Polynomial modular n-queens solutions

by

Jordan Bell (Ottawa)

1. Introduction. The modular n-queens problem is to place n nonattacking queens on the $n \times n$ modular chessboard, in which opposite sides are identified like a torus. We number the rows from the top to bottom as $0,1, \ldots, n-1$ respectively, and the columns from the left to right as $0,1, \ldots, n-1$ respectively, and refer to a queen on row i and column j by (i, j). A queen on the square (i, j) attacks its row and column, and the (modular) diagonals $\{(k, l): k-l \equiv i-j(\bmod n)\}$ and $\{(k, l): k+l \equiv i+j$ $(\bmod n)\}$.

Let $\mathbb{Z} / n=\{0,1, \ldots, n-1\}$ be the ring of integers modulo n. A polynomial $f(x)$ over \mathbb{Z} / n is called a permutation polynomial if the evaluation mapping $t \mapsto f(t)$ is a permutation of \mathbb{Z} / n. We say that a permutation f of \mathbb{Z} / n is a modular n-queens solution if the mappings $t \mapsto f(t)-t$ and $t \mapsto f(t)+t$ are also permutations of $\mathbb{Z} / n ; f$ being a permutation means no two queens are on the same row or column, and $t \mapsto f(t)-t$ and $t \mapsto f(t)+t$ being permutations means no two queens are on the same diagonal. For a prime power q, let \mathbb{F}_{q} be the finite field with q elements. In particular, for a prime p we write $\mathbb{F}_{p}=\mathbb{Z} / p=\{0,1, \ldots, p-1\}$.

The modular n-queens problem is a variant of the original n-queens problem of putting n nonattacking queens on the $n \times n$ (standard) chessboard. An n-queens solution is a placement of n nonattacking queens on the $n \times n$ chessboard; it is clear that a modular n-queens solution is necessarily an n-queens solution. Pólya [8] proves that there exists a modular n-queens solution if and only if $\operatorname{gcd}(n, 6)=1$, that is, if and only if n is not divisible by 2 or 3 . To prove that $\operatorname{gcd}(n, 6)=1$ is sufficient for a modular n-queens solution to exist, Pólya notes that if $a-1, a, a+1$ are relatively prime to n, then the linear polynomials $f(x)=a x+b$ are modular n-queens solutions. Kløve [3] constructs a class of nonlinear polynomials that are modular n-queens

[^0]solutions. Modular n-queens solutions are related to certain combinatorial structures, in particular Latin squares (cf. [1]).

This paper gives three constructions of modular n-queens solutions using permutation polynomials of \mathbb{Z} / n. In particular, using results from the theory of binary quadratic forms, conditions are given when certain trinomials represent modular n-queens solutions. This is useful because the only presently known class of polynomial modular n-queens solutions are Kløve's [3]. Polynomial modular n-queens solutions are particularly desirable because they can be efficiently computed.

2. Results

ThEOREM 1. Let p be prime. If $p=L^{2}+675 M^{2}$ then $x\left(x^{2(p-1) / 3}+\right.$ $\left.x^{(p-1) / 3}+3\right)$ represents a modular p-queens solution. If $p=L^{2}+81675 M^{2}$ then $x\left(2 x^{2(p-1) / 3}+2 x^{(p-1) / 3}+7\right)$ represents a modular p-queens solution.

Proof. For q a prime power $\equiv 1(\bmod 3), s=(q-1) / 3$, and ω an element of \mathbb{F}_{q} of order 3, Lee and Park [5] prove that for $\operatorname{gcd}(r, s)=1, x^{r}\left(a x^{2 s}+\right.$ $\left.a \omega^{i} x^{s}+b\right)$ is a permutation polynomial of \mathbb{F}_{q} if and only if $r \not \equiv 0(\bmod 3)$ and $\left(b \omega^{i}+2 a\right) /\left(b \omega^{i}-a\right)$ is a nonzero cube in \mathbb{F}_{q}. Thus if $q=p, r=1$, $i=0$, then $x\left(a x^{2 s}+a x^{s}+b\right)$ is a permutation polynomial of \mathbb{F}_{p} if and only if $(b+2 a) /(b-a)$ is a nonzero cube in \mathbb{F}_{p}. Therefore we see that $x\left(a x^{2 s}+\right.$ $\left.a x^{s}+b\right)$ is a modular p-queens solution if and only if

