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1. Polynomials over finite sets of integers. Let f = f(z1,...,2y)
be a polynomial with integral coefficients. Let A be a nonempty finite set of
integers or of congruence classes modulo m. We denote by f(A) the image
of the function f with domain A, that is,

f(A) ={f(a1,...,an):a; € Afori=1,...,n}.

If f is a polynomial in n variables, then |f(A)| < |A|".

The classical examples are the polynomials x1 + z9 and x; — x3. The
sumset A+ A is the set s(A) for the polynomial s(x1,x2) = x1 4 22, and the
difference set A — A is the set d(A) for the polynomial d(z1,x2) = x1 — z2.
For any arithmetic progression A or, more generally, any symmetric set A
of integers, we have |d(A)| = |s(A)|, but for “most” sets A the difference
set contains more elements than the sumset. It had been conjectured (cf.
Croft [1], Marica [3], Nathanson [7, 6]) that |d(A)| > |s(A)| for every set A,
but the set A = {0,2,3,4,7,11,12,14} is a counterexample, since

A= A] = |d(A)| = 25
and
|A+ Al =[s(A)] = 26.

Sets with more sums than differences have also been studied by Hegarty [2]
and Martin and O’Bryant [4]. This suggests the following problem.
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PROBLEM 1. Let f(x1,...,2,) and g(x1,...,zy) be polynomials with in-
teger coefficients. Determine if there exist finite sets A, B,C of positive in-
tegers with |C| > 1 such that

[F(A)] > 1g(A),
(1) [F(B) < lg(B)I,
[F(O)] = 1g(C)].

There is a stronger form of Problem 1.

PROBLEM 2. Let f(x1,...,2zy) and g(x1,...,zy) be polynomials with in-
teger coefficients. Does there exist a sequence {A;}7°, of finite sets of integers
such that

A
i—oo |g(As)]

Does there exist a sequence {C;}5°, of finite sets of integers with lim;_. |Cj]

= o0 and |f(C;)| = |g(Cy)| for all i?

Linear polynomials constitute an important special case.

PROBLEM 3. Let f(x1,...,2n) = u1x1+ - +unxy and g(x1,...,2,) =
v1T1 + -+ + vpxy, be linear forms with integer coefficients. Do there exist
finite sets A, B,C' of integers with |C| > 1 that satisfy (1)?

The interval of integers [a,b] is the set of integers {a,a + 1,...,b}. For
any integer u and sets A and B of integers, we define the dilation

ux A={ua:ac A}
and the sumset
A+B={a+b:a€ Aandbec B}
If f(z1,...,2n) = wrx1 + -+ + Uupy is a linear form, then
flA)=u A+ 4 upy x A

Sets of integers A and B are affinely equivalent if there are rational numbers

u # 0 and v such that B = ux A + {v}. In this case,
f(B) = flux A+{v}) = ux f(A) +{f(v,...,0)},

hence

|f(A) = [f(B)].
Note that every two-element set is affinely equivalent to the set {0,1}, and
that every set A of integers with 1 < |A| < oo is affinely equivalent to a set
A’ such that 0 € A" and A’\ {0} is a set of relatively prime positive integers.
The following theorem implies that Problem 3 is equivalent to Problem 2 in
the case of linear forms.
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THEOREM 1. Let f(x1,...,2zy,) and g(x1,...,xy,) be linear forms with
integer coefficients, and let A and C be finite sets of integers such that

|f(A)] > |g(A)], | F(C)] = 19(C)], and |C| > 1. There exist sequences {A;}7°,
and {C;}32, of finite sets of integers with lim;_, |C;| = oo such that
| f(A)]
lim = o0,
i—oo |g(Aj)]
and | f(Ci)| = [g(Cs)| for all i.
Proof. Let f(x1,...,2n) = > iy uiz; and g(x1,...,2n) = Yoy viz; be
linear forms with integer coefficients, and let A be a finite set of integers.
We define

myq(A) =max(|s| : s € AU f(A)Ug(A)),

and choose an integer
M > me’g(A).

Let
Ay=A+MxA={a+ Md :a,d € A}.

If a1, d},az,a5 € A and a1 + Ma) = ag + Md, then a; — ag = M(ah — af).
Since
Midy — d}] = a1 — az] < Jaa| + |as| < 2y, (4) < M,
it follows that @} = a} and so a; = ag and
[Au| =14
The identity
n n n
SUTISTINS ST SO
i=1 i=1 i=1
implies that
F(An) = f(A) + M f(A).
If 51,8, 52,8, € f(A) and
s1+ Ms| = sy + Msh,
it again follows that s; = sg, 8] = sb, and
|f(Ann)] = [F (A
Similarly,
l9(An)| = lg(A)?

and so

f(Au)| (If(A)I>2
l9(Anr)] l9(A)]) -

The theorem follows by iterating this construction. =



344 M. B. Nathanson et al.

In the case of binary linear forms, we write f(z,y) = ux + vy instead
of f(x1,x2) = urry + usxs. We are interested only in the cardinality of the
image of f(x,y) on a finite set A of integers. We shall always assume that
wo # 0. If (u,v) =d > 1and g(z,y) = (u/d)x+(v/d)y, then | f(A)| = |g(A)].
Thus, we can assume that (u,v) = 1. Similarly, if h(z,y) = vz + uy, then
|f(A)] = |h(A)|, and so we can assume that |u| > |v|. Finally, if {(z,y) =
—ux — vy, then |f(A)| = |€(A)|, and we can assume that v > 0. Therefore,
it suffices to consider only binary linear forms f(z,y) = ux + vy that have
been normalized so that

u>v>1 and (u,v)=1.

