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Auxiliary polynomials for some problems

regarding Mahler’s measure
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Artūras Dubickas (Vilnius) and
Michael J. Mossinghoff (Davidson, NC)

1. Introduction. In this paper, we describe an iterative method of con-
structing some favorable auxiliary polynomials used to obtain lower bounds
in some problems of algebraic number theory. With this method we improve
a lower bound on Mahler’s measure of a polynomial with no cyclotomic fac-
tors whose coefficients are all congruent to 1 modulo m for some integer
m ≥ 2, raise a lower bound in the problem of Schinzel and Zassenhaus on
the largest root of such a polynomial, and improve a lower bound on the
absolute Weil height of an algebraic unit whose minimal polynomial splits
completely over a p-adic field.

Recall that Mahler’s measure of a polynomial f(x) = a
∏deg f

k=1 (x − αk)
is defined by

M(f) = |a|
deg f
∏

k=1

max{1, |αk|}.

Clearly M(f) ≥ 1 for f ∈ Z[x], and a well known result of Kronecker implies
that equality occurs precisely when f is a product of cyclotomic polynomials
and a power of the monomial x. In 1933, D. H. Lehmer [9] found that the
polynomial

ℓ(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1

has M(ℓ) = 1.176280 . . . , and this remains the smallest known value larger
than 1 of the measure of a polynomial with integer coefficients. Lehmer’s

problem asks if there exist polynomials in Z[x] with measure arbitrarily close
to 1.
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Lehmer’s problem has been resolved in some special cases. For example,
let f∗ denote the polynomial obtained from f by reversing its sequence of
coefficients, so f∗(x) = xdeg ff(1/x). We say f is reciprocal if f = ±f∗.
Smyth [14] proved that if f is nonreciprocal and f(0) 6= 0, then M(f) ≥
M(x3 − x− 1) = 1.324717 . . . . Recently, Lehmer’s problem was resolved for
another class of polynomials. For a positive integer m ≥ 2, let Dm denote
the set of polynomials whose coefficients are all congruent to 1 modulo m:

Dm =
{

f(x) =

deg f
∑

k=0

akx
k ∈ Z[x] : ak ≡ 1 mod m for 0 ≤ k ≤ deg f

}

.

The set D2 is precisely the set of polynomials with odd coefficients, so it
contains the frequently studied set of Littlewood polynomials, whose coeffi-
cients are all ±1. In [4], it is shown that if f ∈ Dm has degree n− 1 and no
cyclotomic factors, then

(1) log M(f) ≥















log 5

4

(

1 − 1

n

)

if m = 2,

log

(

√
m2 + 1

2

)(

1 − 1

n

)

if m > 2.

The proof requires constructing some auxiliary polynomials with certain
favorable properties, and the polynomials employed there were found by
searching certain promising families. In Section 2 we describe a method for
constructing better auxiliary polynomials directly, and use this technique to
improve the bounds in (1) (see Theorem 2.4).

A problem related to Lehmer’s was posed by Schinzel and Zassenhaus
in 1965 [13]. They conjectured that there exists a positive constant c so
that every monic, irreducible polynomial of degree d has a root α satisfying
|α| > 1 + c/d. It is easy to verify that answering Lehmer’s question resolves
this problem as well: if M(f) ≥ M0 for each f in a particular set of monic
polynomials, then one may take c = log M0 in the problem of Schinzel and
Zassenhaus for this same set. However, the best known results in this prob-
lem are often stronger than those inherited in this way from corresponding
inequalities in Lehmer’s problem. For example, it is shown in [7] that one
may take c = 0.3096 . . . for the case of nonreciprocal polynomials, strength-
ening the bound inherited from Smyth’s theorem. Likewise, in [4] it is shown
that if f ∈ Dm is monic with degree n−1 and has at least one noncyclotomic
factor, then there exists a root α of f satisfying

(2) |α| >











1 +
log 3

2n
if m = 2,

1 +
log(m − 1)

n
if m > 2.
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Our method allows us to improve the bounds in these inequalities. This
problem is treated in Section 3 (see Theorem 3.1).

