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The number of (2, 3)-sum-free subsets of {1, . . . , n}
by

Tomasz Schoen (Kiel and Poznań)

1. Introduction. A subset A of a group G is sum-free if the equation
x+ y = z has no solutions in A. Denote by SF(G) and SF(n) the family of
all sum-free subsets of G and of {1, . . . , n} ⊆ Z, respectively. A well known
conjecture of Cameron and Erdős [6] states that

(1) |SF(n)| = O(2n/2).

Notice that in view of {bn/2c + 1, . . . , n} ∈ SF(n), if (1) is true it is best
possible.

This problem was extensively studied, but in spite of many partial results
the conjecture is still open. Alon [1] and Calkin [4] proved that

(2) |SF(n)| = 2n/2+o(n)

as n→∞. Alon also showed that

|SF(G)| = 2n/2+o(n)

for any group G of order n. Cameron and Erdős [6] proved that the number
of sum-free subsets of {bn/3c, . . . , n} is O(2n/2). They also observed [7] that
it is sufficient to count sum-free sets with at least n/10 elements, because(

n
bn/10c

)
= o(2n/2).

Deshouillers, Freiman, Sós, and Temkin [8] gave a characterization of
dense sum-free sets. Their result implies that there are at most O(2n/2)
sum-free subsets A ⊆ {1, . . . , n} satisfying

|A| ≥ 2n/5.

On the other hand, Bilu proved in a recent paper [3] that for any fixed ε > 0
there are at most Oε(2n/2−ε

2n/16) sum-free sets with

(3) |A| ≤ (1/4− ε)n.
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In the next section we will give a further improvement of the above results,
proving that the number of sum-free sets satisfying either

|A| < (1/4− ε)n or |A| > (1/4 + ε)n

is Oε(2n/2−ε
2n).

The importance of Bilu’s paper [3] lies not only in (3). He proposed
to consider the following modified version of the problem of Cameron and
Erdős. For given positive integers k > l call a set A ⊆ {1, . . . , n} (k, l)-sum-
free if there are no solutions to the equation

x1 + . . .+ xk = y1 + . . .+ yl

in A (see [5]). Furthermore, denote by SFk(n) the family of all (k + 1, k)-
sum-free subsets of {1, . . . , n}. Then clearly, for any k ≥ 3, we have

SFk(n) ⊆ SFk−1(n) ⊆ . . . ⊆ SF2(n) ⊆ SF(n);

but on the other hand, the set of all odd natural numbers less than or equal
to n belongs to SFk(n), so that we still have

|SFk(n)| ≥ 2dn/2e.

One may ask a natural question: Is it true that |SFk(n)| = (1 +o(1))2dn/2e,
for every k ≥ 2? Obviously the problem seems to be “easier” for large k.
A theorem of Lev [9] imposes very strong restrictions on the structure of
dense (k + 1, k)-sum-free sets, and (3) can be applied to bound the number
of sparse (k + 1, k)-sum-free sets. Implementing this idea, Bilu was able to
prove that

|SF3(n)| = (1 + o(1))2dn/2e.

He also conjectured that

(4) |SF2(n)| = (1 + o(1))2dn/2e.

The main result of this paper establishes this conjecture by proving the fol-
lowing theorem, which can be viewed as the next step towards the conjecture
of Cameron and Erdős.

Theorem. There is an absolute positive constant c such that

|SF2(n)| = 2dn/2e +O(2n/2−cn).

Let us also quote a theorem obtained very recently by Lev, Łuczak,
and the present author [11] (for related results and methods see also [10]
and [12]).

Theorem A. There is an absolute positive constant c′ such that for any
abelian group G of cardinality n = |G|,

|SF(G)| = (2e(G) − 1)2n/2 +O(2(1/2−c′)n),
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where e(G) is the number of even order components in the canonical decom-
position of G into a direct sum of its cyclic subgroups.

Notice that the above theorem solves the problem of Cameron–Erdős
for any finite abelian group. It will also play a crucial role in the proof of
our main result. (The first proof of (4) obtained by the author did not use
Theorem A, but was much more complicated.)

Notation. We will use the following notation. For subsets A, B of a group
put

A+B = {a+ b : a ∈ A, b ∈ B},
A−B = {a− b : a ∈ A, b ∈ B}.

If A = {a} we write a± B instead of A± B. The O(. . .)-symbol without a
subscript means that the implied constant is absolute.

2. Sum-free sets. In this section we prove some results related to the
conjecture of Cameron–Erdős. We start with a lemma which can be viewed
as a generalization of a result of Calkin’s (see also Bilu’s Lemma 2.3 in [3]).

