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1. Introduction. Forn € ZT = {1,2,3,...} and a € {0,...,n— 1}, we
write a(n) to denote the residue class {z € Z : x = a (modn)}. For a finite
System

(1.1) A= {as(ns)}*_; (0 <as <ny)

of residue classes, the ni, ..., n; are called its moduli, and its covering func-
tionwy : Z — N =1{0,1,...} is given by

(1.2) wa(z) =1 <s<k:z€as(ns)}.

(The covering function wy of an empty system is regarded as the zero
function.) The periodic function w4 (z) has many surprising properties (cf.
[S03a], [S04] and [SO05al).

Let m be a positive integer. If wa(z) = m for all x € Z, then (1.1) is
said to be an ezact m-cover of Z as in [S95] and [S96]. Recently Z. W. Sun
(cf. [S04] and [SO5b]) showed that (1.1) forms an exact m-cover of 7Z if it
covers |S(ny,...,ng)| consecutive integers exactly m times, where
(1.3) S(ni,...,ng) ={r/ns:r=0,....,ns—1;s=1,...,k}.

For problems and results on covers of Z by residue classes, the reader is
referred to [FFKPY], [G04] and [SO3b].

For two finite systems A = {as(ns)}*_; and B = {b;(m;)}._;, Sun [S89]
called A and B covering equivalent (written A ~ B) if they have the same
covering function (i.e., wqa = wp). Thus (1.1) is an exact m-cover of Z if
and only if (1.1) is covering equivalent to the system consisting of m copies
of 0(1).

In [SO1] and [S02] Sun characterized the covering equivalence by various
systems of equalities. In this paper we present a simple characterization
involving roots of unity. Namely, we have the following result.
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THEOREM 1.1. Let A={as(ns)}_; (0 < as < ns) and B = {by(my)}_,
(0 < by < my) be two finite systems of residue classes. Let p be a prime
greater than |S(ny, ..., ng,mi,...,my)|, and let ¢, be a primitive pth root of
unity. Then A and B are covering equivalent if and only if

k as l bt

(1.4) DT =
b s i C;
COROLLARY 1.1. (1.1) forms an exact m-cover of Z if and only if
k 2mias/p
(1.5) R —
1 — e2mins/p 1 — e2mi/p
s=1
where p is any fived prime greater than |S(ni,...,ng)|.

Proof. Simply apply Theorem 1.1 with B consisting of m copies of 0(1). =

REMARK 1.1. In 1975 S. Zndm [Z75a] used the transcendence of e to
prove that (1.1) is a disjoint cover (i.e., exact 1-cover) of Z if and only if

e 1
Zl—e”s T1-¢

s=1

COROLLARY 1.2.  Suppose that for a nonempty system (1.1) we have
k 627ria5/p
———F =0
1 — e2mins/p
s=1

where p is a prime. Then
(1.6) np+--+ng—k+1>1Sng,....,n5)| > p.

Proof. Clearly |S(ni,...,ng)| < ni+---+mn,—k+ 1. Since A «£ 0,
applying Theorem 1.1 with B = () we find that |S(n1,...,n;)| cannot be
smaller than p. =

Corollary 1.2 partially confirms the following conjecture arising from the
study of Fraenkel’s conjecture on disjoint covers of N by Beatty sequences.

GRAHAM—-O’BRYANT CONJECTURE ([GO]). Let ny,...,ng be distinct
positive integers less than and relatively prime to ¢ € Z7. If aq,...,a, € Z
and

k e27‘rias/q
1 czminaga ~
s=1

then we must have Zi:l ng > q.

The following example shows that we cannot replace the prime p in
Corollary 1.2 or Theorem 1.1 by a composite number.
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ExaAMPLE 1.1. Let ¢ > 1 be an integer and let p be a prime divisor of q.

Then, for any n =1,...,q¢ — 1, we have
p=1 2mi(sa/p)/q Zé’:é e2mis/p
— = ——— =0
1 — e2min/q 1 — e2min/q
s=0

but |[S(n,...,n)| =n < g. Thus the conditions 0 < as < ns (s=1,...,k) in
Corollary 1.2 cannot be cancelled. If g is composite, then there are ¢/p—1 > 0
integers in the interval ((p—1)g/p, ¢g—1]. So we cannot substitute a composite
number for the prime p in Corollary 1.2.

COROLLARY 1.3. Let A = {as(ns)}F_; (0 < as < ns) and B =
{by(me)¥_; (0 < by < my) both have distinct moduli. Let p be a prime
greater than |S(ny, ..., ng,mi,...,my)|, and let ¢, be a primitive pth root of
unity. Then A and B are identical if and only if (1.4) holds.