The logarithmic Weil height of an algebraic number α is defined by

h(α) =
log M(α)

deg(α)
,

where M(α) denotes Mahler’s measure of the minimal polynomial for α.
A result of Schinzel [12] implies that if α is totally real and α 6∈ {−1, 0, 1}
then h(α) ≥ (log γ)/2, where γ denotes the golden ratio, γ = (1 +

√
5)/2;

a simple proof of this fact appears in [8]. Bombieri and Zannier [2] extended
Schinzel’s result to local fields. We say an algebraic number α is totally

p-adic if the minimal polynomial f ∈ Z[x] for α splits completely in the
field Qp of p-adic numbers, or equivalently, if the prime p splits completely
in the field Q(α). For a prime number p, define the quantity σp by

σp = inf{h(α) : α ∈ Q is totally p-adic and M(α) > 1}.
Bombieri and Zannier proved that σp > 0 for each prime p. Recently, Petsche
[11] obtained explicit lower bounds for h(α) for the case when α is an alge-
braic unit, that is, when both α and α−1 are algebraic integers. Define the
quantity τp by

τp = inf{h(α) : α ∈ Q is a totally p-adic algebraic unit and M(α) > 1},
so clearly σp ≤ τp. Petsche established that

(3) τp ≥







log(
√

2) if p = 2,

log(p/2)

p − 1
if p > 2.

We use our method to improve these bounds for every prime p in Section 4;
see (13) and (14).

Throughout this article, let Res(f(x), g(x)) denote the resultant of the
polynomials f(x) and g(x).

2. Lehmer’s problem. We first study the problem of obtaining a lower
bound on the measure of a polynomial f ∈ Dm that is not a product of
cyclotomic polynomials. We require the following lemma.

Lemma 2.1. Suppose f ∈ Dm is monic with degree n − 1, and let α be

a root of f . Suppose also that G ∈ Z[x] satisfies m |G(1). Then G(αn)/m
is an algebraic integer. Further , if g is a factor of f with degree d and

gcd(g(x), G(xn)) = 1, then

|Res(g(x), G(xn))| ≥ md.
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Proof. Since f ∈ Dm, the polynomial s(x) defined by

s(x) =
xn − 1 − (x − 1)f(x)

m
has integer coefficients, so s(α) = (αn−1)/m is an algebraic integer. Writing
G(x) ≡ (x − 1)q(x) mod m for some integer polynomial q, we see that
G(αn)/m is an algebraic integer. For the second part, suppose α is a root
of g, and let K denote the normal closure of Q(α) over Q. Since G(αn) 6= 0,
we have

|NK/Q(G(αn))| ≥ m[K:Q],

and raising both sides to the power d/[K : Q] yields the final inequality.

For an auxiliary polynomial F ∈ Z[x], let νm(F ) denote the number of
irreducible factors G of F satisfying m |G(1). Also, if deg F = r, define the
quantity ωm(F ) by

(4) ωm(F ) = gcd(F (1), mF ′(1), m2F ′′(1)/2, . . . , mrF (r)(1)/r!).

Let ck = mkF (k)(1)/k! for 0 ≤ k ≤ r, so each ck is an integer divisible by
ωm(F ). Suppose α, f , and g are as in the statement of Lemma 2.1. Since
F (x) =

∑r
k=0 ck((x− 1)/m)k, using the argument of the lemma we see that

F (αn)/ωm(F ) is an algebraic integer, and so ωm(F )d | Res(g(x), F (xn)).
Note also that ωm(G1G2) ≥ ωm(G1)ωm(G2) for any integer polynomials
G1 and G2, and that consequently ωm(F ) ≥ mνm(F ).

Finally, we define for an integer polynomial F the quantity

(5) Bm(F ) =
log ωm(F ) − log‖F‖∞

deg F
,

where ‖F‖∞ stands for the maximum of |F (x)| on the unit circle. We now
establish the following lower bound on Mahler’s measure of a factor of a
polynomial in Dm.

Theorem 2.2. Suppose f ∈ Dm has degree n − 1, g ∈ Z[x] is a factor

of f with degree d, and F ∈ Z[x] satisfies gcd(g(x), F (xn)) = 1. Then

log M(g) ≥ Bm(F )d/n.

Proof. From the discussion above, we have

|Res(g(x), F (xn))| ≥ ωm(F )d,

and, since |F (x)| ≤ ‖F‖∞ max{1, |x|}deg F , we find

|Res(g(x), F (xn))| ≤ ‖F‖d
∞M(g)ndeg F .

The result follows by combining these inequalities.

