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Polynomial modular n-queens solutions
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Jordan Bell (Ottawa)

1. Introduction. The modular n-queens problem is to place n nonat-
tacking queens on the n × n modular chessboard, in which opposite sides
are identified like a torus. We number the rows from the top to bottom
as 0, 1, . . . , n − 1 respectively, and the columns from the left to right as
0, 1, . . . , n − 1 respectively, and refer to a queen on row i and column j
by (i, j). A queen on the square (i, j) attacks its row and column, and the
(modular) diagonals {(k, l) : k− l ≡ i− j (modn)} and {(k, l) : k + l ≡ i+ j
(modn)}.

Let Z/n = {0, 1, . . . , n − 1} be the ring of integers modulo n. A poly-
nomial f(x) over Z/n is called a permutation polynomial if the evaluation
mapping t 7→ f(t) is a permutation of Z/n. We say that a permutation f
of Z/n is a modular n-queens solution if the mappings t 7→ f(t) − t and
t 7→ f(t) + t are also permutations of Z/n; f being a permutation means no
two queens are on the same row or column, and t 7→ f(t)−t and t 7→ f(t)+t
being permutations means no two queens are on the same diagonal. For a
prime power q, let Fq be the finite field with q elements. In particular, for a
prime p we write Fp = Z/p = {0, 1, . . . , p − 1}.

The modular n-queens problem is a variant of the original n-queens prob-
lem of putting n nonattacking queens on the n × n (standard) chessboard.
An n-queens solution is a placement of n nonattacking queens on the n× n
chessboard; it is clear that a modular n-queens solution is necessarily an
n-queens solution. Pólya [8] proves that there exists a modular n-queens so-
lution if and only if gcd(n, 6) = 1, that is, if and only if n is not divisible by
2 or 3. To prove that gcd(n, 6) = 1 is sufficient for a modular n-queens solu-
tion to exist, Pólya notes that if a−1, a, a+1 are relatively prime to n, then
the linear polynomials f(x) = ax+ b are modular n-queens solutions. Kløve
[3] constructs a class of nonlinear polynomials that are modular n-queens
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solutions. Modular n-queens solutions are related to certain combinatorial
structures, in particular Latin squares (cf. [1]).

This paper gives three constructions of modular n-queens solutions using
permutation polynomials of Z/n. In particular, using results from the theory
of binary quadratic forms, conditions are given when certain trinomials rep-
resent modular n-queens solutions. This is useful because the only presently
known class of polynomial modular n-queens solutions are Kløve’s [3]. Poly-
nomial modular n-queens solutions are particularly desirable because they
can be efficiently computed.

2. Results

Theorem 1. Let p be prime. If p = L2 + 675M2 then x(x2(p−1)/3 +
x(p−1)/3 + 3) represents a modular p-queens solution. If p = L2 + 81675M2

then x(2x2(p−1)/3 + 2x(p−1)/3 + 7) represents a modular p-queens solution.

Proof. For q a prime power ≡ 1 (mod3), s = (q − 1)/3, and ω an element
of Fq of order 3, Lee and Park [5] prove that for gcd(r, s) = 1, xr(ax2s +
aωixs + b) is a permutation polynomial of Fq if and only if r 6≡ 0 (mod3)
and (bωi + 2a)/(bωi − a) is a nonzero cube in Fq. Thus if q = p, r = 1,
i = 0, then x(ax2s + axs + b) is a permutation polynomial of Fp if and only
if (b + 2a)/(b − a) is a nonzero cube in Fp. Therefore we see that x(ax2s +
axs + b) is a modular p-queens solution if and only if

(1)
b − 1 + 2a

b − 1 − a
,

b + 2a

b − a
,

b + 1 + 2a

b + 1 − a

are nonzero cubes in Fp.

If b = 3, a = 1, the elements (1) are 4/1 = 4, 5/2, 6/3 = 2, which are
nonzero cubes if and only if 2, 5 are nonzero cubes.

