Double integrals on a weighted projective plane and Hilbert modular functions for $\mathbb{Q}(\sqrt{5})$

by
Atsuhira Nagano (Tokyo)

1. Introduction. The aim of this paper is to give a canonical extension of classical elliptic integrals to the Hilbert modular case for $\mathbb{Q}(\sqrt{5})$.

The arrangement of four points on the projective line $\mathbb{P}^{1}(\mathbb{C})$ is deeply related to elliptic modular functions for the principal congruence subgroup $\Gamma(2)$. The double covering of $\mathbb{P}^{1}(\mathbb{C})$ branched at four points gives an elliptic curve. The coordinate of the configuration space of four branch points on $\mathbb{P}^{1}(\mathbb{C})$ gives a modular function for $\Gamma(2)$ via the period mapping of the family of the corresponding elliptic curves.

One of the most successful extensions of the above classical situation to several variables is given by K. Matsumoto, T. Sasaki and M. Yoshida 8]. They showed an interesting relation between the arrangement of six lines on the projective plane $\mathbb{P}^{2}(\mathbb{C})$ and modular functions on a 4 -dimensional bounded symmetric space of type I via the period mapping of the family of $K 3$ surfaces coming from the arrangement of six lines.

We shall give another natural extension of classical elliptic integrals to the case of several variables. Hilbert modular functions for real quadratic fields are very popular among modular functions of several variables. However, to the best of the author's knowledge, to obtain simple and geometric extensions of classical elliptic integrals to Hilbert modular cases is a highly non-trivial problem. Although Hilbert modular functions with level 2 structure can be obtained from the moduli of hyperelliptic curves of genus 2 , they are characterized by complicated modular equations (see Remark 2.9).

In this paper, we focus on Hilbert modular functions for $\mathbb{Q}(\sqrt{5})$. Since the real quadratic field $\mathbb{Q}(\sqrt{5})$ gives the smallest discriminant, several researchers (for example, K. B. Gundlach [2], F. Hirzebruch [4], R. Müller [10]) studied this case in detail. We shall give a simple and geometric interpretation of Hilbert modular functions in this case. We consider the double

2010 Mathematics Subject Classification: Primary 11F46; Secondary 14J28, 33E05.
Key words and phrases: Hilbert modular functions, Kummer surfaces, elliptic integrals.
integrals of the algebraic function F of (3.2) in two variables on chambers surrounded by the parabola P of (2.2) and the quintic curve Q of (2.3) with the $(2,5)$-cusp. These double integrals are equal to the period integrals of the Kummer surface $K(X, Y)$ of (2.1). The equation (2.1) gives a double covering of the weighted projective plane $\mathbb{P}(1: 1: 2)$ branched along P and Q, and the complex parameters (X, Y) determine the arrangement of the branch loci. The parameters (X, Y) are regarded as a pair of Hilbert modular functions for $\mathbb{Q}(\sqrt{5})$ via explicit double integrals (see Remark 2.16 and Theorem 3.9). Our results are coherent with the theory of classical elliptic integrals (see Table 1). The results of this paper are used in [12].

Table 1. Classical elliptic integrals and the result of this paper

	Classical story	Result of this paper
Base space	$\mathbb{P}^{1}(\mathbb{C})$	$\mathbb{P}(1: 1: 2)$
Branch loci	4 points	P and Q
\quad Variety	Elliptic curve	Kummer surface $K(X, Y)$
Arrangement	Elliptic modular for $\Gamma(2)$	Hilbert modular for $\mathbb{Q}(\sqrt{5})$

The author conjectures that we can similarly obtain simple and geometric interpretations of other Hilbert modular functions, using suitable weighted projective planes. Our results might give a first step in such an approach to Hilbert modular functions.