Lemma 1. Let i, l, d, k, and t ∈ N be natural numbers, and let

P = {2i+ l − 1− (k − 1)d, . . . , 2i+ l − 1, . . . , 2i+ l − 1 + (k − 1)d}
be an arithmetic progression with difference d. Then the number of sets

A ⊆ {i, i+ 1, . . . , i+ l − 1}
such that

(5) (A+A) ∩ P = ∅ and |A| = t,

where 0 ≤ t ≤ l/2, is less than or equal to 2kd+l/(2k)
(
l/2
t

)
.

Proof. Let r and m be non-negative integers such that

l = 2kdm+ r and 0 ≤ r < 2kd.

Put

I ′ = {i, i+ 1, . . . , i+ kdm− 1},
J = {i+ kdm, i+ kdm+ 1, . . . , i+ l − kdm− 1},
I ′′ = {i+ l − kdm, i+ l − kdm+ 1, . . . , i+ l − 1}.

We will count the number of sets A ⊆ {i, i + 1, . . . , i + l − 1} such that
(A+A) ∩ P = ∅, |A| = t and |A ∩ J | = t′, for a fixed t′ (0 ≤ t′ ≤ r).

First, we estimate the number of possible sets A∩J . Clearly, t′ ≤ br/2c,
otherwise one could have i + kdm + j, i + l − kdm − 1 − j ∈ A for some
0 ≤ j ≤ br/2c+ 1. To build a set A ∩ J we choose a subset S of t′ elements
from the interval {i+kdm, i+kdm+1, . . . , i+kdm−br/2c−1}, which can be
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done in
(br/2c

t′
)

ways. Then from every pair (i+kdm+ j, i+ l−kdm−1− j),
i + kd + j ∈ S we take exactly one element. For this we have 2t

′
choices.

Thus, there are at most

(6) 2t
′
(br/2c

t′

)
≤ 2kd

(br/2c
t′

)

possible sets A ∩ J of t′ elements.
To count the number of possible sets A ∩ (I ′ ∪ I ′′) we decompose the

intervals I ′ and I ′′ in the following way:

I ′ =
⋃

0≤u≤d−1
0≤v≤m−1

P ′uv,

where P ′uv = {i+ u+ vkd, i+ u+ vkd+ d, . . . , i+ u+ (v + 1)kd− d}, and

I ′′ =
⋃

0≤u≤d−1
0≤v≤m−1

P ′′uv,

where P ′′uv = l + 2i − 1 − P ′uv. Notice that for every 0 ≤ u ≤ d − 1 and
0 ≤ v ≤ m− 1,

(7) P ′uv + P ′′uv = P.

Write
I ′ ∪ I ′′ =

⋃

0≤u≤d−1
0≤v≤m−1

(P ′uv ∪ P ′′uv).

From (7) it follows that for any set A fulfilling (5), we have either A∩P ′uv = ∅
or A ∩ P ′′uv = ∅. Thus every set A1 ⊆ I ′ ∪ I ′′ with (A1 + A1) ∩ P = ∅ is
contained in at least one set of the form⋃

0≤u≤d−1
0≤v≤m−1

Quv,

where Quv is equal to either P ′uv or P ′′uv for all 0 ≤ u ≤ d − 1 and 0 ≤ v ≤
m − 1. Notice that there are 2md = 2(l−r)/(2k) sets of the above form and
each of them has exactly (l − r)/2 elements. Therefore there are no more
than 2l/(2k)

((l−r)/2
t−t′

)
choices for the set A ∩ (I ′ ∪ I ′′), so that by (6), the

number of sets satisfying (5) and |A ∩ J | = t′ does not exceed

2kd+(l−r)/(2k)
(

(l − r)/2
t− t′

)(br/2c
t′

)
.

Furthermore, since
br/2c∑

t′=0

(
(l − r)/2
t− t′

)(br/2c
t′

)
≤
(
l/2
t

)
,
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we have at most

2kd+l/(2k)
(
l/2
t

)

sets with cardinality t satisfying

A ⊆ {i, i+ 1, . . . , i+ l − 1} and (A+ A) ∩ P = ∅.
This completes the proof.

To prove the main result of this section we need the following well known
theorem of Szemerédi [13]. For a given natural number k denote by sk(n) the
maximum cardinality of a set A ⊆ {1, . . . , n} not containing any arithmetic
progression of length k. Then Szemerédi’s result states that

(8) sk(n) = o(n) as n→∞.

