. This provides us with hope that there may be some in-
teresting arithmetic consequences connected with these integrals. We have
also seen how they are tied to Niebur modular integrals, which do possess a
reasonable period structure. Our work is easily translated to other groups,
although there sometimes more needs to be said (for example, integrals of
arbitrary powers of the theta function come into play). We finish with a short
list of items (some obvious) that we wish to address in a future article.

(1) Study generalized Eichler integrals on groups which support Eisen-
stein series of noninteger weight. In particular, this entails modifying our
transformation law to include the generalized Eichler integrals of forms with
constant terms.

(2) Determine which algebraic combinations of generalized Eichler inte-
grals are automorphic forms. More generally, find all combinations of frac-
tional integrals (of any order) of forms which are themselves forms. This
would provide a vast generalization of the Rankin–Cohen bracket. In spe-
cial cases, this should have some connection with known results about the
Fourier coefficients of Jacobi forms.

(3) Provide an alternative proof of Theorems 7 & 8 (which show that
conjugate Eichler integrals are Niebur modular integrals) without resorting
to known Fourier expansions, but rather through manipulation of Poincaré
series. This would provide a natural and simple derivation of (nonanalytic)
pseudo-Poincaré series, which were inspired by Niebur [7] and are studied
in [11, 12].

(4) Define and examine the conjugate Eichler integral of a cuspidal
Poincaré series, and (when appropriate) of an Eisenstein series. This would
lead to a generalized Niebur modular integral and a new pseudo-Poincaré
series connected with it.
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