On Waring's problem with polynomial summands II: Addendum

by
Hong Bing Yu (Hefei)

Let $f_{k}(x)$ be an integral-valued polynomial of degree k represented by

$$
f_{k}(x)=a_{k} F_{k}(x)+\ldots+a_{1} F_{1}(x),
$$

where $F_{i}(x)=x(x-1) \ldots(x-i+1) / i$! $(1 \leq i \leq k)$, and a_{1}, \ldots, a_{k} are integers satisfying $\left(a_{1}, \ldots, a_{k}\right)=1$ and $a_{k}>0$. Let $G\left(f_{k}\right)$ be the least s such that the equation

$$
\begin{equation*}
f_{k}\left(x_{1}\right)+\ldots+f_{k}\left(x_{s}\right)=n \quad \text { with } x_{i} \geq 0 \tag{1}
\end{equation*}
$$

is soluble for all sufficiently large integers n. In [1] we proved, among other things, that

$$
\begin{equation*}
G\left(f_{k}\right) \leq 2^{k}-\frac{1}{2}\left(1-(-1)^{k}\right) \quad \text { for } k \geq 6 \tag{2}
\end{equation*}
$$

and, when k is odd, equality holds if and only if $f_{k}(x)$ satisfies (3) $2 \nmid f_{k}(1)$ and $\quad f_{k}(x) \equiv(-1)^{k-1} f_{k}(1) H_{k}(x)\left(\bmod 2^{k}\right) \quad$ for any x, where $H_{k}(x)=\sum_{i=1}^{k}(-1)^{k-i} 2^{i-1} F_{i}(x)$.

When k is even, however, it would be somewhat difficult to classify those polynomials $f_{k}(x)$ for which equality holds in (2). From Theorem 1 of [1] we see that the point of this problem is to determine $G\left(f_{k}\right)$ when $f_{k}(x)$ satisfies (3). In this case we let

$$
\begin{equation*}
E_{k}(x)=2^{-k} f_{k}(2 x) \quad \text { and } \quad O_{k}(x)=2^{-k}\left(f_{k}(2 x+1)-f_{k}(1)\right) \tag{4}
\end{equation*}
$$

Then both $E_{k}(x)$ and $O_{k}(x)$ are integral-valued polynomials, and at least one of $E_{k}(x)$ and $O_{k}(x)$ is not constant modulo 2 (cf. [1, Section 3]).

We will prove the following result.
Theorem. Suppose that $k \geq 6$ is even and that $f_{k}(x)$ satisfies (3). If one of $E_{k}(x)$ and $O_{k}(x)$ is constant modulo 2 , then $G\left(f_{k}\right)=2^{k}$; otherwise $G\left(f_{k}\right)=2^{k}-1$.

[^0]Combining this with the second assertion of Theorem 1 of [1], we have
Corollary. Suppose $k \geq 6$ is even. Then equality holds in (2) if and only if $f_{k}(x)$ satisfies (3) and one of $E_{k}(x)$ and $O_{k}(x)$ is constant modulo 2.

For the proof of the Theorem we begin with some preliminaries. From [1, (1.7) and Section 2] it is easy to see that we need only consider the solutions of (1) in 2 -adic integers. Thus by (3) we may assume that $a_{1}=f_{k}(1)=-1$, and so

$$
\begin{equation*}
a_{i}=(-1)^{i} 2^{i-1}+2^{k} u_{i}, \quad u_{i} \text { integers }(2 \leq i \leq k) . \tag{5}
\end{equation*}
$$

Write

$$
\begin{equation*}
E_{k}(x)=\sum_{i=1}^{k} d_{i} F_{i}(x), \quad O_{k}(x)=\sum_{i=1}^{k} d_{i}^{\prime} F_{i}(x) . \tag{6}
\end{equation*}
$$

Then by (4)-(6) and [1, (3.14) and (3.15)] we have

$$
\begin{align*}
d_{i} & =2^{-k} \sum_{l=i}^{\min (2 i, k)}(-1)^{l} 2^{2 i-1}\binom{i}{l-i}+\sum_{l=i}^{\min (2 i, k)} u_{l} 2^{2 i-l}\binom{i}{l-i} \tag{7}\\
& =A_{i}+B_{i},
\end{align*}
$$

say; and

$$
\begin{align*}
d_{i}^{\prime}= & d_{i}+2^{-k} \sum_{l=i}^{\min (2 i, k-1)}(-1)^{l+1} 2^{2 i}\binom{i}{l-i} \tag{8}\\
& +\sum_{l=i}^{\min (2 i, k-1)} u_{l+1} 2^{2 i-l}\binom{i}{l-i} \\
= & d_{i}+A_{i}^{\prime}+B_{i}^{\prime},
\end{align*}
$$

say. From (7) and (8) we have

$$
\begin{equation*}
d_{k / 2} \equiv u_{k}(\bmod 2) \quad \text { and } \quad d_{k / 2}^{\prime} \equiv u_{k}+1(\bmod 2) . \tag{9}
\end{equation*}
$$