PROBLEM 4. Let f(z,y) = wix+v1y and g(z,y) = ugx +v2y be normal-
ized binary linear forms with nonzero integer coefficients (uy,vy) # (ug,va).
Do there ezist finite sets of integers A and B such that |f(A)| > |g(A)| and
[f(B)] <lg(B)|?

In this paper we shall prove that the answer to the question in Problem 4
is “yes”.

2. Pairs of binary linear forms with wu;,us > 2. In this section we
prove that if f(z,y) = wiz + v1y and g(z,y) = uax + vay are normalized
binary linear forms with u; > 2, ug > 2, and (uy,v1) # (u2,v2), then there
exist finite sets A, B,C of integers such that |f(A)| < |g(4)|, |f(B)| >
l9(B)], and [£(C)| = |g(C)].

THEOREM 2. For u > |v| > 1 and (u,v) = 1, consider the normalized
binary linear form

f(z,y) = ux + vy.
() If |A] = 2, then | f(A)] = 4.
(i) If u > 3 and |A| = 3, then |f(A)| =8 or 9, and |f(A)| = 8 if and
only if A is affinely equivalent to one of the two sets
{0, |v],u} and {0, |v],u+[v]}.
(i) If w = 2 and |A| = 3, then |f(A)| < 9 if and only if A is affinely
equivalent to one of the two sets
0,1,2} and {0,1,3}.
Moreover, |f({0,1,2})| =7 and |f({0,1,3})| = 8.
(iv) If fz,y) = ur+vy, and g(x,y) = ux —vy, then | f(A)| = [g(A)] for
every set A with |A| = 3.

Proof. If f(x,y) = ux + vy is a normalized binary linear form, then
f({0,1}) = {0,v,u,u + v} and so |f({0,1})| = 4. Since every set A with
|A| = 2 is affinely equivalent to {0,1}, it follows that if |A] = 2, then
|f(A)| = 4. This proves (i).
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Let |A] = 3. The set A is affinely equivalent to a set A’ such that
min(A’) = 0 and ged(A’) = 1. If | f(A4)| < 8, then there exist x1,y1, 22, Y2
€ A’ such that

ury + vy = urz vy and (21,y1) # (22,92)-
It follows from (i) that [{x1,y1, 22,32} > 2 and so

{33'1, Y1, 22, yQ} = {a17 az, a3} = A
There are three possibilities: Either
ual + vag = uay + vas,

or
ual + vag = uaz + vay,

or
ua1 + va; = uaz + vas.

In the first case, as = a3, which is absurd.
In the second case, we have

u(a; —az) = v(ar — ag).
Since (u,v) = 1, there exists an integer r such that
ap—az=71u, ay—az=rv, az—ag=r(u—"uv).

Since 0 € A, it follows that r divides each integer in A’, and so r = +1. If
a; = 0, then r = =1, ag = u, a3 = v = |v|, and A" = {0, |v|,u}. If ag = 0,
then r = 1, a1 = u, and a3 = u —v. If v > 0, then A" = {0,u — |v|,u}.
If v <0, then A" = {0,u,u + |[v|}. If ag = 0, then ag = —r(u — v) and so
r=-1,a1=-v=\wl,aa=u—v=u+|v|,and A" = {0, |v|,u + |v|}.

In the third case,

u(ay — az) = v(az —ay)
and there is an integer » = +1 such that
a;—ag =rv, az—ay=ru, az—az=r(u+v).
If ay =0, then r =1, ag = u, ag = —v = |v|, and A" = {0, |v|,u}. If ag = 0,
thenr =1, a1 =v=|,a3=u+v=u+ |v|],and A" = {0, |v|,u+ |v|}. If
a3 = 0,thenr = —1,a; = u, and ag = u+v. If v > 0, then A" = {0, u, u+|v|}.
If v <0, then A" = {0,u — |v|, u}.

Since the two sets {0, |v|, u} and {0, u—|v|, u} are affinely equivalent, and
the two sets {0, u,u+ |v|} and {0, |v],u + |v|} are also affinely equivalent, it
follows that the sets {0, |v|,u} and {0, u, u+|v|} are, up to affine equivalence,
the only possible solutions of |f(A)| < 8 with |A| = 3.