If b = 7, a = 2, the elements (1) are 10/4 = 5/2, 11/5, 12/6 = 2, which
are nonzero cubes if and only if 2, 5, 11 are nonzero cubes.

It is well known that 2 is a cubic residue modulo a prime p ≡ 1 (mod3)
if and only if p is represented by the quadratic form L2 +27M2 [2, Theorem
4.15]. Lemmermeyer [6, §7.1] shows that 5 is a cubic residue modulo p if and
only if LM ≡ 0 (mod5). Thus if p = L2 + 25 · 27M2 = L2 + 675M2, then
2, 5 are cubic residues modulo p.

As well, Lemmermeyer [6, §7.1] shows that 11 is a cubic residue modulo
p if and only if LM(L − 3M)(L + 3M) ≡ 0 (mod11). Thus if p = L2 +
25 · 121 · 27M2 = L2+81675M2, then 2, 5, 11 are cubic residues modulo p.

For example, let L = 4 and M = 1. We find that p = L2 + 675M2 =
16+675 = 691 is prime. Thus by the above theorem, the polynomial x(x460+
x230 + 3) represents a modular 691-queens solution.
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We now recall some definitions about binary quadratic forms [4, Part
Four], which we use in the following remark. A form f(x, y) is properly

equivalent to a form g(x, y) if there is an element
( α β

γ δ

)

∈ SL2(Z) such that

f(x, y) = g(αx+ βy, γx+ δy). The opposite of a form ax2 + bxy + cy2 is the
form ax2 − bxy + cy2.

Remark 2. By the Dirichlet density theorem for binary quadratic forms
[2, Theorem 9.12], the set of primes represented by a primitive positive defi-
nite binary quadratic form of discriminant D has Dirichlet density 1/2h(D)
if the form is properly equivalent to its opposite and 1/h(D) otherwise,
where h(D) is the class number. Clearly, L2 + 675M2 and L2 + 81675M2

are properly equivalent to their opposites, by the identity transformation
(

1 0
0 1

)

∈ SL2(Z). Their discriminants are −4 · 675 = −2700 and −4 · 81675 =
−326700 respectively, and using [4, Theorem 214] we find that h(−2700) =
h((2 · 3 · 5)2 · (−3)) = 18 and h(−326700) = h((2 · 3 · 5 · 11)2 · (−3)) = 216.
In particular, there are infinitely many primes represented by the quadratic
forms L2 + 675M2 and L2 + 81675M2.

Theorem 3. Let p ≥ 7 be prime and e be a positive integer. Then

f(x) = x(p+1)/2 + 5
4x is a modular pe-queens solution if

(2) p ≡ 1, 601, 121, 61, 361, 181, 469, 289, 589, 529, 49, 649,

197, 317, 617, 137, 437, 557, 353, 473, 773, 293, 593, 713,

587, 707, 227, 527, 47, 167, 743, 83, 383, 683, 203, 323,

391, 211, 511, 451, 751, 571, 79, 679, 199, 139, 439, 259 (mod780).

Proof. Nöbauer [7] proves that for all primes p ≥ 7 and integers e ≥ 1,
if a = (c2 + 1)/(c2 − 1) with c such that c2 6≡ ±1,±3 (modp), then f(x) =
x(p+1)/2 + ax is a permutation polynomial of Z/pe.

Let c = 3. Then a = 5/4. If there exist b, d such that

a − 1 =
b2 + 1

b2 − 1
and a + 1 =

d2 + 1

d2 − 1
,

then f(x)−x and f(x)+x are permutation polynomials of Z/pe, hence f(x)
will be a modular pe-queens solution. Now, 5/4 − 1 = (b2 + 1)/(b2 − 1) if
and only if b2 − 1 = 4(b2 + 1) if and only if b2 = −5/3. Similarly, 5/4 + 1 =
(d2 + 1)/(d2 − 1) if and only if 9(d2−1) = 4(d2 +1) if and only if d2 = 13/5.
We consider the two cases of when p ≡ 1 (mod4) and when p ≡ 3 (mod4).