2. The Kummer surface $K(X, Y)$ and Hilbert modular functions

for $\mathbb{Q}(\sqrt{5})$. We consider the period mapping for the family $\mathcal{K}=\{K(X, Y)\}$ of surfaces where

$$
\begin{equation*}
K(X, Y): v^{2}=\left(u^{2}-2 y^{5}\right)\left(u-\left(5 y^{2}-10 X y+Y\right)\right) \tag{2.1}
\end{equation*}
$$

for $(X, Y) \neq(0,0)$. The equation 2.1$)$ gives a double covering of the (y, u) space branched along the parabola

$$
\begin{equation*}
u=5 y^{2}-10 X y+Y \tag{2.2}
\end{equation*}
$$

and the quintic curve

$$
\begin{equation*}
u^{2}=2 y^{5} \tag{2.3}
\end{equation*}
$$

with the $(2,5)$-cusp $(y, u)=(0,0)$. The parameters (X, Y) define the arrangement of the divisors P and Q. In this section, we study the properties of the family \mathcal{K}.

2.1. Hilbert modular functions for $\mathbb{Q}(\sqrt{5})$ and the $K 3$ surface

 $S(X, Y)$. In this subsection, we survey the results of [11].Let \mathcal{O} be the ring of integers in the real quadratic field $\mathbb{Q}(\sqrt{5})$. Set $\mathbb{H}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$. The Hilbert modular group $\operatorname{PSL}(2, \mathcal{O})$ acts on
$\mathbb{H} \times \mathbb{H}$ by

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right):\left(z_{1}, z_{2}\right) \mapsto\left(\frac{\alpha z_{1}+\beta}{\gamma z_{1}+\delta}, \frac{\alpha^{\prime} z_{2}+\beta^{\prime}}{\gamma^{\prime} z_{2}+\delta^{\prime}}\right)
$$

for $g=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \operatorname{PSL}(2, \mathcal{O})$, where ${ }^{\prime}$ is the conjugate in $\mathbb{Q}(\sqrt{5})$. We also consider the involution $\tau:\left(z_{1}, z_{2}\right) \mapsto\left(z_{2}, z_{1}\right)$.

Definition 2.1. If a holomorphic function g on $\mathbb{H} \times \mathbb{H}$ satisfies the transformation law

$$
g\left(\frac{\alpha z_{1}+\beta}{\gamma z_{1}+\delta}, \frac{\alpha^{\prime} z_{2}+\beta^{\prime}}{\gamma^{\prime} z_{2}+\delta^{\prime}}\right)=\left(\gamma z_{1}+\delta\right)^{k}\left(\gamma^{\prime} z_{2}+\delta^{\prime}\right)^{k} g\left(z_{1}, z_{2}\right)
$$

for any $\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \operatorname{PSL}(2, \mathcal{O})$, we call g a Hilbert modular form of weight k for $\mathbb{Q}(\sqrt{5})$. If $g\left(z_{2}, z_{1}\right)=g\left(z_{1}, z_{2}\right)$, then g is called a symmetric modular form.

If a meromorphic function f on $\mathbb{H} \times \mathbb{H}$ satisfies

$$
f\left(\frac{\alpha z_{1}+\beta}{\gamma z_{1}+\delta}, \frac{\alpha^{\prime} z_{2}+\beta^{\prime}}{\gamma^{\prime} z_{2}+\delta^{\prime}}\right)=f\left(z_{1}, z_{2}\right)
$$

for any $\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \operatorname{PSL}(2, \mathcal{O})$, we call f a Hilbert modular function for $\mathbb{Q}(\sqrt{5})$.
Remark 2.2. Hirzebruch [4] showed that the symmetric Hilbert modular surface $\overline{(\mathbb{H} \times \mathbb{H}) /\langle\operatorname{PSL}(2, \mathcal{O}), \tau\rangle}$ is isomorphic to the weighted projective plane $\mathbb{P}(1: 3: 5)=\{(\mathfrak{A}: \mathfrak{B}: \mathfrak{C})\}$. The point $(\mathfrak{A}: \mathfrak{B}: \mathfrak{C})=(1: 0: 0)$ gives the cusp $(\sqrt{-1} \infty, \sqrt{-1} \infty)$ of the modular surface. Let

$$
\begin{equation*}
X=\frac{\mathfrak{B}}{\mathfrak{A}^{3}}, \quad Y=\frac{\mathfrak{C}}{\mathfrak{A}^{5}} \tag{2.4}
\end{equation*}
$$

The pair (X, Y) defines a system of affine coordinates of $\{\mathfrak{A} \neq 0\}$ of $\mathbb{P}(1: 3: 5)$.