We shall prove that if w > 3, then |f(A)| = 8 for both these sets. Let
v>0and f(z,y) = vz +vy. If A={0,v,u}, then

f(A) = {0,v% uv, v, uv + v%, 2uv, u? + v, uv + u?}.
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Since 2uv < u? 4 v? for v < u, we have
0< v <uv <uv+v? < 2uv < u?+0? <uv+u?
and
uv < u? < u? + 02

If u> = 2uv, then u = 2v = 2 since (u,v) = 1. If u?> = wv + v?, then
u/v = (1 + +/5)/2, which is impossible since u/v is rational. Therefore,
[F(A)] =38.

If v>0and A={0,v,u+ v}, then
f(A) = {0,v%, uwv, uv + 0%, 2uv + 02, u? + ww, u? 4+ wv + v?, u? + 2uv + 02},
We have

0 < v? <uw < uw+v? < 2uv+ 0% < 4?4+ uv + 0 < u? + 2uv + u?

and

wv 4+ v < u? +0v? < u? +uw + 07
If u? + v? = 2uv + v?, then u = 2v = 2, which is false, and so |f(A)| = 8.
The case v > 3 and v < 0 is similar. This proves (ii).

If w =2, then v = +1 and f(x,y) = 2z £ y. Up to affine equiva-
lence, the sets A with |f(A)| < 8 are {0, 1,2} and {0, 1,3}. For these sets,
|f({0,1,2})| = 7 and |f({0, 1,3})| = 8. This proves (iii).

To obtain (iv), we observe that the binary linear forms f(z,y) = uz + vy
and g(z,y) = ur — vy generate the same exceptional sets, and so |f(A)| =
|g(A)| whenever |A| = 3. This completes the proof. =

LEMMA 1. Let

k—

F($ay):comk+clx 1y+"'+ck71$yk_l+ckyk

be a nonzero homogeneous polynomial with integer coefficients. Let j be the
largest integer such that c; # 0. If uw and v are relatively prime nonzero
integers such that F(u,v) =0, then |cj| > |ul.

We call ¢; the last coefficient in the polynomial F(z,y).

Proof. If

k J
F(u,v) = Zciuk*ivi = Zciuj*ivi =0
i=0 i=0
then
j—1
U Z ciuj_i_lvi = —cjvj
=0

and so u divides c;v7. Since (u,v) = 1 and ¢;j # 0, it follows that u divides c;
and so [¢j| > |ul. =
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THEOREM 3. Let
flx,y) =wx+ vy and g(x,y) = uox + voy
be normalized binary linear forms with
up > 2,  ug>2,
and
(us, [v1]) # (ug, [va)-
There exist sets A and B with |A| = |B| = 3 such that
[F(A)] <lg(A)] and |f(B)]> |g(B)]-

Proof. If u1 < ug and ug # uj + |v1|, then the sets A = {0, |vi|,u1}
and B = {0, v, ua} satisfy |f(A)| = |g(B)| < 8 and [f(B)| = [g(A)| = 9.
If uy < ug and uy = wuy + |v1|, then ug + |va| > wy + |v1| and the sets
A = {0,|v1],ur} and B = {0, [va], uz + [v2]} satisfy [f(A)| = |g(B)| = 8 and
[f(B)| = lg(A)| = 9.

If ug = ug and |vi| < |va], then sets A = {0, |vi|,u1 + |vi|} and B =
{0, leal, uz + o]} satisfy 7(A)] = |g(B)] = 8 and | F(B)] = |g(A)| = 9. This
completes the proof. m

THEOREM 4. Let
flx,y) =ux+vy and g(x,y)=uxr— vy
be normalized binary linear forms with u > v > 1. For u = 2, if
A=1{0,3,4,6), B=1{0,4,67)
then
F(AI=13>12=g(4)|, [|f(B)=13<14=]g(B)|.
Foru > 3, if
A={0,u? — v} u? v +w}, B={0,u?—uw,u?®—v? u?}
then
f(A)=14>13=g(A)|, [|f(B)=13<14=]g(B)|.
Proof. For u = 2 and sets A ={0,3,4,6} and B = {0,4,6,7}, we have
F(A) = {0,3,4,6,8,9,10, 11,12, 14, 15, 16,18},
g(A) ={-6,-4,-3,0,2,3,4,5,6,8,9,12},
F(B) = {0,4,6,7,8,12,14,15, 16, 18,19, 20, 21},
g(B)={-7,-6,—-4,0,1,2,4,5,6,7,8,10,12, 14}
with [f(A)| = [f(B)| = 13, |g(A)| = 12, and [g(B)| = 14.
Let u > 3 and A = {0,u? — v?,u?, u? + uv}. We list the elements of the
set f(A) = {ux +vy:z,y € A} in the following table:
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f(A) 0 u? —v? u? u? 4 uv

0 0 u?o —0® u?v w?v + uv?