We aim then to optimize the lower bound in the theorem by construct-
ing favorable auxiliary polynomials. Throughout the rest of this section, we
consider only auxiliary polynomials F having all their roots on the unit
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circle. Hence, if g is a monic, irreducible, noncyclotomic factor of f , then
the condition gcd(g(x), F (xn)) = 1 of the theorem is automatically satis-
fied. By Siegel’s lemma (see, e.g., [1] or [10]), if g ∈ Z[x] is an irreducible
polynomial with degree d and M(g) < 2, then there exists a polynomial
f with {−1, 0, 1} coefficients such that g | f and deg f < n, where n satis-
fies (nd/2M(g)n−1)1/(n−d) < 2. Suppose that M(g) < 2 − ε, with ε a fixed
small positive number. Then g is a divisor of a polynomial f with {−1, 0, 1}
coefficients and degree less than n = κεd log d, where κε is a positive con-
stant depending only on ε. If, by chance, the polynomial f is a Littlewood
polynomial, then Theorem 2.2 with m = 2 implies that for such g we have
log M(g) > cε/log d, for a positive constant cε. This is better than the
bound of Dobrowolski [6], which asserts that log M(g) > c(log log d/log d)3

for every irreducible, noncyclotomic polynomial g ∈ Z[x] of degree d. This
raises an interesting question: which polynomials of small measure are di-
visors of Littlewood polynomials? A partial answer appears in [4]: for any
prime number p, a polynomial g ∈ Z[x] is the noncyclotomic part of some
polynomial f ∈ Dp precisely when g is congruent modulo p to a product
of cyclotomic polynomials. Measures of Littlewood polynomials are studied
further in [5].

In [4], two methods are used to search for auxiliary polynomials that
produce a good lower bound on the measure of a polynomial in Dm hav-
ing no cyclotomic factors. Both of them consider polynomials of the form
F (x) =

∏n
k=1(x

ek − 1), with each ek a positive integer: one of them employs
a greedy strategy; the other tests certain specific families. In that paper, the
quantity mνm(F ) is in essence used in place of ωm(F ). Here, we find improve-
ments not only by introducing ωm(F ), but, more importantly, by observing
that given one auxiliary polynomial F0 with Bm(F0) > 0, we may often use it
to construct another auxiliary polynomial F1 with Bm(F1) > Bm(F0). We
propose then an iterative algorithm for constructing a sequence of favor-
able auxiliary polynomials directly, and we obtain improved lower bounds
on the measure of polynomials in Dm by using this method. More pre-
cisely, note that Bm(F a) is constant for all positive integers a, so if Q de-
notes a polynomial that has a zero where F achieves its maximum over the
unit circle, then for some a we may find that Bm(F aQ) exceeds Bm(F ),
particularly if ωm(Q) > 1. This raises another interesting problem: find
sup{Bm(F ) : F ∈ Z[x]}, where Bm(F ) is defined in (5).

Algorithm 2.3. Construction of auxiliary polynomials.

Input. An integer m ≥ 2.
Output. A sequence of polynomials {Fk} for which {Bm(Fk)} is increas-

ing.
Step 1. Set k = 0, and let F0(x) = x − 1.
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Step 2. Let Qk denote an irreducible polynomial that has a zero at a
point where |Fk| attains its maximum over the unit disk. Select
an integer ak so that Bm(F ak

k Qk) is maximized. Set Fk+1 =
F ak

k Qk.
Step 3. If Bm(Fk+1) > Bm(Fk), increment k by 1 and repeat Step 2.

2.1. The case m = 2. We apply this method for the case m = 2. We
clearly have ω2(F0) = ω2(x − 1) = 2, so B2(F0) = 0 and Q0(x) = x + 1.
Similarly, ω2((x − 1)a0(x + 1)) = 2a0+1. Since

‖(x − 1)a0(x + 1)‖∞ = 2a0+1 max
0≤t≤π

|(sin t)a0 cos t| =
2a0+1a

a0/2
0

(a0 + 1)(a0+1)/2
,

we find that

B2((x − 1)a0(x + 1)) =
(a0 + 1) log(a0 + 1) − a0 log a0

2(a0 + 1)
,

and this expression is maximized by choosing a0 = 1. We thus take F1(x) =
x2 − 1, so Q1(x) = x2 + 1, and

B2(F1) =
log 2

2
= 0.3465735902 . . . .

In the next iteration, we verify that ω2(F
a1

1 Q1) = 22a1+1, and since
‖F a1

1 Q1‖∞ = ‖(x − 1)a1(x + 1)‖∞, we obtain

B2((x
2 − 1)a1(x2 + 1)) =

2a1 log 2 + (a1 + 1) log(a1 + 1) − a1 log a1

4(a1 + 1)
.

A short calculation verifies that this expression is maximized when a1 = 4,
so we take F2(x) = (x2 − 1)4(x2 + 1), and find that

B2(F2) =
log 5

4
= 0.4023594781 . . . .

This is the best bound obtained for the case m = 2 in [4]; we now improve
this value with further iterations.

