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1. Introduction. In this paper we consider the Lang–Trotter conjecture
(Conjecture 1 below) for various families of elliptic curves with prescribed
torsion structure. We prove that the Lang–Trotter conjecture holds in an
average sense for these families of curves (see Theorem 3).

Let E/Q denote an elliptic curve and let ∆E denote its discriminant. As
usual, let ap(E) = p + 1 − #E(Fp). Then we have the following conjecture
of Lang and Trotter [10].

Conjecture 1 (Lang–Trotter). Let E/Q be any elliptic curve and let

r ∈ Z (r 6= 0 if E has complex multiplication). Then

πr
E(X) := #{p ≤ X : ap(E) = r} ∼ CE,r

√
X

log X
,

where CE,r is an explicit constant depending only on E and r.

More precisely, let ̺E : Gal(Q/Q) → GL2(Ẑ) denote the Galois rep-

resentation on the full torsion subgroup of E(Q) where Ẑ =
∏

Zp. Let

˜̺E,m : Gal(Q/Q) → GL2(Z/mZ) denote its reduction modulo m which

yields the usual Galois representation on the m-torsion points of E(Q).
Then there is an integer mE guaranteed by [14] such that for all p ∤ mE ,
˜̺E,p(Gal(Q/Q)) = GL2(Z/pZ) and such that ̺E(Gal(Q/Q)) is the full in-

verse image through the reduction modulo mE map of ˜̺E,mE
(Gal(Q/Q))

in GL2(Ẑ) (see Section 2 of [2] for a more detailed explanation). Lang and
Trotter define
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(1) CE,r :=

2

π
· mE · #(˜̺E,mE

(Gal(Q/Q))r)

#(˜̺E,mE
(Gal(Q/Q)))

∏

q ∤mE

q ∤r

q(q2 − q − 1)

(q + 1)(q − 1)2

∏

q ∤mE

q|r

q2

q2 − 1
,

where for any subgroup G of GL2(Z/mEZ), Gr denotes the subset of ele-
ments of trace r. Note that the ratios of polynomials in q in the previous
expression are

q|(GL2(Fq))r|
|GL2(Fq)|

.

In [4] and [2], this conjecture is proved to hold in an average sense, if
one averages over all elliptic curves. As in [10], let

π1/2(X) =

X\
2

dt

2
√

t log t
∼

√
X

log X
.

Then from [2], we have the following result:

Theorem 1 (David–Pappalardi). Let E(a, b) : y2 = x3 + ax + b and let

ε > 0. If A, B > X1+ε, then we have, as X → ∞,

1

4AB

∑

|a|≤A
|b|≤B

πr
E(a,b)(X) ∼ Drπ1/2(X),

where

Dr :=
2

π

∏

q ∤r

q(q2 − q − 1)

(q + 1)(q − 1)2

∏

q|r

q2

q2 − 1
.

In fact, David and Pappalardi [2] prove the following stronger result.

Theorem 2 (David–Pappalardi). Let ε > 0 and fix c > 0. If A, B >
X2+ε, then for all d > 2c and for all elliptic curves E(a, b) with |a| ≤ A and

|b| ≤ B, with at most O(AB/logd X) exceptions, we have the inequality

|πr
E(a,b) − Drπ1/2(X)| ≪

√
X

logc X
.

One immediately notices the similarities between CE,r and Dr. From
Theorem 1 we see, when one averages over all elliptic curves, that the con-
stant obtained is similar to the conjectured constant CE,r. In fact if we set
mE = 1 in (1) then we obtain Dr. One should note, though, that mE is
never 1 (see [14]). However, Duke [3] has shown that for almost all elliptic
curves, ˜̺E,p(Gal(Q/Q)) = GL2(Z/pZ) for all primes p. It is still not known
if the constants obtained in [2, 4] are consistent with the ones conjectured
by Lang and Trotter, that is, we do not know if the average of the CE,r’s
above is Dr.
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Since the set of elliptic curves having nontrivial rational torsion sub-
groups has density zero in the set of all elliptic curves, the results mentioned
above ignore curves with nontrivial rational torsion subgroups. From (1), we
see that the presence of nontrivial rational torsion points has a substantial ef-
fect on the constant CE,r conjectured by Lang and Trotter. In particular, if E

has a rational point of order m, then m |mE and ˜̺E,m(Gal(Q/Q)) is a proper
subgroup of GL2(Z/mZ). Thus, it seems quite natural to investigate the be-
havior of πr