u? — v? u® — wv? u3+u2v7uv2 — 3 u3+u2v7uv2 u3+u2v
u? u® u3+u2v—v3 u3+u2v u3+u2v+uv2
2 2 2 R 2 2 R 2 2 2

u” 4+ uv w4+ v u® + 2u?v — o® u® + 2u?v u® + 2u?v 4+ w

The number u? + u?v occurs three times in this table, and so |f(A)| < 14.
By Lemma 1, if two numbers in the table are equal for positive integers u
and v with v > 3 and (u,v) = 1, then the difference of the two numbers is an
expression of the form F'(u,v), where F'(z,y) is a homogeneous polynomial
of degree 3 with last coefficient at least 3. Since 1 < v < wu, the numbers
in the table are increasing from left to right in each row and from top to
bottom in each column. The following ten numbers in the set f(A) are strictly
increasing;:

0 < v?v—02 <u? —uw? <+ v —w? -3

< v +utv —w? < v +utv — 0P < ud + Py
<u® +utv +uw? < ud + 20t < w4 2u? + uv?
The other four numbers in f(A) satisty

w?v < ud < ud 4+ 2uv — 03

and
3

v < o+ uw? < ud + 2uv — ol
Comparing numbers among the three chains of inequalities, we see that there
is no difference with last coefficient greater than 2, and so |f(A)| = 14.
Consider now the set g(A) = {uz — vy : x,y € A}, whose elements are
listed in the following table:

g(A) 0 u? —o? u? u? 4 uv
0 0 —u?v +0® —u?v —u?v — w?
u? —0? ud — wv? ud — u?o — wo? + 03 u® = u?v — w? u® — w?v — 2uv?
u? + uv u® + w?v u’ + 03 wd — w?

The numbers u3, u? — uv?, and u? — u?v — uv? occur twice in the table, and

so |g(A)| < 13. The numbers in the table are decreasing from left to right in
each row and increasing from top to bottom in each column. The following
nine numbers in g(A) form a strictly increasing sequence:
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2 —w? < v < —vPv+ 02 <0 <ud — o

<ud —utv+ 03 <ud < ud 403 < ud + 3.
The other four numbers satisfy

3 2 2

u? — u?v — 2uv? < uP — vPv —w? < ud —u?

v—uv2+v3<u3—uv2.

Indeed, there is no pair of expressions in the table whose difference has last
coefficient greater than 2, and so |g(A)| = 13.
Finally, we consider the sets f(B) and g(B):

2 2 2 2
f(B) 0 u® —uv u® —v u
2 2 2 2

0 0 UV — UV wiv — v® u-v

u? —wv ud — v u® — w? ud =3

2 2 : 2 2 : : 2 2
u3—|—uv—2uv u5+uv—uv -3 u3+uv—uv
u3+u2v—uv2 u3+u2v—v3 u3+u2v

IS
[ V)
|
N4
V)
<
w
- ||
e
V)

u
g9(B) u? — uv u? —v? u?
0 0 —u2v + wo? —u?v 4 0® —u?v
w? —wv ud — o w® = 20?0 + wv? ud = 2u%0 403 ud = 20?0
u? — v? u® — wv? w = w?v wd = u?o — w? +0° w? — w2 — wv?

2 2 2 2 2
U u® ud — v+ wv u3—uv+v3 ud — v

In the table for f(B), the numbers u3, u? — uv?, and u? + u?v — wv? occur
twice, and so |f(B)| < 13. In the table for g(B), the number u® — u?v occurs
three times, so |g(B)| < 14. In neither table is there a pair of numbers
whose difference has last coefficient greater than 2, and so |f(B)| = 13 and
|g(B)| = 14. This completes the proof. =

THEOREM 5. Let u and v be relatively prime positive integers with u > v,
and consider the forms

f=uxr+vy and g=uxr—vy.
If A is an arithmetic progression of length t < u, then |f(A)| = |g(A)| = 2.

Proof. Since an arithmetic progression of length ¢ is affinely equivalent
to the interval [0,¢ — 1], it suffices to consider the sets A; = [0,¢ — 1] for
t=1,...,u.

If z1,x9,y1,y2 € Ar and uzy + vy; = uxs + vy2, then we have u(x; — x2)
= v(y2 —y1). Since (u,v) = 1, it follows that u divides yo —y;. Since |ya —y1|
< t < u, it follows that y; = yo, and so x1 = x3. Thus, every element in
f(A;) has a unique representation in the form ux + vy, and |f(A)| = t2.
The proof that |g(A;)| = t? is similar. =
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3. The pair of linear forms ux + vy and z — y

THEOREM 6. Let u and v be relatively prime positive integers with u > v,
and consider the linear forms

f(a:,y):u:n+vy, d(l‘,y):IE—y

Let
A =1{0,v%,0° + v%u, v + v*u + vu?, v® + v%u 4+ vu? + w3,
Then
|f(A)] <19, [d(4)]= 2L
Proof. Let
ag =0,
ay = v,

as = v + vzu,

az = v + vu + vu2,

as = 03+ v%u + vu? +ud.
Then A = {ay, a1, as,as3,a4}, and

ag < a1 < az <az <ayq.