$$
\begin{equation*}
\frac{b-1+2 a}{b-1-a}, \quad \frac{b+2 a}{b-a}, \quad \frac{b+1+2 a}{b+1-a} \tag{1}
\end{equation*}
$$

are nonzero cubes in \mathbb{F}_{p}.
If $b=3, a=1$, the elements (1) are $4 / 1=4,5 / 2,6 / 3=2$, which are nonzero cubes if and only if 2,5 are nonzero cubes.

If $b=7, a=2$, the elements (1) are $10 / 4=5 / 2,11 / 5,12 / 6=2$, which are nonzero cubes if and only if $2,5,11$ are nonzero cubes.

It is well known that 2 is a cubic residue modulo a prime $p \equiv 1(\bmod 3)$ if and only if p is represented by the quadratic form $L^{2}+27 M^{2}[2$, Theorem 4.15]. Lemmermeyer $[6, \S 7.1]$ shows that 5 is a cubic residue modulo p if and only if $L M \equiv 0(\bmod 5)$. Thus if $p=L^{2}+25 \cdot 27 M^{2}=L^{2}+675 M^{2}$, then 2,5 are cubic residues modulo p.

As well, Lemmermeyer $[6, \S 7.1]$ shows that 11 is a cubic residue modulo p if and only if $L M(L-3 M)(L+3 M) \equiv 0(\bmod 11)$. Thus if $p=L^{2}+$ $25 \cdot 121 \cdot 27 M^{2}=L^{2}+81675 M^{2}$, then $2,5,11$ are cubic residues modulo p.

For example, let $L=4$ and $M=1$. We find that $p=L^{2}+675 M^{2}=$ $16+675=691$ is prime. Thus by the above theorem, the polynomial $x\left(x^{460}+\right.$ $x^{230}+3$) represents a modular 691-queens solution.

We now recall some definitions about binary quadratic forms [4, Part Four], which we use in the following remark. A form $f(x, y)$ is properly equivalent to a form $g(x, y)$ if there is an element $\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $f(x, y)=g(\alpha x+\beta y, \gamma x+\delta y)$. The opposite of a form $a x^{2}+b x y+c y^{2}$ is the form $a x^{2}-b x y+c y^{2}$.

REMARK 2. By the Dirichlet density theorem for binary quadratic forms [2, Theorem 9.12], the set of primes represented by a primitive positive definite binary quadratic form of discriminant D has Dirichlet density $1 / 2 h(D)$ if the form is properly equivalent to its opposite and $1 / h(D)$ otherwise, where $h(D)$ is the class number. Clearly, $L^{2}+675 M^{2}$ and $L^{2}+81675 M^{2}$ are properly equivalent to their opposites, by the identity transformation $\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$. Their discriminants are $-4 \cdot 675=-2700$ and $-4 \cdot 81675=$ -326700 respectively, and using [4, Theorem 214] we find that $h(-2700)=$ $h\left((2 \cdot 3 \cdot 5)^{2} \cdot(-3)\right)=18$ and $h(-326700)=h\left((2 \cdot 3 \cdot 5 \cdot 11)^{2} \cdot(-3)\right)=216$. In particular, there are infinitely many primes represented by the quadratic forms $L^{2}+675 M^{2}$ and $L^{2}+81675 M^{2}$.

