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On Waring’s problem with polynomial summands II:
Addendum

by

Hong Bing Yu (Hefei)

Let fk(x) be an integral-valued polynomial of degree k represented by

fk(x) = akFk(x) + . . .+ a1F1(x),

where Fi(x) = x(x − 1) . . . (x − i + 1)/i! (1 ≤ i ≤ k), and a1, . . . , ak are
integers satisfying (a1, . . . , ak) = 1 and ak > 0. Let G(fk) be the least s
such that the equation

(1) fk(x1) + . . .+ fk(xs) = n with xi ≥ 0

is soluble for all sufficiently large integers n. In [1] we proved, among other
things, that

(2) G(fk) ≤ 2k − 1
2 (1− (−1)k) for k ≥ 6,

and, when k is odd, equality holds if and only if fk(x) satisfies

(3) 2 - fk(1) and fk(x) ≡ (−1)k−1fk(1)Hk(x) (mod 2k) for any x,

where Hk(x) =
∑k
i=1(−1)k−i2i−1Fi(x).

When k is even, however, it would be somewhat difficult to classify those
polynomials fk(x) for which equality holds in (2). From Theorem 1 of [1] we
see that the point of this problem is to determine G(fk) when fk(x) satisfies
(3). In this case we let

(4) Ek(x) = 2−kfk(2x) and Ok(x) = 2−k(fk(2x+ 1)− fk(1)).

Then both Ek(x) and Ok(x) are integral-valued polynomials, and at least
one of Ek(x) and Ok(x) is not constant modulo 2 (cf. [1, Section 3]).

We will prove the following result.

Theorem. Suppose that k ≥ 6 is even and that fk(x) satisfies (3). If
one of Ek(x) and Ok(x) is constant modulo 2, then G(fk) = 2k; otherwise
G(fk) = 2k − 1.
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Combining this with the second assertion of Theorem 1 of [1], we have

Corollary. Suppose k ≥ 6 is even. Then equality holds in (2) if and
only if fk(x) satisfies (3) and one of Ek(x) and Ok(x) is constant modulo 2.

For the proof of the Theorem we begin with some preliminaries. From [1,
(1.7) and Section 2] it is easy to see that we need only consider the solutions
of (1) in 2-adic integers. Thus by (3) we may assume that a1 = fk(1) = −1,
and so

(5) ai = (−1)i2i−1 + 2kui, ui integers (2 ≤ i ≤ k).

Write

(6) Ek(x) =
k∑

i=1

diFi(x), Ok(x) =
k∑

i=1

d′iFi(x).

Then by (4)–(6) and [1, (3.14) and (3.15)] we have

di = 2−k
min(2i,k)∑

l=i

(−1)l22i−1
(

i

l − i

)
+

min(2i,k)∑

l=i

ul22i−l
(

i

l − i

)
(7)

= Ai +Bi,

say; and

d′i = di + 2−k
min(2i,k−1)∑

l=i

(−1)l+122i
(

i

l − i

)
(8)

+
min(2i,k−1)∑

l=i

ul+122i−l
(

i

l − i

)

= di + A′i +B′i,

say. From (7) and (8) we have

(9) dk/2 ≡ uk (mod 2) and d′k/2 ≡ uk + 1 (mod 2).

Thus at least one of Ek(x) and Ok(x) is not constant modulo 2.
If Ek(x) is constant modulo 2, then by (4) fk(x) takes only three different

values, 0, −1, and −1 + 2k, mod 2k+1. Thus the congruence

(10)
2k−1∑

i=1

fk(xi) ≡ n (mod 2k+1)

is unsolvable for n ≡ 2k (mod 2k+1). HenceG(fk) ≥ 2k, and so equality holds
in view of (2). Similarly, if Ok(x) is constant modulo 2, then the congruence
(10) is unsolvable for n ≡ 1 (mod 2k+1). Thus G(fk) = 2k also in this case.
This proves the first statement of the Theorem.
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We now suppose that neither Ek(x) nor Ok(x) is constant modulo 2 and
adopt the notation of [1, Section 2]. By Theorem 1 of [1] we see that to prove
the second assertion of the Theorem it suffices to prove G(fk) ≤ 2k − 1. We
shall do this by showing that (cf. [1, (1.7) and Section 2])

(11) M2k−1(fk, 2l, n) ≥ 2(2k−2)(l−2k) for all n and l ≥ 2k.