Since |A| = 5, we have |f(A)| < 25 and |d(A)| < 21. To show that |f(A)]
< 19, it suffices to give six different integers, each of which has two distinct
representations in f(A). Here they are:

ni1 = ual + va; = uag + vas,

ng = uaz + va; = uag + vas,

n3 = uag + vas = uay + vas,

n4 = uagz + va] = uag + vaq,

ns = uaz + vas = ua1 + vaq,

Nng = ua3 + vaz = uag + va4.
A straightforward calculation shows that

ny<ng <ng<n <ng<ng

and so |f(A4)| < 19.

Next we prove that [d(A)| =21. Let D = {a; —a; : 0 <i < j <4} It
suffices to prove that |[D| = 10. If v = 1, then A = {1,1 + u, 1 + u + u?,
1 +u+u? +u?} is a Sidon set and |D| = 10.

Suppose that v > 2. Since v > v and ag = 0, we have

a1 <ax—a1<az—a2<aqg—az3<aqg—az<aq4—a; <aq
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and
ay < az —ay < as.
Let
Dy ={ai,a2 —a1,a3 — az,as — az,aqs — az, a4 — ay, aqa},
Do = {az,a3 — a1,as}.

We must show that D; N Dy = (). There are three cases.

CASE OF as. Since

ax — a1 <az < a4 — ag,

it follows that if ao € D1, then as = ag — as or as = a4 — as. If as = ag — a9,
then v2(v +u) = v® + v?u = vu?, and v(v + u) = u?. Since (u,v) = 1, it
follows that v = 1. If ag = a4 — a3, then v?(v + u) = v* + v?u = v® and
v=1.

CASE OF az — a1. Since

az —ag < az —a; < a4 — as,

it follows that if ag — a; € Dy, then a3 — a1 = a4 — a3 and so v(v+u) = u?.
This implies that v = 1.

CASE OF ag. Since

a3 —ag <az < a4 —ap,

it follows that if ag € D1, then a3 = a4 — a3 or ag = a4 — as. If ag = a4 — as,
then v(v? +vu+u?) = v3 +v?u+vu? = u3, and v = 1. If a3 = a4 — az, then
v® 4+ v?u + vu? = vu? + u3, hence v?(v + u) = u* and v = 1. This completes
the proof. m

4. The pair of linear forms ux +vy and x+y. In Section 2 we solved
Problem 4 for pairs of normalized binary linear forms f(x,y) = w1z + v1y
and g(x,y) = ugx + voy with uy,ug > 2. In Section 3 we solved the case
f(z,y) = vz + vy with w > 2 and d(z,y) = = — y. The remaining case is
f(z,y) = ur + vy with v > 2 and s(z,y) = x + y.

For example, consider the form f(x,y) = 2z + y. We have

4=[f{0,1})[ > [s({0,1})] = 3.
We shall construct a set A with |f(A)| < [s(A)|. Start by defining the four
sets

R13 = {07 17 67 77 97 11}7

Ry5 ={0,1,5,6,10,11, 13},

R =1{0,1,3,5,7,9,11,13,15},

Rig = {0,1,11,12, 14,16, 18).
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Note that
13-15-16-19 = 59280
and
|Ri3| - |Rus| - |Rig| - |Rig| = 6-7-9- 7 = 2646.

Let x modm denote the least nonnegative integer that is congruent to x
modulo m. We define

A= {x €[1,59280] : x modm € R,, for all m € {13,15,16,19}}.

The set A contains 2646 elements. By direct calculation, we have |f(A)| =
108014 and |s(A)| = 114575.

The linear form f(z,y) = 2z + y is a special case. In general, we do not
have an algorithm to construct finite sets A of integers such that |f(A4)] <
|s(A)| for an arbitrary normalized bilinear form f(z,y) = wux + vy with
u > 2. However, such sets do exist. In the following sections we shall show
that, associated to the form f(z,y) = uz + vy, there is an infinite set M
of positive integers with the property that, for each m € M, there is a set
of congruence classes R, C Z/mZ such that s(R,,) = Z/mZ and f(R,,)
C Z/mZ. From the sets R,, we construct a finite set A of nonnegative
integers such that |f(A)| < |s(A4)|. Thus, we combine local solutions of the
inequality to construct a global solution.

5. A local to global criterion for pairs of linear forms in n vari-

ables
LEMMA 2. Let f(x1,...,zy) be a polynomial with integer coefficients. Let
mi, ..., m, be pairwise relatively prime positive integers, and m = my - - - my.
Let R,,, be a set of congruence classes modulo m; fori =1,...,r. Let Ry,

be the set of all congruence classes a + mZ such that a + m;Z € R,,, for
1=1,...,r. Then

|Rin| = H [Rm,| and |f(Rm)| = H | f(Rm,)|-
i=1 i=1

Proof. This follows from the Chinese remainder theorem. m

LEMMA 3. Let f(z1,...,%y) = u1x1 + - -+ + upxy be a linear form with
integer coefficients, and let
hy=lui| + -+ |un|.