Thus at least one of $E_{k}(x)$ and $O_{k}(x)$ is not constant modulo 2.
If $E_{k}(x)$ is constant modulo 2 , then by (4) $f_{k}(x)$ takes only three different values, $0,-1$, and $-1+2^{k}, \bmod 2^{k+1}$. Thus the congruence

$$
\begin{equation*}
\sum_{i=1}^{2^{k}-1} f_{k}\left(x_{i}\right) \equiv n\left(\bmod 2^{k+1}\right) \tag{10}
\end{equation*}
$$

is unsolvable for $n \equiv 2^{k}\left(\bmod 2^{k+1}\right)$. Hence $G\left(f_{k}\right) \geq 2^{k}$, and so equality holds in view of (2). Similarly, if $O_{k}(x)$ is constant modulo 2 , then the congruence (10) is unsolvable for $n \equiv 1\left(\bmod 2^{k+1}\right)$. Thus $G\left(f_{k}\right)=2^{k}$ also in this case. This proves the first statement of the Theorem.

We now suppose that neither $E_{k}(x)$ nor $O_{k}(x)$ is constant modulo 2 and adopt the notation of [1, Section 2]. By Theorem 1 of [1] we see that to prove the second assertion of the Theorem it suffices to prove $G\left(f_{k}\right) \leq 2^{k}-1$. We shall do this by showing that (cf. $[1,(1.7)$ and Section 2])

$$
\begin{equation*}
M_{2^{k}-1}\left(f_{k}, 2^{l}, n\right) \geq 2^{\left(2^{k}-2\right)(l-2 k)} \quad \text { for all } n \text { and } l \geq 2 k \tag{11}
\end{equation*}
$$

For any n let r_{n} be the integer satisfying $n \equiv-r_{n}\left(\bmod 2^{k}\right)$ and $0 \leq$ $r_{n}<2^{k}$. When $1 \leq r_{n} \leq 2^{k}-2$, we have proved in [1, Section 3] that $\Gamma^{*}\left(f_{k}, 2^{\gamma}, n\right) \leq r_{n}+1 \leq 2^{k}-1$, thus (11) holds in these cases (cf. [1, proof of Theorem 3(i)]). To deal with the remaining cases the crucial step is to establish the following result.

Lemma. If $k \geq 6$ is even, then (3) does not hold with $f_{k}(x)$ replaced by $E_{k}(x)$ or $O_{k}(x)$.

By the Lemma, we may apply [1, Theorem 3(ii)] to $E_{k}(x)$. Since $2^{k}-1>$ $2^{k-1}+4(k-1)$ for $k \geq 6$, we thus have $N_{2^{k}-1}\left(E_{k}, 2^{\gamma\left(E_{k}\right)}, m\right) \geq 1$ for any m, which implies that (11) holds in the case of $r_{n}=0$ (cf. [1, Section 2]). Similarly, [1, Theorem 3(ii)] applied to $O_{k}(x)$ shows that (11) also holds when $r_{n}=2^{k}-1$. The proof of the Theorem is now complete.

It remains to verify the Lemma. We distinguish two cases.
(i) k is not a power of 2 . Write $k=2^{\beta} v$ with $\beta \geq 1,2 \nmid v$ and $v \geq 3$. Let

$$
r=k / 2+h \quad \text { and } \quad h=2^{\beta-1} .
$$

We first prove the assertion for $E_{k}(x)$. Clearly, we may assume that $d_{1}=$ $E_{k}(1)$ is odd, otherwise the result is trivial. From (7) we have

$$
\begin{equation*}
A_{r}=-2^{2 h-1} \sum_{l=k+1}^{2 r}(-1)^{l}\binom{r}{l-r}=-2^{2 h-1} \sum_{l=0}^{2 h-1}(-1)^{l}\binom{r}{l} \tag{12}
\end{equation*}
$$