Lemma 2 (see [4]). Let f be a function such that f(n) = o(n) as n→∞.
Then for any ε > 0 the number of sets A ⊆ {1, . . . , n} satisfying |A| ≤ f(n)
does not exceed Oε,f (2εn).

Theorem 1. Let ε be a positive constant. Then the number of sum-free
subsets of {1, . . . , n} with t elements, 0 ≤ t ≤ n/2, is

Oε

(
2εn
(
n/2
t

))
.

Proof. Let k = d1/εe and L = d√ne. For every A ⊆ {1, . . . , n} denote
by µ = µ(A) the maximum integer such that A ∩ [µ, µ+ L− 1] contains an
arithmetic progression P of length 2k− 1. If such an integer does not exist,
put µ = 0.

First of all, we estimate the number of sum-free sets A such that µ > 0
and |A ∩ [l, n]| = t′ for some fixed t′, 0 ≤ t′ ≤ t, where l stands for the
middle term of the progression P . Then, by Lemma 1, there are at most

(9) 2kd+l/(2k)
(

(l − 1)/2
t− t′

)
≤ 2L+l/(2k)

(
l/2
t− t′

)

subsets A′ ⊆ {1, . . . , l − 1} such that (A′ + A′) ∩ P = ∅. Moreover, since
A ∩ [l, n] does not contain any arithmetic progression of length 2k − 1, one
can deduce from Szemerédi’s theorem that

|A ∩ [l, n]| ≤ s2k−1(n− l) ≤ s2k−1(n).

Thus, by (8) and Lemma 2, there are no more than

(10) Oε(2εn/4)

possible sets A ∩ [l, n]. Finally, as we have no more than n2 ways to choose
P , combining (9) and (10) we see that the number of sum-free subsets of
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{1, . . . , n} with t elements does not exceed

n∑

l=1

s2k−1(n)∑

t′=0

n22L+l/(2k)
(
l/2
t− t′

)
Oε(2εn/4)

≤ n42L+n/(2k)
(
n/2
t− t′

)
Oε(2εn/4) ≤ Oε(23εn/4)

(
t′ + n/2

t

)

≤ Oε(23εn/4)2t
′
(
n/2
t

)
= Oε(2εn)

(
n/2
t

)
.

To complete the proof, we have to estimate the number of sets A which
do not contain any arithmetic progression of length 2k − 1 in an interval of
length L. Again, by (8), we have t = |A| ≤ s2k−1(n). Thus, by Lemma 2
there are at most Oε,k(2εn) = Oε(2εn)

(
n/2
t

)
sum-free sets with t elements.

We will also use the following corollary from Chernoff’s inequality (see
Theorem A.1 of [2]):

(11)
b(1/2−ε)nc∑

t=0

(
n

t

)
≤ 2n/2−2ε2n/ln 2.

Theorem 2. Let ε be a positive constant. Then the number of sum-free
subsets A ⊆ {1, . . . , n} such that either

|A| < (1/4− ε)n or |A| > (1/4 + ε)n

is Oε(2n/2−ε
2n).

Proof. By Theorem 1, the number of sum-free subsets of {1, . . . , n} with
either at most (1/4− ε)n or at least (1/4 + ε)n elements does not exceed

Oε(2ε
2n/3)

b(1/4−ε)nc∑

t=0

(
n/2
t

)
.

Using (11) one can estimate the last expression by

Oε(2n/2+ε2n/3−ε2n/ln 2) = Oε(2n/2−ε
2n),

as claimed.

3. (2, 3)-Sum-free sets. In this section we present the proof of (4),
which can be outlined as follows. First, using an elementary argument we
will show that for every A ∈ SF2(n) and a suitable choice of m = mA, the
set A considered as a subset of Zm, is sum-free. Then we will see that for
almost all (2, 3)-sum-free sets (the exceptional set is of size o(|SF2(n)|)) we
can take m ∼ n. This will allow us to apply Theorem A, and consequently
prove the main result.
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Lemma 3. Let A ⊆ {1, . . . , n} be a (2, 3)-sum-free set. Suppose that m ∈
A+ A and m ≥ n. Then A is a sum-free subset of Zm.

Proof. Assume that there are a, a′, a′′ ∈ A such that a+a′ ≡ a′′ (modm).
Thus, either

a+ a′ = a′′ or a+ a′ = a′′ +m.

Clearly, the first equality is not possible, because the set A belongs to
SF2(n), and consequently is sum-free. Further, since m = b + b′ for some
b, b′ ∈ A, the second equality would yield

a+ a′ = a′′ + b+ b′,

contradicting the assumption.