Let Ry, be a set of congruence classes in Z/mZ, and let A be the set of
integers that consists of the least nonnegative element of each congruence
class in R,,. Then

(2) f (B < [f(A)] < 20| f (Bom)|.
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Proof. The triangle inequality implies that
|f(a1,...,an)] < hfmax(la;| :i=1,...,n)

for all integers ay,...,a,. Since A C [0,m — 1], it follows that f(A) C
[—h¢(m —1),hg(m — 1)]. If a € f(A), then a + mZ € f(R;,). The lower
bound in (2) follows from the fact that f(A) contains at least one element of
every congruence class in f(R,,). The upper bound in (2) follows from the
fact that the interval [—hy(m —1), hy(m—1)] contains at most 2h s members
of any congruence class modulo m. =

THEOREM 7. Let f(x1,...,2p) = w1z +- -+ upy and g(x1,...,2,) =
v1x1 + -+ + vy be binary linear forms. Let M = {m;}2, be a set of
pairwise relatively prime integers such that m; > 2 for all m; € M. If for
every m; € M there exists a nonempty set R,,, of congruence classes in

Z/m;Z such that

7 1 (B
(3) T =0,
E 9(Bm,)|
then there is a finite set A of integers such that
[f(A)] <lg(A)l.
Proof. Let

By =]+ .

Since the infinite product (3) diverges to 0, there is an integer r such that
[l t

Let m = mq---m, and let R,, be the set of all congruence classes a + mZ

such that a + m;Z € R,,, for i =1,...,r. By Lemma 2,

[f(Bm)| _ ﬁ |f (Bomy)|

9Bl g,
Let A be the set of integers that consists of the least nonnegative element in
each congruence class in R,,. By Lemma 3 we have

[f(A)] < 2hg|f(Rm)| < |9(Bm)| < [g(A)].
This completes the proof. m
THEOREM 8. Let f(x1,...,2Zn) = u1x1+ - +upty and g(x1,...,o,) =
v1x1+- - -FopTy be binary linear forms. Let M = {m;}°, be a set of pairwise
relatively prime positive integers such that m; > 2 for all m; € M and
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If for every m; € M there exists a nonempty set R, of congruence classes
in Z/m;Z such that
f(Rm,;) #Z/m;Z and g(Rm,) = Z/m;Z,
then there is a finite set A of integers such that

[F(A)] < lg(A)].
Proof. Since |f(Ry,,)] < m; — 1 and |g(R,,)| = m; for all m; € M, we
have
SRl | 1
|9 (B, m;

The divergence of the infinite series Y 2, m; Uimplies that
ﬁ [ (Rma)| _ ﬁ(1 _ L) o
Wi, ~ U\
and the result follows immediately from Theorem 7. »
We can restate Theorem 8 as follows.
THEOREM 9. Let f(x1,...,oy) = urxy +- -+ upey and g(x1,...,2,) =

v1Z1+- - -+opxy be binary linear forms. Let M = {m;}°, be a set of pairwise
relatively prime positive integers such that m; > 2 for all m; € M and

1
i=1 "
If for every m; € M there exists an integer g, and a finite set A, of
integers such that

(i) f(ai,...,an) # gm; (modm;) for all ay,...,an € Ap,, and
(ii) for every integer q the congruence g(aq,...,a,) = q (modm) is solv-
able with ay,...,an € Anp,,

then there is a finite set A of integers such that
[f(A)] < lg(A)].

6. An application of quadratic reciprocity

THEOREM 10. Let p be a prime number such that p = 1 (mod4) and
p > 5, and let

Ry={kK*+pZ:k=1,...,(p—1)/2}
be the set of quadratic residues modulo p. Let s(xz,y) = x +y and d(x,y) =

x —y. Then
s(Rp) = d(Rp) = Z/pZL.
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Proof. Since p = 1 (mod 4) there is an integer s # 0 (mod p) with s? = —
(mod p). For all integers a and w with w # 0 (modp) there is an integer v
(unique modulo p) such that uv = a (modp). Let z = (u—v)/2 (mod p) and
y = (u+v)/2 (modp). Then y? + (sx)? = y? — 22 = a (modp), and this
congruence has at least p— 1 solutions. Since there are at most two solutions
with z = 0 (mod p) and at most two solutions with y = 0 (mod p), it follows
that if p > 5 then there is at least one solution with z? + pZ € R, and
y? + pZ € R,. Therefore, s(R,) = d(Rp) = Z/pZ. =

THEOREM 11. Consider the binary linear form

f(z,y) = ux +vy

where u and v are integers not divisible by p. Let p be a prime number and
let R, be the set of quadratic residues modulo p. Then pZ € f(Ry) if and
only if —uv is a quadratic residue modulo p.

Proof. 1f pZ € f(R,), then there are integers ki and ky not divisible by p
such that

uk? 4+ vk3 = 0 (mod p).