E(X) for elliptic curves with a nontrivial rational point of order m.
We note that by Mazur’s Theorem, [13], m ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 12}. In
[6], the fourth author has computed the average value of πr

E(X) for r 6≡ 2
(mod3) as E varies over elliptic curves having a rational point of order 3.
We will concentrate on extending those results to all m ∈ {3, 5, 7, 9}. In
the course of proving our main result for these values of m (see Section 3),
we will rely on the main result of [7]. In order to obtain similar results for
m ∈ {2, 4, 6, 8, 10, 12}, one would require a generalization of the work in [7]
since one would need to distinguish curves with cyclic 2-torsion from those
with full 2-torsion. This will be the focus of future work.

The families of elliptic curves defined over Q with prescribed torsion
subgroups have been parameterized by Kubert [9]. We list in Table 1 the
parameterizations of elliptic curves having a rational point of order m.

Table 1

m Parameterization Discriminant

3 E(a1, a3) : y2 + a1xy + a3y = x3 a3

1a
3

3 − 27a4

3

5 E(s) : y2 + (1 − s)xy − sy = x3 − sx2 s5(s2 − 11s − 1)

7 E(s) : y2 + (1 − s2 + s)xy − (s3 − s2)y s7(s − 1)7(s3 − 8s2 + 5s + 1)

= x3 − (s3 − s2)x2

9 E(s) : y2 + ((1 − s)(s2 + 1))xy − s(s2 − s + 1)2y ∆9(s) (see below)

= x3 − s(s2 − s + 1)2x2

For all curves we will assume that the discriminant is nonzero. Note that
for m = 9, the discriminant of E(s) is given by

∆9(s) = s5(−2 − 21s + 70s2 − 132s3 + 144s4 − 106s5 + 46s6 − 11s7 + s8)

× (s2 − s + 1)7.

Also, for any prime p one can follow the argument given in [8, pp. 145–
146], to see that any elliptic curve over Fp with an Fp-point of order m can
be written in the corresponding form in our Table 1. Thus, the reductions of
the curves in the above table modulo a prime p cover all m-torsion elliptic
curves over Fp. We shall make use of this fact in Section 2.

Let us consider the families of curves E(s) having an m-torsion point
with m odd. Suppose that we have r 6≡ 2 (modm). Then all of the curves
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with ap(E) = r have cyclic m-torsion (see the discussion on page 85 for an
explanation of this fact). In this case, we see that m |mE for each curve E
in the family and in fact, for the obvious choice of generators for E[m], we
have

G := ̺E,m(Gal(Q/Q)) ⊆
{(

1 b

0 d

)
: b ∈ Z/mZ, d ∈ (Z/mZ)∗

}
.

Thus one expects that when one averages over curves with rational m-
torsion, the contribution to the constant from the primes dividing m is

Cr(m) =
m|Gr|
|G| =

{
0 when (r − 1, m) > 1,

m/φ(m) otherwise.

That is to say, one might expect that Cr should be

2

π
· m

φ(m)
·

∏

q ∤m
q ∤r

q(q2 − q − 1)

(q + 1)(q − 1)2

∏

q ∤m
q|r

q2

q2 − 1
.

In this paper, we prove the following theorem.

Theorem 3. Let E(s) be the parameterization of elliptic curves having

a point of order m ∈ {5, 7, 9}. Then, for any c > 0, we have

1

µ(N)

∑′

|s|≤N

πr
E(s)(X) =

2

π
Cr,mπ1/2(X) + O

(
X3/2

N
+

√
X

logc X

)
,

where
∑′

represents the sum over non-singular curves, µ(N) represents the

number of curves in the sum,

Cr,m = Cr(m)
∏

q ∤m
q ∤r

q(q2 − q − 1)

(q + 1)(q − 1)2

∏

q ∤m
q|r

q2

q2 − 1
,

and

Cr(m) =





5/4 if m = 5 and r ≡ 0, 3, 4 (mod5),

7/6 if m = 7 and r ≡ 0, 3, 4, 5, 6 (mod7),

3/2 if m = 9 and r ≡ 0, 3, 6 (mod9).