As F2(x) attains its maximum over the unit circle when x2 =(−3 ± 4i)/5,
we set Q2(x) = 5x4 + 6x2 + 5. Certainly ν2(Q2) = 1, but the expansion

Q2(x) = 5(x − 1)4 + 20(x − 1)3 + 36(x − 1)2 + 32(x − 1) + 16

shows that ω2(Q2) = 16. Hence ω2(F
a2

2 Q2) ≥ 29a2+4, and one may verify
easily that in fact equality occurs. The maximum value of |F2(e

iθ)a2Q2(e
iθ)|

occurs when y = cos(2θ) satisfies

(6) (25a2 + 10)y2 + 30a2y + 9a2 − 10 = 0,

and we compute that B2(F
a2

2 Q2) is maximized when a2 = 3.9764 . . . . Choos-
ing F3(x) = (x2 − 1)16(x2 + 1)4(5x4 + 6x2 + 5) yields ω2(F3) = 240 and

B2(F3) = 0.4161410261 . . . .
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Another iteration improves this value still further. Substituting a2 = 4
and y = (x2 + x−2)/2 in (6) and normalizing, we compute

Q3(x) = 55x8 + 120x6 + 162x4 + 120x2 + 55.

Expanding Q3(x) in powers of x − 1, we find that ω2(Q3) = 64, hence
ω2(F

a3

3 Q3) ≥ 240a3+6. An easy computation shows that again we have equal-
ity. The maximum modulus of this polynomial over the unit circle occurs
when y = cos(2θ) satisfies

(7) 275(11a3 + 2)y4 + 30(220a3 + 21)y3 + 10(503a3 − 37)y2

+ 30(52a3 − 21)y + 169a3 − 180 = 0,

and we compute that the optimal value of B2(F
a3

3 Q3) occurs at a3 =
133.291 . . . . Setting F4 = F 133

3 Q3, we obtain

B2(F4) = 0.4162307204 . . . .

It appears that further iterations of this procedure yield additional,
though small, improvements to this value. For example, from (7) we de-
termine

Q4(x) = 402875(x16 + 1) + 1756860x2(x12 + 1) + 4285980x4(x8 + 1)

+ 6925380x6(x4 + 1) + 8122962x8,

and we compute that ω2(F
a4

4 Q4) = 25326a4+12. Choosing a4 = 33264 yields

B2(F5) = 0.4162307230 . . . .

2.2. The case of odd m > 2. We describe the behavior of Algorithm 2.3
for a fixed odd integer m ≥ 3. Since ωm(x − 1) = m, we begin by noting
that

Bm(F0) = log(m/2).

With Q0(x) = x + 1, we compute

Bm(F a0

0 Q0) =
2a0 log m − 2(a0 + 1) log 2 − a0 log a0 + (a0 + 1) log(a0 + 1)

2(a0 + 1)
,

which is maximized by selecting a0 = m2. Setting F1(x) = (x− 1)m2

(x+1),
we find

Bm(F1) = log

(

√
m2 + 1

2

)

= log(m/2) +
1

2m2
− 1

4m4
+ O

(

1

m6

)

.

This is the value obtained in [4] for all m > 2.
In the next iteration, we find that F1 attains its maximum modulus over

the unit circle where cos θ = (1 − m2)/(1 + m2), so

Q1(x) = (m2+1)(x2+1)+2(m2−1)x = (m2+1)(x−1)2+4m2(x−1)+4m2.

Since m is odd, we find that ωm(Q1) = 2m2, and verify that ωm(F a1

1 Q1) =

2ma1m2+2. Noting that the maximum modulus of F a1

1 Q1 over the unit circle
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occurs when y = cos θ satisfies

(m2 + 1)(a1(m
2 + 1) + 2)y2 + 2a1(m

4 − 1)y + a1(m
2 − 1)2 − 2(m2 + 1) = 0,

we may then compute the optimal choice of a1 for any fixed value of m. We
find empirically that this value is always near 3/2; for example, for m = 3,
5, 7, 9, and 101, the optimal choices are respectively a1 = 1.42644 . . . ,
1.47264 . . . , 1.48591 . . . , 1.49144 . . . , and 1.49993 . . . . Setting a1 = 3/2 and

F2(x) = (x − 1)3m2

(x + 1)3((m2 + 1)(x2 + 1) + 2(m2 − 1)x)2,

we compute

Bm(F2) = (2(3m2 + 4) log m + (3m2 + 7) log(3m2 + 7)(8)

+ 3(m2 + 1) log(m2 + 1) − 2(3m2 + 7) log 2

− 3m2 log((m2 + 1)(3m2 + 2) − 2
√

(m2 + 1)(4m2 + 1))

− 4 log(m2 − 1 +
√

(m2 + 1)(4m2 + 1))

− 3 log(5(m2 + 1) + 2
√

(m2 + 1)(4m2 + 1)))/(6m2 + 14)

= log(m/2) +
3 − log 3

2m2
− 27 − 14 log 3

12m4
+ O

(

1

m6

)

.