Theorem 3. Let $p \geq 7$ be prime and e be a positive integer. Then $f(x)=x^{(p+1) / 2}+\frac{5}{4} x$ is a modular p^{e}-queens solution if

$$
\begin{align*}
p \equiv 1, & 601,121,61,361,181,469,289,589,529,49,649 \tag{2}\\
& 197,317,617,137,437,557,353,473,773,293,593,713 \\
& 587,707,227,527,47,167,743,83,383,683,203,323 \\
& 391,211,511,451,751,571,79,679,199,139,439,259(\bmod 780) .
\end{align*}
$$

Proof. Nöbauer [7] proves that for all primes $p \geq 7$ and integers $e \geq 1$, if $a=\left(c^{2}+1\right) /\left(c^{2}-1\right)$ with c such that $c^{2} \not \equiv \pm 1, \pm 3(\bmod p)$, then $f(x)=$ $x^{(p+1) / 2}+a x$ is a permutation polynomial of \mathbb{Z} / p^{e}.

Let $c=3$. Then $a=5 / 4$. If there exist b, d such that

$$
a-1=\frac{b^{2}+1}{b^{2}-1} \quad \text { and } \quad a+1=\frac{d^{2}+1}{d^{2}-1}
$$

then $f(x)-x$ and $f(x)+x$ are permutation polynomials of \mathbb{Z} / p^{e}, hence $f(x)$ will be a modular p^{e}-queens solution. Now, $5 / 4-1=\left(b^{2}+1\right) /\left(b^{2}-1\right)$ if and only if $b^{2}-1=4\left(b^{2}+1\right)$ if and only if $b^{2}=-5 / 3$. Similarly, $5 / 4+1=$ $\left(d^{2}+1\right) /\left(d^{2}-1\right)$ if and only if $9\left(d^{2}-1\right)=4\left(d^{2}+1\right)$ if and only if $d^{2}=13 / 5$. We consider the two cases of when $p \equiv 1(\bmod 4)$ and when $p \equiv 3(\bmod 4)$.

We note first that the squares modulo 3 are $\equiv 1(\bmod 3)$, the squares modulo 5 are $\equiv 1,4(\bmod 5)$, and the squares modulo 13 are $\equiv 1,3,4,9,10,12$ $(\bmod 13)$. We recall the law of quadratic reciprocity [10, Chapter I, Theorem $6]$, that if p, q are distinct odd primes, then p is a square modulo q if and only if q is a square modulo p, unless both p, q are $\equiv 3(\bmod 4)$, in which case p is a square modulo q if and only if q is a nonsquare modulo p.

CASE $p \equiv 1(\bmod 4):-1$ is a square modulo p. Either $3,5,13$ are squares modulo p or $3,5,13$ are nonsquares modulo p. By quadratic reciprocity, $q=3,5,13$ is a square or nonsquare modulo p according as p is a square or nonsquare modulo q. Hence either $p \equiv 1(\bmod 3), p \equiv 1,4$ $(\bmod 5), p \equiv 1,3,4,9,10,12(\bmod 13)$ or $p \equiv 2(\bmod 3), p \equiv 2,3(\bmod 5)$, $p \equiv 2,5,6,7,8,11(\bmod 13)$.

CASE $p \equiv 3(\bmod 4):-1$ is a nonsquare modulo p. Either 3 is a square and 5,13 are nonsquares modulo p, or 3 is a nonsquare and 5,13 are squares modulo p. By quadratic reciprocity, 3 is a square or nonsquare modulo p according as p is a nonsquare or square modulo 3 . By quadratic reciprocity, $q=5,13$ is a square or nonsquare modulo p according as p is a square or nonsquare modulo q. Hence either $p \equiv 2(\bmod 3), p \equiv 2,3$ $(\bmod 5), p \equiv 2,5,6,7,8,11(\bmod 13)$ or $p \equiv 1(\bmod 3), p \equiv 1,4(\bmod 5)$, $p \equiv 1,3,4,9,10,12(\bmod 13)$.

Using the Chinese remainder theorem we compute the common solutions of these congruences modulo $4 \cdot 3 \cdot 5 \cdot 13=780$, listed in (2).