This leads us to the immediate corollary:

Corollary 1. For any ε > 0, select N > X1+ε. Assuming the notation

from Theorem 3, for any c > 0 we have

1

µ(N)

∑′

|s|≤N

πr
E(s)(X) ∼ 2

π
Cr,m

√
X

log X
.

In fact, we can prove the following stronger result.
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Theorem 4. Suppose that m ∈ {5, 7, 9} and E(s) is the parameteriza-

tion of elliptic curves having a rational point of order m. Let ε > 0 and fix

c > 0. If N > X1+ε, then for all d > 2c and for all elliptic curves E(s) with

|s| ≤ N , with at most O(N/logd X) exceptions, we have the inequality

|πr
E(s) − Cr,mπ1/2(X)| ≪

√
X

logc X
.

Given Theorem 3, the proof of Theorem 4 is analogous to the proof
of Theorem 2. We refer the reader to [2] for the details of this proof and
concentrate our efforts on proving Theorem 3.

2. Isomorphisms of m-torsion curves. Suppose for p > 3 that Ẽ
is an isomorphism class of curves over Fp having m-torsion. Then there is

a model of Ẽ of the form E : y2 = x3 + Ax + B where A, B ∈ Fp. Using
an argument analogous to the one given in [8, pp. 145–146], we can select
a point (x0, y0) of order m on E and make several changes of variables to

obtain a model for Ẽ of the appropriate form E(s) from Table 1.
For m ∈ {5, 7, 9}, we note that the value of s depends only on the

x-coordinate of our chosen m-torsion point and not on the particular values
of A and B chosen. If we replace E : y2 = x3 + Ax + B and (x0, y0) by
an isomorphic curve E′ : y2 = x3 + Au4x + Bu6 and the corresponding
point (u2x0, u

3y0) of order m then we obtain the same value for s. Thus

the number of values of s which yield a model for Ẽ is simply the num-

ber of distinct x-coordinates among the points of order m on Ẽ. Thus,
if E(s) has full m-torsion, there are mφ(m) − φ2(m)/2 curves E(S) with
E(S) ∼= E(s), whereas if E(s) has cyclic m-torsion, there are φ(m)/2 such
models.

We note that if E(Fp) has full m-torsion then the action of Frobenius on
E[m] is trivial and thus the trace r of the Frobenius must be 2 modulo m.
We will only consider the case r 6≡ 2 (modm). Thus, the curves under
consideration will have cyclic m-torsion.

We recall that Deuring’s theorem (see [1, 11]) tells us that the number of

isomorphism classes of curves Ẽ/Fp with p+1−r points is H(4p−r2)+O(1).
For the remainder of this section, we will assume that r 6≡ 2 (modm) and
that m | (p + 1− r) and thus any curve with p + 1− r points will have cyclic
m-torsion. If m ∈ {5, 7}, for r2 < 4p we have

(2)
∑

1≤s≤p
#E(s)(Fp)=p+1−r

1 =





1
2φ(m)H(4p − r2) + O(1)

if (r − 1, m) = 1 and r 6≡ 2 (modm),

and p 6≡ r − 1 (modm2),

0 if (r − 1, m) > 1.
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In the case of m = 9, we assume that r 6≡ 2 (mod3). Then, any curve
with p + 1 − r points will have cyclic 9-torsion. Thus for r2 < 4p, we have

∑

1≤s≤p
#E(s)(Fp)=p+1−r

1 =





3H(4p − r2) + O(1)

if ord3(p + 1 − r) = 2 and r 6≡ 2 (mod3),

0 if (r − 1, 9) > 1.

3. Estimates for weighted sums of class numbers. First we fix
some notation. We will let

B(r) := max{r2/4, 5} and dp(f) :=
r2 − 4p

f2
.

Also, let

Sr
f (X) := {B(r) < p ≤ X : p ≡ r − 1 (modm), 4p ≡ r2, r2 − f2 (mod4f2)}.