A third iteration produces further, though small, improvements. Using

Q2(x) = (3m2 + 7)(m2 + 1)(x4 + 1) + 12x(m4 − 1)(x2 + 1)

+ (9m4 − 10m2 + 5)x2

= (3m7 + 7)(m2 + 1)(x − 1)4 + 8(m2 + 1)(3m2 + 2)(x − 1)3

+ 8(9m4 + 5m2 + 2)(x − 1)2 + 96m4(x − 1) + 48m4,

we find that ωm(Q2) = 16m2. Hence, for any fixed odd integer m, we may
compute the optimal value of a2 to find F3. For odd m ranging from m = 3
to m = 11, and choosing a2 = 41, 267, 968, 2570, and 5654 respectively, we

Table 1. Values of Bm(Fk)

m Bm(F0) Bm(F1) Bm(F2) Bm(F3)

3 0.4054651 0.4581453 0.5006408 0.5010266

4 0.6931471 0.8047189 0.8322820 0.8324614

5 0.9162907 0.9359010 0.9528456 0.9528692

6 1.0986122 1.1512925 1.1658631 1.1658844

7 1.2527629 1.2628643 1.2717720 1.2717754

8 1.3862943 1.4166066 1.4253654 1.4253697

9 1.5040773 1.5102124 1.5156691 1.5156698

10 1.6094379 1.6290482 1.6348355 1.6348367

11 1.7047480 1.7088633 1.7125396 1.7125398
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obtain the values shown in the last column of Table 1. For comparison, this
table also lists the values of the bounds from previous rounds for these m.
Each value here is truncated (not rounded) at the seventh decimal place.

We note that the best bound obtained for m = 3 is 0.5010266 . . . and
exceeds the value of 0.459003 derived in [4] by using the auxiliary polynomial
(1 − x)425(1 − x2)50(1 − x5).

2.3. The case of even m > 2. We obtain better bounds using Algo-
rithm 2.3 for the case of an even integer m ≥ 4. Again, Bm(F0) = log(m/2)
and Q0(x) = x + 1, but since

(x − 1)a0(x + 1) = (x − 1)a0+1 + 2(x − 1)a0 ,

we find that ωm((x−1)a0(x+1)) = 2ma0 . Noting that the maximum value of

Bm((x−1)a0(x+1)) occurs at a0 = m2/4, we set F1(x) = (x−1)m2/4(x+1),
and compute

Bm(F1) = log

(

√
m2 + 4

2

)

= log(m/2) +
2

m2
− 4

m4
+ O

(

1

m6

)

.

We then find that

Q1(x) = (m2+4)(x2+1)+2(m2−4)x = (m2+4)(x−1)2+4m2(x−1)+4m2,

so ωm(Q1) = 4m2. The maximum value of |F a1

1 Q1| on the unit circle occurs
when y = cos θ satisfies

(m2 + 4)(a1(m
2 + 4) + 8)y2 + 2a1(m

4 − 16)y + a1(m
2 − 4)2 − 8(m2 + 4) = 0,

and we may again compute the optimal value of a1 for any even m. We
find that the optimal value is always near 4 (for example, for m = 4, 6,
8, and 100, we obtain 3.97641 . . . , 3.98593 . . ., 3.99125 . . ., and 3.99993 . . . ,
respectively). Setting a1 = 4 and

F2(x) = (x − 1)m2

(x + 1)4((m2 + 4)(x2 + 1) + 2(m2 − 4)x),

we compute

Bm(F2) = (2(m2 + 2) log m + (m2 + 4) log(m2 + 4)(9)

+ (m2 + 6) log(m2 + 6) − 2m2 log 2

− m2 log((m2 + 1)(m2 + 4) −
√

(m2 + 4)(9m2 + 4))

− 2 log(m2 − 4 +
√

(m2 + 4)(9m2 + 4))

− 4 log(5(m2 + 4) +
√

(m2 + 4)(9m2 + 4)))/(2m2 + 12)

= log(m/2) +
4 − log 4

m2
− 16 − 12 log 2

m4
+ O

(

1

m6

)