Lemma 4. Let δ be a positive constant. There are at most Oδ(2n/2−δn/7)
sum-free subsets A ⊆ {1, . . . , n} such that

(12) (A+ A) ∩ [n, (1 + δ)n] = ∅.
Proof. From Alon–Calkin’s theorem (2) it follows that the number of

sum-free subsets A such that M := maxA ≤ (1 − δ/3)n is Oδ(2n/2−δn/7),
so that we can assume the opposite, M > (1− δ/3)n.

Put n′ = n− dδn/2e+ 1 and suppose that q := b2/δc is an even natural
number (otherwise put q := b2/δc+ 1). Furthermore, let d ∈ N be such that
n′ = qd + r, where 0 ≤ r < q. We decompose the set {dδn/2e, dδn/2e +
1, . . . , n} into disjoint successive intervals I1, . . . , Iq such that |Ii| = d for
every i 6= q/2 + 1 and |Iq/2+1| = r. Obviously,

Ii + Iq−i ⊆ [n, (1 + δ)n],

so that for every A satisfying (12) we have either A∩ Ii = ∅ or A∩ Iq−i = ∅,
for each i, 0 ≤ i ≤ q/2. In particular, the middle interval Iq/2+1 cannot
share any element with A, whence every subset of {dδn/2e, dδn/2e+1, . . . , n}
satisfying (12) is contained in a set of the form

q/2⋃

i=1

I ′i,

where I ′i = Ii or Iq−i, for each 1 ≤ i ≤ q/2. There are 2q/2 choices for the
above sets, and each contains exactly (n′−r)/2 elements. Thus, the number
of subsets A∩ [dδn/2e, n] fulfilling (A+A)∩ [n, (1+δ)n] = ∅ does not exceed

2q/22(n′−r)/2 ≤ 21/δ2n
′/2.

Notice that M > (1−δ/3)n implies A∩ [δn/3, dδn/2e−1] = ∅, so that there
are at most 2δn/3 possible sets A∩ [1, dδn/2e]. Since there are no more than
n choices for M, we have at most

n21/δ2n
′/2+δn/3 = Oδ(2n/2−δn/7)

sets with the required property.
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Proof of Theorem. The main term 2dn/2e is given by all subsets of
{1, 3, . . . , 2dn/2e− 1}, so it is sufficient to estimate |SF ′2(n)|, the number of
A ∈ SF2(n) not contained in the set of odd numbers.

In view of Lemma 4, it is enough to estimate the number of sets A ∈
SF2(n) such that

(A+ A) ∩ [n, (1 + δ)n] 6= ∅,
where δ := 14c′/9, and c′ is given by Theorem A. Let

m = mA := min((A+ A) ∩ [n, (1 + δ)n]),

and observe that Lemma 3 gives A ∈ SF ′(Zm), where the family SF ′(Zm)
consists of all sum-free subsets of Zm which contain at least one even ele-
ment.

A consequence of Theorem A, applied to G = Zm, is

(13) |SF ′(Zm)| = O(2m/2−c
′m).

Indeed, if m is odd then e(Zm) = 0, and by Theorem A one has

|SF ′(Zm)| ≤ |SF(Zm)| = O(2m/2−c
′m).

If m is even then e(Zm) = 1, and Theorem A gives

|SF(Zm)| = 2m/2 +O(2m/2−c
′m).

On the other hand, every subset of {0, . . . ,m−1} consisting of odd integers
is sum-free in Zm. Hence

|SF(Zm)| = 2m/2 + |SF ′(Zm)|,
and (13) follows.

Thus, by Lemma 4 and (13), we have

|SF ′2(n)| = O
(

2n/2−2c′n/9 +
b(1+δ)nc∑

m=n

|SF ′(Zm)|
)

= O(2n/2−2c′n/9 + n2(n/2−c′n)(1+14c′/9)) = O(2n/2−2c′n/9),

and
|SF2(n)| = 2dn/2e +O(2n/2−2c′n/9),

which completes the proof.

References

[1] N. Alon, Independent sets in regular graphs and sum-free subsets of finite groups,
Israel J. Math. 73 (1991), 247–256.

[2] N. Alon and J. Spencer, The Probabilistic Method , Wiley, New York, 1992.
[3] Y. Bilu, Sum-free sets and related sets, Combinatorica 18 (1998), 449–459.



Sum-free subsets 163

[4] N. J. Calkin, On the number of sum-free sets, Bull. London Math. Soc. 22 (1990),
141–144.

[5] N. J. Calkin and J. M. Thomson, Counting generalized sum-free sets, J. Number
Theory 68 (1996), 151–159.
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