Proof. By aresult of Zndm [Z75b], A and B are identical if they have the
same covering function. Combining this with Theorem 1.1 we immediately
get the desired result. =

Observe that A = {as(ns)}*_; and B = {b;(m;)}\_; are covering equiv-
alent if and only if

k l
Z 1+ Z (=1)=0 for every x € Z.
s=1 t=1
z€as(ns) x€bs(my)

Thus Theorem 1.1 has the following equivalent form which will be proved
in the next section.

THEOREM 1.2. Let A= {<)\5,a5,n8>}§:1 where g, as,ng € Z and 0 <
as < ns. Let p>|S(ny,...,nk)| be a prime, and let (, be any primitive pth
root of unity. Then A ~ 0 (i.e., wa(z) = Zlgsgk’me%(ns) As = 0 for all
x € Z) if and only if

k‘ Cas
1.7 s —2 =0

s=1

2. Proof of Theorem 1.2. Let S = S(ny,...,ng). As p > |S| >
max{ni,...,ng}, there is a common multiple N € Z* of the moduli ny, ..., ng
such that N =1 (modp). Just as in [S05a], we have

N—-1 N-1 k
IETTCEED DD SIS S Sl
r=0 r=0 1<s<k s=1 0<r<N

nslas—r ré€as(ns)
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s=1 0<g<N/ns
=N Z ﬁzas—l-(l—ZN) Z A i
Ng 1= gns’
1<s<k 1<s<k
Zns=1 ZMs#£1
Thus
N-1 k as
N P
> war)G = (1= ) 3N 7o
r=0 s=1
It follows that
k ag p—1
P _ 1 _
(2.1) > A T - 0 < > ad, =0,
s=1 =0
where
N—1
= Z wa(x) € Z.
=0
z€l(p)

If wa(x) =0 for all x € Z, then (1.7) holds by the above.

Below we assume (1.7). Then Zf;ol agh = Zivz_ol w(r)¢, = 0. In the
case N = 1, it follows that w4(z) = w4(0) = 0 for all x € Z. Now suppose
N > 1. Clearly N > pas N = 1 (modp). Since 1 + 2 + -+ + 2P~ =
(P —1)/(z — 1) is the minimal polynomial of ¢, over the field of rational

numbers, we must have ¢g = ¢; = -+ = ¢,—1. (See also M. Newman [N71].)
Observe that if € Z then
k A ns—1 D k \
2.9 — As 2mi==r —2miax s 2miaas
SEREED SE-5 s A SR o
s=1 r=0 acs s=1
ans€”Z

(This trick appeared in [S91] and [S04].) Since |S| < p, for each I =0, ..., |S|
we have

N-1 k A N-1
S 2micasg —2miax
C] = wpA\L ) = — € e
=Y =X Y R 3
=0 aeS s=1 =0
z€l(p) ans€Z z€l(p)
Eooy L((N—1-1)/p]
_ —2miad S 2micas —2miapj
— e —e €
IECID STy ,
a€cS s=1 j=0
ang€Z
where |-] is the greatest integer function. If [ € {1,...,|S|} then

{N—l—lJ N -1 {—ZJ N -1
= +|—| = —1;
p p p p
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if o« € S\ {0} then

(N-1)/p—1

I 1— (6—27rz'ap)(N—1)/p 1 — e2mia
- 2 — —
C(a) T Z e T = 1 — e—2miap T 1 = e—2miap 7&
j=0
Let ¢ =co = --- = cp—1. By the above,
Z e—27riajf(a) —c
a€ES
for every j =0,...,|S| — 1, where
k
N-1 A
f(0) = —
p o =ns
and
. LI W
f(a) = e 2™ (a) Z 28 gmiaas for o € S\ {0}.
s=1 s
angs€Z
Let ap =0, a1, ..., q5—1 be all the distinct elements of S. Now that
IS]-1
Z e 2™t f(oy) = ¢ for each j =0,...,|S| -1,
t=0
by Cramer’s rule D; = D f(o;) vanishes for every t = 1,...,|S| — 1, where

D = det ((e72™)7)o<; 1|5 is of Vandermonde’s type and hence nonzero.

Therefore

k Al

ns

e?maas — 0 for all a € S\ {0}

s=1
ans€Z

and hence wa(z) = Zle As/ns for all z € Z by (2.2). It follows that

N-1 E oy E oy 1-¢N
0= waG=> A+ G+G+ -+ )= =5
r=0 s

s=1 s s=1 1 - Cp

So Z’;zl As/ns = 0 and hence A ~ (). We are done.
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