.
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Again, we obtain further improvements with a third iteration. With

Q2(x) = (m2 + 4)(m2 + 6)(x4 + 1) + 4x(m4 − 16)(x2 + 1)

+ 2(3m4 − 10m2 + 40)x2

= (m2 + 4)(m2 + 6)(x − 1)4 + 8(m2 + 1)(m2 + 4)(x − 1)3

+ 8(3m4 + 5m2 + 4)(x − 1)2 + 32m4(x − 1) + 16m4,

we have ωm(Q2) = 32m2, and selecting a2 = 133, 575, 1697, and 4005 for
m = 4, 6, 8, and 10 respectively, we obtain the values shown in Table 1 for
Bm(F3).

2.4. Conclusion. The following statement summarizes our improvements
to (1).

Theorem 2.4. Suppose f ∈ Dm has degree n − 1 and no cyclotomic

factors. Then

log M(f) ≥ cm

(

1 − 1

n

)

,

where

cm =











0.4162307230 . . . > 77/185 if m = 2,

log(m/2) + (3 − log 3)/2m2 + O(1/m4) if m ≥ 3 is odd ,

log(m/2) + (4 − log 4)/m2 + O(1/m4) if m ≥ 4 is even,

and bounds for m ≥ 3 are given explicitly in (8) and (9).

Proof. The preceding arguments require that f is monic and has no
common factor with the appropriate auxiliary polynomial. However, our
auxiliary polynomials have all their roots on the unit circle, so any non-
cyclotomic factor of such a polynomial F (xn) is necessarily not monic.
Thus, if f is monic, then the required condition is automatically satis-
fied, and if f ∈ Dm is not monic, then the inequality is satisfied, because
M(f) ≥ max{2, m − 1}.

Since the only cyclotomic factors of the auxiliary polynomials F (x) which
occur in our constructions are x − 1, x + 1, and, when m = 2, x2 + 1, the
condition that f ∈ Dm has no cyclotomic factors may be replaced by the
hypothesis that gcd(f(x), x2n − 1) = 1, or gcd(f(x), x4n − 1) = 1 when
m = 2. However, in [4] (see also [3]) it is shown that every cyclotomic factor
of a polynomial f ∈ D2 with degree n − 1 must divide x2n − 1, and every
cyclotomic factor of a polynomial f ∈ Dp with degree n − 1, where p is an
odd prime, must divide xn − 1. Thus, these conditions are equivalent when
the modulus m is prime.

We remark that for m = 2 the condition that f have no cyclotomic
factors cannot be removed: the polynomial h(x) = x12 +x11−x8−x6−x4 +
x+1 has log M(h) = 0.40327 . . . , and for each k ≥ 1 this polynomial occurs
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as the noncyclotomic part of a polynomial in D2 having degree 20k − 1.
Indeed,

hk(x) = h(x)(x + 1)(x2 + 1)(x4 − x3 + x2 − x + 1)(x20(k−1) + · · · + x20 + 1)

is a Littlewood polynomial of degree 20k − 1 for every k ≥ 1 and M(hk) =
M(h). Note that this is not a counterexample to the previous lower bound
(log 5)/4 = 0.402359 . . . (which is just smaller than 0.40327 . . .) found in [4],
so the advantage of Theorem 2.4 over (1) is not only quantitative but also
qualitative!

We note also that the smallest known value of Mahler’s measure of a
polynomial in D2 with no cyclotomic factors is log M(x6 + x5 − x4 − x3 −
x2 + x + 1) = 0.44213 . . . , so there is still room for improvement in the
constant c2.

3. The problem of Schinzel and Zassenhaus. This method of con-
structing auxiliary polynomials also allows us to improve the result obtained
in [4] on the problem of Schinzel and Zassenhaus for polynomials in Dm. We
review first the method for obtaining a lower bound in this problem, given
an auxiliary polynomial F .

Given a monic polynomial f ∈ Dm of degree n − 1, let g be a factor of
f of degree d, and assume that gcd(g(x), F (xn)) = 1. If c is selected so that
each root α of g satisfies |α| ≤ 1+ c/n, then |αn| < ec for each α. Therefore,

(10) |Res(g(x), F (xn))| < ‖F‖d
|x|=ec ,

where ‖F‖|x|=ec denotes the supremum of F over the circle of radius ec

centered at the origin. This quantity is an expression involving ec, and com-
bining this with the inequality from Lemma 2.1,

(11) |Res(g(x), F (xn))| ≥ ωm(F )d,

one obtains a lower bound on c.
Consider first the case m = 2. Using F (x) = x2−1 as in [4], we compute