Then
uvk? 4+ (vkz)? = 0 (mod p)

and so
—uv = (vkgk:fl)2 (mod p),

that is, —uw is a quadratic residue modulo p.
Conversely, if —uv is a quadratic residue modulo p, then there is an
integer z # 0 (modp) such that —uv = 2% (modp) and so

f(v% 2%) = uv® +vz2 =0 (modp).
Thus, pZ = f(v? + pZ, 22 + pZ) € f(Ry). =
THEOREM 12. Let
f(z,y) = vz + vy
be a normalized bilinear form such that |uv| is not a perfect square. Let
s(z,y)=xz+y and d(z,y)=z—y.
There exist finite sets A and A’ of integers such that
IF(A)] <Is(A),  [F(AD)] < ld(A)].

Proof. Since f(x,y) is normalized and |uv| is not a square, we can write

t
juo| = w?2 [ ¢y
j=1
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where w is a positive integer, ¢ € {0,1}, ¢1,..., ¢ are distinct odd primes,
and ¢; #pfori=1,...,p. For p=1 (mod4), we have

() - (=) - (rme) - () ()

p p p) \p p) +5\4

If e = 1, we choose p so that p = 5 (mod8) and p = 1 (modg;) for
j=1,...,t. Then (—uv|p) = —1. If ¢ = 0, then ¢ > 1 and we choose p
so that p = 1 (mod4), p = 1 (modg;) for j = 2,...,¢, and (p|q1) = —1.
Again, (—uv|p) = —1. In both cases, there is at least one infinite arith-
metic progression P(u,v) such that if p is a prime and p € P(u,v), then
p = 1 (mod4) and (—uv|p) = —1. By Dirichlet’s theorem, the arithmetic
progression P(u,v) contains infinitely many primes and

1
E — = Q.
pEP(u,v)
p prime

By Theorems 10 and 11, for each prime p € P(u,v), the set
Ry={kK*+pZ:k=1,...,(p—1)/2}
satisfies
f(Rp) # Z/pZ and s(Ry) = d(Ry) = Z/pZL.

The result now follows from Theorem 8. mu

7. An exponential sum. After Theorem 12, we are left to consider only
normalized bilinear forms f(x,y) = ux + vy such that |uv| is a square. Since
u and v are relatively prime, it follows that there are positive integers U and
V not divisible by p such that « = U? and v = £V?2. Let R, denote the
set of quadratic residues modulo the prime p. If f(z,y) = U%x + V2y, then
f(Ry) = s(Ry). I f(x,y) = U?x — V?y, then f(R,) = d(R,). This suggests
that considering only squares mod p will not suffice to resolve Problem 4
in this remaining case. We shall generalize our method to kth powers. We
begin by applying elementary harmonic analysis on finite fields to binary
linear forms. A general reference is Nathanson [5, Chapter 4].

Let p be a prime number and F), = Z/pZ the field of congruence classes
modulo p. We denote the multiplicative group of the field by ;' and define

ep(t) _ e27rit/p‘

For all integers a, b, and t we have

p] 0 if a# b (modp),

p if a=b (modp).

eolla =)0 = {

t=0
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If x is a congruence class modulo p, that is, if x = t + pZ for some integer t,
then we define e,(z) = e,(t). This function is well-defined on ).

Let v be a complex-valued function on F,. We define the Fourier trans-
form 5 : F, — C by

()= > v(y)ep(—zy).
IS

We have
0)=> )

y€lFp

=)

and Plancherel’s formula |5, Theorem 4.9]
(4) Yo A@P=p) @)
z€eF, z€elF,

Let H be a subset of I, of cardinality n. We also use H to denote the
characteristic function of H, that is, H : F, — C is the function defined by

1 ifzxe H,
Hiw)= {0 it ¢ H.
Then
H(z) =Y H(y)ep(—ay) = > ep(—xh), H(0) = card(H) = n.
yeFy heH

Applying Plancherel’s formula to the function H, we obtain

Y H@P =p ) |H(z) = peard(H) = pn

z€lF, z€elF,
and so
(5) T H@)? =Y |H () = [H(O)]> = (p — n)n.
T€Fy z€lF),

THEOREM 13. Let f(x,y) = ux + vy, where u and v are integers not
divisible by p. Let H be a subgroup of order n > 2 of the multiplicative group
F) and let

If p > k*, then IF; C f(H), that is, every element of IF; can be represented
in the form f(hi,hg) for some hy,hy € H.

Proof. Define the representation function r : F, — Ng as follows. For
every « € I, let r(x) denote the number of ordered pairs (hi,hs) € H x H
such that f(h1,h2) = z. Then

S o) = |H[P = n?

z€lF),
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and
@)= Y rwe-ay) = > (D 1)epl-ay)
y€lF, y€lF, hi,ho€H
uhi+vho=y
Z Z ep(—(uhi 4+ vhe)z) = Z ep(—uxhy) Z ep(—vzhg)
h1€H hoeH hi1€H ho€eH

Applying Plancherel’s formula (4) to the function r(x), we obtain

> |H(ux) = > |H(uz)H(vz)]* — [HO)|* = > #(x)? —n*

z€F) z€F, z€lF,
n2 2
oS @ -nt=p Y (r(m) - —)
z€F)y z€F, p

Let z,2' € Fy. If x and «’ belong to the same coset of F),/H, then there
exists h’ € H such that x = ’h/. It follows that

H(z) =Y ep(—ah) =D ep(—a'h'h) = > ey(—a'h) = H(z)

heH heH heH

and so the Fourier transform H(z) is constant on the cosets of Fy/H. Sim-
ilarly, uhy + vho = 2’ if and only if uhih’ + vhoh/ = 2'h/ = =z, and so
r(z) = r(z), that is, the representation function r(x) is also constant on the
cosets of F) /H.
Let {z1,...,7x} CF; be a set of coset representatives of H, that is,
F;/H = {$1H,.. . ,ka}.