We recall the following definition of the Hurwitz class number (in what
follows, we will assume that ∆ ≡ 0, 1 (mod4) is negative):

H(−∆) = 2
∑

f2|∆
∆/f2≡0,1 (mod4)

h(∆/f2)

ω(∆/f2)
,

where h(∆) is the usual class number. We recall the class number formula

h(∆) =
ω(∆)

√
−∆

2π
L(1, χ∆).

Combining these we have

(3) H(−∆) =
1

π

∑

f2|∆
∆/f2≡0,1 (mod 4)

√
−∆

f
L(1, χ∆/f2).

Next we prove the following useful lemmas.

Lemma 1. We have
∑

B(r)<p<X
p≡r−1 (modm)

H(4p − r2) = O(X3/2).

Proof. Using (3), we rewrite the first sum above as

1

π

∑

B(r)<p<X
p≡r−1 (modm)

∑

f2|(4p−r2)
dp(f)≡0,1 (mod 4)

√
4p − r2

f
L(1, χdp(f)).
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By the main result of [12], L(1, χdp(f)) ≪ log p. Thus for X sufficiently large,
the above sum is bounded above by a constant multiple of

(4)
2

π

√
X log X

( ∑

f≤X1/4/
√

m

1

f

∑

p∈Sr
f (X)

1 +
∑

X1/4/
√

m≤f≤2
√

X

1

f

∑

p∈Sr
f (X)

1

)
.

Recall that the Brun–Titchmarsh inequality [5] states that for any a,

π(X, a, mf2) := #{p < X : p ≡ a (modmf2)} <
3X

φ(mf2) log(X/mf2)
.

For f ≤ X1/4/
√

m, we have log(X/mf2) ≥ 1
2 log X. Thus, for such f ,

π(X, a, mf2) <
6X

fφ(f) log X
.

For f ≥ X1/4/
√

m,

π(X, a, mf2) < #{n ≤ X : n ≡ a (mod lcm[m, f2])} ≤
√

X.

Note that #Sr
f (X) = O(π(X, 1, mf2)). Thus, substituting the above esti-

mates on π(X, a, mf2) into (4), we have

2

π

√
X log X

( ∑

f≤X1/4/m

6X

f2φ(f) log X
+

∑

X1/4/m≤f≤2
√

X/m

√
X

f

)
= O(X3/2).

Lemma 2.

(5)
∑

B(r)≤p≤X
p≡r−1 (modm)

H(4p − r2)

p
=

2

π
√

X log X

∑

f≤2
√

X

1

f

∑

p∈Sr
f (X)

L(1, χd) log p

− 2

π

X\
2

∑

f≤2
√

y

1

f

∑

p∈Sr
f (y)

L(1, χd) log p
d

dy

[
1√

y log y

]
dy + O(log X).

Proof. Using (3), we have

(6)
∑

B(r)≤p≤X
p≡r−1 (modm)

H(4p − r2)

p
=

1

π

∑

f≤2
√

X

∑

p∈Sr
f (X)

√
4p − r2

pf
L(1, χdp(f)).

If we observe that
√

4p − r2 = 2
√

p+O(1/
√

p), the right hand side becomes

(7)
2

π

∑

f≤2
√

X

∑

p∈Sr
f (X)

L(1, χd)√
pf

+ O

( ∑

f≤2
√

X

∑

p∈Sr
f (X)

L(1, χd)

p3/2f

)

=
2

π

∑

f≤2
√

X

1

f

∑

p∈Sr
f (X)

L(1, χd)√
p

+ O(log X).
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Now, using partial summation, we can write

(8)
∑

p∈Sr
f (X)

L(1, χd) log p · 1√
p log p

=
1√

X log X

∑

p∈Sr
f (X)

L(1, χd) log p−
X\
2

∑

p∈Sr
f (y)

L(1, χd) log p
d

dy

[
1√

y log y

]
dy.

Thus combining (6), (7) and (8) and observing that if f > 2
√

y then Sr
f (y)

= ∅, we arive at (5).