‖F‖|x|=ec = 1 + e2c and ω2(F ) = 4, and conclude that c > (log 3)/2 as

in (2). Now the maximum value of |F (x)| on |x| =
√

3 occurs at ±i
√

3, so
this suggests investigating polynomials of the form (x2 − 1)a(x2 + 3), with
a a positive integer. We compute

‖(x2 − 1)a(x2 + 3)‖2
|x|=r =

(

a

3

)a(4(r4 + 3)

a + 1

)a+1

,

and since x2 +3 = (x−1)2 +2(x−1)+4, we find that ω2(x
2 +3) = 4. Hence

ω2((x
2−1)a(x2+3)) = 22a+2 and, with r = ec, inequalities (10) and (11) yield

e4c + 3 > 4(a + 1)

(

3

a

)a/(a+1)

.

The right side is maximized at a = 3, producing c > (log 13)/4.
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Next, suppose that m > 2. Using F (x) = x − 1, we obtain from (10)
and (11) the bound c > log(m − 1) of (2). Clearly, the maximum value of
x−1 on the circle |x| = m−1 occurs at 1−m, so we next consider auxiliary
polynomials of the form (x − 1)a(x + m − 1). We compute that

‖(x − 1)a(x + m − 1)‖2
|x|=r =

(

a

m − 1

)a(m(r2 + m − 1)

a + 1

)a+1

,

and since ωm((x − 1)a(x + m − 1)) = ma+1, we obtain from (10) and (11)
the inequality

e2c + m − 1 > m(a + 1)

(

m − 1

a

)a/(a+1)

.

Choosing a = m − 1, we conclude that c > (log(m2 − m + 1))/2. We then
obtain the following theorem.

Theorem 3.1. Suppose f ∈ Dm is monic with degree n− 1 and is not a

product of cyclotomic polynomials. Then there exists a root α of f satisfying

(12) |α| >











1 +
log 13

4n
if m = 2,

1 +
log(m2 − m + 1)

2n
if m > 2.

Proof. Suppose f ∈ Dm is monic with degree n − 1. The preceding
analysis establishes these inequalities in the case that the noncyclotomic
part of f has no common factor with the appropriate auxiliary polynomial
F (xn). We need to establish (12) under the weaker hypothesis that f merely
contain a noncyclotomic factor.

In the case m = 2, this is immediate, since the polynomial x2n + 3
is irreducible by Eisenstein’s criterion, and clearly this polynomial cannot
divide f . However, for m > 2 the polynomial xn + m − 1 may be reducible
and may in fact have a common factor with f . (Consider for example m = 5
and f(x) = x3 +x2−4x+6 = (x+3)(x2−2x+2); the second factor divides
x4 +4.) Suppose then that every irreducible noncyclotomic factor g of f has
a common zero with xn−m+1. Then each root of g has modulus (m−1)1/n,
hence |f(0)| = (m − 1)s/n, where s is the degree of the noncyclotomic part
of f . But 1 ≤ s ≤ n − 1 implies that 1 < |f(0)| < m − 1, so f /∈ Dm,
a contradiction.

Note that to obtain Theorem 3.1, we applied the method of Algorithm 2.3
twice beginning with F0(x) = x − 1 for the case m = 2, but only once for
m > 2. A second iteration of this method allows us to improve the general
case as well, at least with an asymptotic formula. Since the polynomial
F1(x) = (x− 1)m−1(x + 1) achieves its maximum value over the circle |x| =√

m2 − m + 1 at the roots of Q(x) = (x−1)2+m(x−1)+m2, we investigate
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‖F1(x)aQ(x)‖|x|=ec and compare this quantity with ωm(F a
1 Q) = mam+2. We

find empirically that the optimal choice for a approaches 4 as m grows large,
and using this value we compute that the expression (log(m2 − m + 1))/2
of Theorem 3.1 may be replaced by

log(m2 − m + 1)

2
+

1 − log 2

2m
+

2 − log 2

8m2

− 34 − 53 log 2 + 26(log 2)2

96m3
+ O

(

1

m4

)

.

The proof of the theorem may be modified to account for the additional
factor Q. Suppose every noncyclotomic factor g of f has a common root with
either xn−m+1 or Q(xn). Then |f(0)| = (m−1)s/n(m2−m+1)t/2n for some
nonnegative integers s and t satisfying 0 < s + t < n. Thus |f(0)| < m, and
so the only possibility is f(0) = 1−m. In this case, we have (m−1)2(n−s) =
(m2 − m + 1)t, and we obtain a contradiction by reducing modulo m − 1.