We note first that the squares modulo 3 are ≡ 1 (mod3), the squares
modulo 5 are ≡ 1, 4 (mod5), and the squares modulo 13 are ≡ 1, 3, 4, 9, 10, 12
(mod13). We recall the law of quadratic reciprocity [10, Chapter I, Theorem
6], that if p, q are distinct odd primes, then p is a square modulo q if and
only if q is a square modulo p, unless both p, q are ≡ 3 (mod4), in which
case p is a square modulo q if and only if q is a nonsquare modulo p.
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Case p ≡ 1 (mod4): −1 is a square modulo p. Either 3, 5, 13 are
squares modulo p or 3, 5, 13 are nonsquares modulo p. By quadratic reci-
procity, q = 3, 5, 13 is a square or nonsquare modulo p according as p is
a square or nonsquare modulo q. Hence either p ≡ 1 (mod3), p ≡ 1, 4
(mod5), p ≡ 1, 3, 4, 9, 10, 12 (mod13) or p ≡ 2 (mod3), p ≡ 2, 3 (mod5),
p ≡ 2, 5, 6, 7, 8, 11 (mod13).

Case p ≡ 3 (mod4): −1 is a nonsquare modulo p. Either 3 is a square
and 5, 13 are nonsquares modulo p, or 3 is a nonsquare and 5, 13 are squares
modulo p. By quadratic reciprocity, 3 is a square or nonsquare modulo
p according as p is a nonsquare or square modulo 3. By quadratic reci-
procity, q = 5, 13 is a square or nonsquare modulo p according as p is
a square or nonsquare modulo q. Hence either p ≡ 2 (mod3), p ≡ 2, 3
(mod5), p ≡ 2, 5, 6, 7, 8, 11 (mod13) or p ≡ 1 (mod3), p ≡ 1, 4 (mod5),
p ≡ 1, 3, 4, 9, 10, 12 (mod13).

Using the Chinese remainder theorem we compute the common solutions
of these congruences modulo 4 · 3 · 5 · 13 = 780, listed in (2).

For example, for the prime p = 61 and e = 2, the above theorem shows
that x(61+1)/2 + 5

4x = x31 + 47x represents a modular pe-queens solution,
which is a modular 3721-queens solution.

Remark 4. By Dirichlet’s theorem for primes in an arithmetic progres-
sion [10, Chapter VI, Theorem 2], the set of primes p that satisfy (2) has
Dirichlet density 48/φ(780) = 48/192 = 1/4, where φ is Euler’s totient
function. In particular, there are infinitely many primes p that satisfy (2).

Theorem 5. Let N be a positive integer not divisible by 2 or 3. If h1 − 1,
h1, h1 + 1 are relatively prime to N and every prime factor of N divides h2,
then H(x) = h1x + h2x

2 is a modular N -queens solution.

Proof. Let nm,p denote the multiplicity of the prime p in m. Ryu and
Takeshita [9] prove that for 2 ∤ N , H(x) = h1x + h2x

2 is a permutation
polynomial of Z/N if and only if gcd(h1, N) = 1 and nh2,p ≥ 1 for all primes
p such that nN,p ≥ 1 (i.e. if p divides N then p divides h2). This implies
that H(x)− x, H(x), H(x) + x are permutation polynomials of Z/N . Hence
H(x) is a modular N -queens solution.

For example, let N = 175 = 25 · 7, h1 = 3, h2 = 35. Then H(x) =
3x + 35x2. Since h1 − 1 = 2, h1 = 3, h1 + 1 = 4 are relatively prime to
N = 175 and the prime divisors 5, 7 of N divide h2, the above theorem
shows that H(x) = 3x + 35x2 represents a modular 175-queens solution.
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