For example, for the prime $p=61$ and $e=2$, the above theorem shows that $x^{(61+1) / 2}+\frac{5}{4} x=x^{31}+47 x$ represents a modular p^{e}-queens solution, which is a modular 3721-queens solution.

REmARK 4. By Dirichlet's theorem for primes in an arithmetic progression [10, Chapter VI, Theorem 2], the set of primes p that satisfy (2) has Dirichlet density $48 / \phi(780)=48 / 192=1 / 4$, where ϕ is Euler's totient function. In particular, there are infinitely many primes p that satisfy (2).

Theorem 5. Let N be a positive integer not divisible by 2 or 3 . If $h_{1}-1$, $h_{1}, h_{1}+1$ are relatively prime to N and every prime factor of N divides h_{2}, then $H(x)=h_{1} x+h_{2} x^{2}$ is a modular N-queens solution.

Proof. Let $n_{m, p}$ denote the multiplicity of the prime p in m. Ryu and Takeshita [9] prove that for $2 \nmid N, H(x)=h_{1} x+h_{2} x^{2}$ is a permutation polynomial of \mathbb{Z} / N if and only if $\operatorname{gcd}\left(h_{1}, N\right)=1$ and $n_{h_{2}, p} \geq 1$ for all primes p such that $n_{N, p} \geq 1$ (i.e. if p divides N then p divides h_{2}). This implies that $H(x)-x, H(x), H(x)+x$ are permutation polynomials of \mathbb{Z} / N. Hence $H(x)$ is a modular N-queens solution.

For example, let $N=175=25 \cdot 7, h_{1}=3, h_{2}=35$. Then $H(x)=$ $3 x+35 x^{2}$. Since $h_{1}-1=2, h_{1}=3, h_{1}+1=4$ are relatively prime to $N=175$ and the prime divisors 5,7 of N divide h_{2}, the above theorem shows that $H(x)=3 x+35 x^{2}$ represents a modular 175-queens solution.

Acknowledgements. The author would like to thank the referee for some helpful suggestions.

References

[1] J. Bell and B. Stevens, Constructing orthogonal pandiagonal Latin squares and panmagic squares from modular n-queens solutions, J. Combin. Des. 15 (2007), 221-234.
[2] D. A. Cox, Primes of the Form $x^{2}+n y^{2}$, Fermat, Class Field Theory, and Complex Multiplication, Wiley, New York, 1997.
[3] T. Kløve, The modular n-queen problem, Discrete Math. 19 (1977), 289-291 (1978).
[4] E. Landau, Elementary Number Theory, Chelsea, New York, 1958.
[5] J. B. Lee and Y. H. Park, Some permuting trinomials over finite fields, Acta Math. Sci. (Engl. Ed.) 17 (1997), 250-254.
[6] F. Lemmermeyer, Reciprocity Laws. From Euler to Eisenstein, Springer Monogr. Math., Springer, Berlin, 2000.
[7] W. Nöbauer, Über Permutationspolynome und Permutationsfunktionen für Primzahlpotenzen, Monatsh. Math. 69 (1965), 230-238.
[8] G. Pólya, Über die "doppelt-periodischen" Lösungen des n-Damen-Problems, in: Mathematische Unterhaltungen und Spiele, 2nd ed., W. Ahrens (ed.), Vol. 2, B. G. Teubner, 1918, 364-374.
[9] J. Ryu and O. Y. Takeshita, On quadratic inverses for quadratic permutation polynomials over integer rings, IEEE Trans. Inform. Theory 52 (2006), 1254-1260.
[10] J.-P. Serre, A Course in Arithmetic, Grad. Texts in Math. 7, Springer, New York, 1973.

School of Mathematics and Statistics
Carleton University
Ottawa, Ontario, Canada
E-mail: jbell3@connect.carleton.ca

[^0]: 2000 Mathematics Subject Classification: 11T06, 11E16, 05B30.
 Key words and phrases: permutation polynomials, binary quadratic forms, n-queens problem.