We add that it is established in [4] that the value of the bound for f ∈ Dm

in Theorem 3.1 cannot exceed log(2m − 1).

4. Totally p-adic polynomials. We now turn to the problem of bound-
ing the logarithmic Weil height of a totally p-adic algebraic unit. We require
first the following result, which is very similar to Lemma 2.1.

Lemma 4.1. Suppose g ∈ Z[x] is a monic polynomial of degree d with

g(0) = ±1, and suppose that g splits completely in the field Qp, for some

prime p. Suppose also that G ∈ Z[x] satisfies p |G(1). Then

pd | Res(g(x), G(xp−1)).

Proof. Let α ∈ Qp be a root of g. Since g is monic with constant term ±1,
it follows that |α|p = 1, so |αp−1 − 1|p ≤ p−1. Next, because p |G(1), there
exist integer polynomials Q(x) and R(x) such that G(x) = (x − 1)Q(x) +
pR(x), so

|G(αp−1)|p ≤ max{|(αp−1 − 1)Q(αp−1)|p, |pR(αp−1)|p} ≤ p−1.

Finally, since g splits completely in Qp, the assertion follows.

Given F ∈ Z[x], let ωp(F ) be as in Section 2. Note that since p is prime,
the value of ωp(F ) is a power of p if the coefficients of F have no common
divisor. Expanding F (xp−1) in powers of xp−1 − 1 and using the lemma,
we deduce that ωp(F )d | Res(g(x), F (xp−1)) for every totally p-adic monic
polynomial g of degree d having constant term ±1. Thus, setting as above

Bp(F ) =
log ωp(F ) − log‖F‖∞

deg F
,

we obtain the following lower bound on the height of a totally p-adic alge-
braic unit.
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Theorem 4.2. Suppose α is a totally p-adic algebraic unit , and suppose

F ∈ Z[x] satisfies F (αp−1) 6= 0. Then

h(α) ≥ Bp(F )

p − 1
.

Proof. Let g ∈ Z[x] denote the minimal polynomial of α, and let d denote
the degree of g. Since F (αp−1) 6= 0, the discussion above yields

|Res(g(x), F (xp−1))| ≥ ωp(F )d,

and, as in the proof of Theorem 2.2, we find

|Res(g(x), F (xp−1))| ≤ ‖F‖d
∞M(g)(p−1) deg F .

Thus

h(α) =
log M(g)

d
≥ log ωp(F ) − log‖F‖∞

(p − 1) deg F
=

Bp(F )

p − 1
.

We may now use the values of Bp(F ) computed in Section 2. For p = 2,
since the only algebraic units that are roots of F5 are roots of unity, we
obtain

(13) τ2 ≥ 0.4162307230 . . . > 77/185,

improving the value in (3). Likewise, for p > 2, choosing

F (x) = (x − 1)p2

(x + 1)

produces the inequality

τp ≥ log(
√

p2 + 1) − log 2

p − 1
,

which already improves (3). Selecting

F (x) = (x − 1)3p2

(x + 1)3((p2 + 1)(x2 + 1) + 2(p2 − 1)x)2

yields an expression corresponding to (8), so

(14) τp ≥ log(p/2)

p − 1
+

3 − log 3

2p2(p − 1)
+ O

(

1

p5

)

.

Numerical values obtained from a third iteration of Algorithm 2.3 for some
small primes p are shown in Table 2, together with the value from (3), and
an upper bound on τp. Petsche [11] notes that the upper bound

τp ≤ log(p +
√

p2 + 4) − log 2

p − 1
for p ≥ 3 may be obtained by considering the totally p-adic polynomial
xp−1 − px(p−1)/2 − 1. Of course, for particular p one may find slightly better
bounds; the values in the third column of Table 2 arise by considering the
polynomials x2+8x−1, x2+3x−1, x4+5x−1, x6+7x4−1, and x10+11x4−1,
respectively.

Finally, we remark that the polynomial f(x) = x2 + x + 2 is totally
2-adic and has Mahler’s measure 2, so σ2 ≤ (log 2)/2 = 0.34657 . . . , and
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Table 2. Bounds on τp

p Original lower bound New lower bound Upper bound

2 0.34657359 0.41623072 1.04735627

3 0.20273255 0.25051330 0.59738160

5 0.22907268 0.23821731 0.40275725

7 0.20879382 0.21196257 0.32382886

11 0.17047480 0.17125398 0.23978828

consequently σ2 < τ2. It would be of interest to find all p for which σp = τp,
or to prove that no such p exists.
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