By Lucas' test we see that

$$
\binom{r}{l}=\binom{2^{\beta-1}(v+1)}{l} \equiv 0(\bmod 2)
$$

for $1 \leq l \leq 2 h-1\left(=2^{\beta}-1\right)$. It follows from (12) that $A_{r} \equiv 2^{2 h-1}$ $\left(\bmod 2^{2 h}\right)$. Also, $2^{2 h} \mid B_{r}$ by (7). Hence $2^{2 h-1} \| d_{r}$. From this and from $2 \nmid d_{1}$ and $2^{2 h} \mid 2^{r-1}$ we have $d_{r} \not \equiv(-1)^{r-1} 2^{r-1} d_{1}\left(\bmod 2^{k}\right)$, which implies that the assertion holds for $E_{k}(x)$.

Moreover, by (8) it is easily seen that $2^{2 h} \mid\left(A_{r}^{\prime}, B_{r}^{\prime}\right)$. Thus $2^{2 h-1} \| d_{r}^{\prime}$, and the assertion for $O_{k}(x)$ also holds as above.
(ii) k is a power of 2 . Write $k=2^{\beta}$ with $\beta \geq 3$. Let

$$
r=k / 2+h \quad \text { and } \quad h=2^{\beta-2}
$$

By (7) and Vandermonde's identity, we have

$$
\begin{aligned}
A_{r} & =-2^{2 h-1} \sum_{l=0}^{2 h-1}(-1)^{l}\binom{r}{l}=-2^{2 h-1} \sum_{l=0}^{2 h-1}(-1)^{l} \sum_{j=0}^{l}\binom{k / 2}{j}\binom{h}{l-j} \\
& =-2^{2 h-1} \sum_{l=1}^{2 h-1}(-1)^{l} \sum_{j=1}^{l}\binom{k / 2}{j}\binom{h}{l-j}
\end{aligned}
$$

It is easily verified that $\binom{k / 2}{j}=\binom{2^{\beta-1}}{j} \equiv 0(\bmod 4)$ for $2^{\beta-2} \nmid j$. Thus we have

$$
\begin{align*}
A_{r} & \equiv-2^{2 h-1}\binom{k / 2}{h} \sum_{l=h}^{2 h-1}(-1)^{l}\binom{h}{l-h}=2^{2 h-1}\binom{2^{\beta-1}}{2^{\beta-2}} \tag{13}\\
& =2^{2 h}\binom{2^{\beta-1}-1}{2^{\beta-2}-1} \equiv 2^{2 h}\left(\bmod 2^{2 h+1}\right)
\end{align*}
$$

Also, by (7) we get

$$
\begin{equation*}
B_{r} \equiv 2^{2 h} u_{k}\binom{r}{k-r}=2^{2 h} u_{k}\binom{3 \cdot 2^{\beta-2}}{2^{\beta-2}} \equiv 2^{2 h} u_{k}\left(\bmod 2^{2 h+1}\right) \tag{14}
\end{equation*}
$$

Furthermore, by (8) and (13) we have

$$
\begin{equation*}
A_{r}^{\prime}=-2 A_{r}+2^{2 h}\binom{r}{k-r} \equiv 2^{2 h}\left(\bmod 2^{2 h+1}\right) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{r}^{\prime} \equiv 0\left(\bmod 2^{2 h+1}\right) \tag{16}
\end{equation*}
$$

The Lemma can now be proved easily. If $2 \nmid u_{k}$, then the result for $E_{k}(x)$ is trivial by (9). If $2 \mid u_{k}$, then by (7), (13) and (14), we have $2^{2 h} \| d_{r}$. Thus, in view of $2^{2 h+1} \mid 2^{r-1}$, the assertion for $E_{k}(x)$ holds as in case (i).

When $2 \mid u_{k}$ the assertion for $O_{k}(x)$ is trivial (again by (9)). When $2 \nmid u_{k}$, by (7), (8) and (13) to (16), we have $2^{2 h} \| d_{r}^{\prime}$. Thus the result for $O_{k}(x)$ also holds. This completes the proof of the Lemma.

References

[1] H. B. Yu, On Waring's problem with polynomial summands II, Acta Arith. 86 (1998), 245-254.

Department of Mathematics
University of Science and Technology of China
Hefei, 230026, Anhui
P.R. China

E-mail: yuhb@ustc.edu.cn

[^0]: 2000 Mathematics Subject Classification: Primary 11P05.
 Project supported by the National Natural Science Foundation of China.