Applying (5), we obtain

k
(p—nn=Y_ |H(x) Z S H@)P =0 |[H(x)?

z€Fy 1=1 vcx; H 1=1
and so
k
Y H@)P=p-n
=1
For every x € )y, there is an integer j € {1,...,k} such that z € 2;H and

ﬁ(m) = ﬁ(x]) It follows that

k
H()]® = |H(z))? <Y |H (@) =p—n.
i=1
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Since (u,p) = (v,p) = 1, we have

Pz<r(x)—n—2)2:z:|ﬂux p—n) Y |Huz)?

z€Fy z€Fy
=(p—n) Y_ |H@) = (p—n)*n.
IEF;

Since the representation function r(x) is constant on cosets of H, we have

2(t-3) AL E(0-5) 55 (%)

(p—n)*

b

For every z € F\, we have x € z;H for some j, and so

() - ”;)2 — (rten - ”;)2 < =l

<

Since |[H| =n > 2 and p(p —n) < p(p —2) < (p — 1)?, we have

k
This proves that if p > k%, then r(x) > 1 for all x € FyandsoF) C f(H). =

-1
(p—) —nl <pp-n)?<(p-1° and p<k

A finite cyclic group G of order N has a unique subgroup H of order n
for every positive divisor n of N. If k = [G : H] = N/n and if ¢ is a generator
of G, then H = {g"* :i=0,1,...,n— 1} = {2¥ : 2 € G} is the set of kth
powers in G.

Let H be a subgroup of order n of F)\ and let k = [F) : H] = (p —1)/n.
Since the multiplicative group of a finite field is cyclic, it follows that H is
the subgroup of kth powers mod p, that is, H = {zF : 2 € Fy}. We can
restate Theorem 13 as follows.

THEOREM 14. Let f(z,y) = ux+vy be a binary linear form with nonzero
integral coefficients u and v. For k > 2, let p be a prime number such that
p=1 (modk), p > k* and (p,uv) = 1. If H is the set of kth powers in Fy,
then
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We shall prove that if w > 2, then there are infinitely many primes p
such that 0 ¢ f(H) and so f(H) = F,. We use a standard result about
irreducible polynomials: If a is a nonzero rational number and ¢ is a prime
number such that a is not a gth power, then the polynomial g(x) = 29 — a
is irreducible in Q[z].

THEOREM 15. Let u and v be relatively prime integers such that u >
|v| > 1. Let

f(z,y) = ur +vy.
There exist finite sets A and A’ of integers such that
[F(A)] < [s(A)] and [f(A)] <|d(A)].

Proof. Let k be a positive integer and let p be a prime such that p =1
(modk). Let H be the set of kth powers of elements of IF. Then H is a
multiplicative subgroup of F of order [H| = (p —1)/k and [F) : H| = k.

Let v and v be integers relatively prime to p, and consider the binary
linear form

f(z,y) = ux + vy.
By Theorem 13, if p > k%, then Fy C f(H) and so
|f(H)|>p—1.
Let u = 1 and v = +1. For the polynomial d(x,y) = = — y, we have
d(1*,1F) =0 e d(H) andso d(H)=T,.
If k is odd, then for the polynomial s(x,y) = = + y we have
s(1F,(~1)") =0 € s(H) and s(H)=TF,.
In both cases,
[d(H)| = |s(H)| = p.

Let u > |[v| > 1 and (u,v) = (uv,p) = 1. Let a = —uv* 1. If there exist
hi = (% € H and hy = ¢§ € H such that

f(h1,ha) = uhy + vhy = wlf + vtk =0,

uﬁl k
(—) +uF o =0
Ly

and the polynomial g(z) = 2¥—a has aroot in F,, and is, therefore, reducible.

It follows that if g(z) is irreducible in Fp[x], then 0 ¢ f(H) and so

[f(H)]=p—-1
uk1

then

The rational integer a = — v is not a gth power for all sufficiently
large primes ¢, and so the polynomial g(z) = x? — a is irreducible over Q.
Let P be the set of primes p > ¢* such that p = 1 (modgq) and g(x) is



Binary linear forms 361

irreducible in Fj,[z]. The Chebotarev density theorem implies that the series
ZpeP 1/p diverges, and Theorem 15 now follows directly from Theorem 8.
This completes the proof. m
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