The following theorem is an immediate consequence of the main result
in [7]:

Theorem 5. Suppose that m ∈ {5, 7, 9} and (r − 1, m) = 1. Then for

any c > 0,
∑

f≤2
√

X

1

f

∑

p∈Sr
f (X)

L(1, χdp(f)) log p =
Cr,m

φ(m)
X + O

(
X

logc X

)
,

where

Cr,m = Cr(m)
∏

q ∤m
q ∤r

q(q2 − q − 1)

(q + 1)(q − 1)2

∏

q ∤m
q|r

q2

q2 − 1
,

and

Cr(m) =





5/4 if m = 5 and r ≡ 0, 3, 4 (mod5),

7/6 if m = 7 and r ≡ 0, 3, 4, 5, 6 (mod7),

3/2 if m = 9 and r ≡ 0, 3, 6 (mod9).

Corollary 2. Suppose that m ∈ {5, 7, 9} and (r − 1, m) = 1 and let

Cr,m be as above. Then for any c > 0,

∑

B(r)≤p≤X
p≡r−1 (modm)

H(4p − r2)

p
=

4Cr,m

πφ(m)
π1/2(X) + O

( √
X

logc X

)
.

Proof. Combining Lemma 2 with Theorem 5, we have

(9)
∑

B(r)≤p≤X
p≡r−1 (modm)

H(4p − r2)

p

=
2Cr,m

πφ(m)

( √
X

log X
−

X\
2

[
y + O

(
y

logc y

)]
d

dy

[
1√

y log y

]
dy

)

+ O

( √
X

logc X

)
.
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We make the following observations:

(1)
d

dy

(
1√

y log y

)
= −

(
1

2y3/2 log y
+

1

y3/2 log2 y

)
.

(2) The O-term inside the integral contributes O(
√

X/logc X).

(3)

√
X

log X
=

X\
2

d

dy

[ √
y

log y

]
dy =

X\
2

dy

2
√

y log y
−

X\
2

dy
√

y log2 y

= π1/2(X) +

X\
2

dy
√

y log2 y
,

hence

π1/2(X) =

√
X

log X
+

X\
2

dy
√

y log2 y
.

So equation (9) becomes

∑

B(r)≤p≤X
p≡r−1 (modm)

H(4p − r2)

p

=
2Cr,m

πφ(m)

( √
X

log X
+

X\
2

dy

2
√

y log y
+

X\
2

dy
√

y log2 y

)
+ O

( √
X

logc X

)

=
4Cr,m

πφ(m)
π1/2(X) + O

( √
X

logc X

)
.

4. Proof of Theorem 3. Let E(s) be the parameterization of elliptic
curves having a point of order m ∈ {5, 7}. Suppose that (r − 1, m) = 1
and that r 6≡ 2 (modm). For the curves that we are interested in counting,
ap(E(s)) = r. Thus, we have p + 1 − r = #E(Fp). Also, since the group of
points on E(s) has a subgroup of order m, we see that p ≡ r − 1 (modm).
By the definition of πr

E(s)(X), we can write

(10)
1

µ(N)

∑′

|s|≤N

πr
E(s)(X)

=
1

µ(N)

∑

B(r)≤p≤X
p≡r−1 (modm)

( ∑

|s|≤N
ap(E(s))=r

1
)

+ O

(
X

N log X

)
,

where the error term comes from no longer excluding singular curves in our
sum.
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Using (2), we can write

∑

|s|≤N

ap(E(s))=r

1 =

(
φ(m)

2
· H(4p − r2) + O(1)

)(
2N

p
+ O(1)

)

=
Nφ(m)

p
· H(4p − r2) + O

(
H(4p − r2) +

2N

p

)
.

If we now substitute this into equation (10) and note that N/µ(N) = O(1),
we obtain

1

µ(N)

∑′

|s|≤N

πr
E(s)(X)

=
φ(m)

µ(N)

∑

B(r)≤p≤X
p≡r−1 (modm)

(
N

p
H(4p − r2) + O

(
H(4p − r2) +

2N

p

))

+ O

(
X

N log X

)

=
φ(m)

2

∑

B(r)≤p≤X
p≡r−1 (modm)

H(4p − r2)

p
+ O

(
1

N

∑

B(r)≤p≤X
p≡r−1 (modm)

H(4p − r2)

)

+ O

(
X

N log X
+ log log X

)
.

Applying Lemmas 2 and 1, we have

1

µ(N)

∑′

|s|≤N

πr
E(s)(X) =

2

π
Cr,mπ1/2(X) + O

(
X3/2

N
+

√
X

logc X

)
.
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