For any n let rn be the integer satisfying n ≡ −rn (mod 2k) and 0 ≤
rn < 2k. When 1 ≤ rn ≤ 2k − 2, we have proved in [1, Section 3] that
Γ ∗(fk, 2γ , n) ≤ rn + 1 ≤ 2k − 1, thus (11) holds in these cases (cf. [1, proof
of Theorem 3(i)]). To deal with the remaining cases the crucial step is to
establish the following result.

Lemma. If k ≥ 6 is even, then (3) does not hold with fk(x) replaced by
Ek(x) or Ok(x).

By the Lemma, we may apply [1, Theorem 3(ii)] to Ek(x). Since 2k−1 >
2k−1 + 4(k − 1) for k ≥ 6, we thus have N2k−1(Ek, 2γ(Ek),m) ≥ 1 for any
m, which implies that (11) holds in the case of rn = 0 (cf. [1, Section 2]).
Similarly, [1, Theorem 3(ii)] applied to Ok(x) shows that (11) also holds
when rn = 2k − 1. The proof of the Theorem is now complete.

It remains to verify the Lemma. We distinguish two cases.

(i) k is not a power of 2. Write k = 2βv with β ≥ 1, 2 - v and v ≥ 3. Let

r = k/2 + h and h = 2β−1.

We first prove the assertion for Ek(x). Clearly, we may assume that d1 =
Ek(1) is odd, otherwise the result is trivial. From (7) we have

(12) Ar = −22h−1
2r∑

l=k+1

(−1)l
(

r

l − r

)
= −22h−1

2h−1∑

l=0

(−1)l
(
r

l

)
.

By Lucas’ test we see that
(
r

l

)
=
(

2β−1(v + 1)
l

)
≡ 0 (mod 2)

for 1 ≤ l ≤ 2h − 1 (= 2β − 1). It follows from (12) that Ar ≡ 22h−1

(mod 22h). Also, 22h |Br by (7). Hence 22h−1 ‖ dr. From this and from 2 - d1

and 22h | 2r−1 we have dr 6≡ (−1)r−12r−1d1 (mod 2k), which implies that the
assertion holds for Ek(x).

Moreover, by (8) it is easily seen that 22h | (A′r, B′r). Thus 22h−1 ‖ d′r, and
the assertion for Ok(x) also holds as above.

(ii) k is a power of 2. Write k = 2β with β ≥ 3. Let

r = k/2 + h and h = 2β−2.
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By (7) and Vandermonde’s identity, we have

Ar = −22h−1
2h−1∑

l=0

(−1)l
(
r

l

)
= −22h−1

2h−1∑

l=0

(−1)l
l∑

j=0

(
k/2
j

)(
h

l − j

)

= −22h−1
2h−1∑

l=1

(−1)l
l∑

j=1

(
k/2
j

)(
h

l − j

)
.

It is easily verified that
(
k/2
j

)
=
(2β−1

j

)
≡ 0 (mod 4) for 2β−2 - j. Thus we

have

Ar ≡ −22h−1
(
k/2
h

) 2h−1∑

l=h

(−1)l
(

h

l − h

)
= 22h−1

(
2β−1

2β−2

)
(13)

= 22h
(

2β−1 − 1
2β−2 − 1

)
≡ 22h (mod 22h+1).

Also, by (7) we get

(14) Br ≡ 22huk

(
r

k − r

)
= 22huk

(
3 · 2β−2

2β−2

)
≡ 22huk (mod 22h+1).

Furthermore, by (8) and (13) we have

(15) A′r = −2Ar + 22h
(

r

k − r

)
≡ 22h (mod 22h+1)

and
(16) B′r ≡ 0 (mod 22h+1).

The Lemma can now be proved easily. If 2 -uk, then the result for Ek(x) is
trivial by (9). If 2 |uk, then by (7), (13) and (14), we have 22h ‖ dr. Thus, in
view of 22h+1 | 2r−1, the assertion for Ek(x) holds as in case (i).

When 2 |uk the assertion for Ok(x) is trivial (again by (9)). When 2 -uk,
by (7), (8) and (13) to (16), we have 22h ‖ d′r. Thus the result for Ok(x) also
holds. This completes the proof of the Lemma.
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