Remark 2.3. Müller 10 introduced certain Hilbert modular forms g_{2} $\left(s_{6}, s_{10}, s_{15}\right.$, resp.) of weight $2(6,10,15$, resp.). They generate the ring of Hilbert modular forms for $\mathbb{Q}(\sqrt{5})$.

A $K 3$ surface X is a simply connected compact complex surface with $K_{X}=0$. The homology group $H_{2}(X, \mathbb{Z})$ has a unimodular lattice structure. Let $\mathrm{NS}(X)$, the Néron-Severi lattice of X, be the sublattice in $H_{2}(X, \mathbb{Z})$ generated by the divisors on X. The orthogonal complement $\operatorname{Tr}(X)$ of $\operatorname{NS}(X)$ in $H_{2}(X, \mathbb{Z})$ is called the transcendental lattice of X.

We consider the family $\mathcal{F}=\{S(\mathfrak{A}: \mathfrak{B}: \mathfrak{C}) \mid(\mathfrak{A}: \mathfrak{B}: \mathfrak{C}) \in \mathbb{P}(1: 3: 5)$ $-\{(1: 0: 0)\}\}$ of $K 3$ surfaces with an elliptic fibration given by the affine equation

$$
\begin{equation*}
S(\mathfrak{A}: \mathfrak{B}: \mathfrak{C}): z_{0}^{2}=x_{0}^{3}-4 y_{0}^{2}\left(4 y_{0}-5 \mathfrak{A}\right) x_{0}^{2}+20 \mathfrak{B} y_{0}^{3} x_{0}+\mathfrak{C} y_{0}^{4} \tag{2.5}
\end{equation*}
$$

For a generic point $(\mathfrak{A}: \mathfrak{B}: \mathfrak{C}) \in \mathbb{P}(1: 3: 5)$, the intersection matrix of the Néron-Severi lattice $\operatorname{NS}(S(\mathfrak{A}: \mathfrak{B}: \mathfrak{C}))$ is given by $E_{8}(-1) \oplus E_{8}(-1) \oplus$
$\left(\begin{array}{cc}2 & 1 \\ 1 & -2\end{array}\right)$ (see [11]). Set $\mathcal{D}=\left\{\xi \in \mathbb{P}^{3}(\mathbb{C}) \mid \xi A^{t} \xi=0, \xi A^{t} \bar{\xi}>0\right\}$, where $A=U \oplus\left(\begin{array}{cc}2 & 1 \\ 1 & -2\end{array}\right)$ gives the transcendental lattice of $S(\mathfrak{A}: \mathfrak{B}: \mathfrak{C})$. Here, U is a parabolic lattice of rank 2 . Note that \mathcal{D} is composed of two connected components \mathcal{D}_{+}and \mathcal{D}_{-}. We let (1:1:- $\left.\sqrt{-1}: 0\right) \in \mathcal{D}_{+}$. In [11], we considered the multivalued period mapping $\mathbb{P}(1: 3: 5)-\{(1: 0: 0)\} \rightarrow \mathcal{D}_{+}$ for \mathcal{F} given by

$$
\begin{equation*}
\Phi:(\mathfrak{A}: \mathfrak{B}: \mathfrak{C}) \mapsto\left(\int_{\Gamma_{1}} \omega: \int_{\Gamma_{2}} \omega: \int_{\Gamma_{3}} \omega: \int_{\Gamma_{4}} \omega\right) \tag{2.6}
\end{equation*}
$$

where ω is a holomorphic 2-form up to a constant factor and $\Gamma_{1}, \ldots, \Gamma_{4}$ are 2-cycles on $S(\mathfrak{A}: \mathfrak{B}: \mathfrak{C})$.

Remark 2.4. Let $\left\{\check{\Gamma}_{1}, \ldots, \check{\Gamma}_{4}\right\}$ be a basis of the transcendental lattice A. We can take 2-cycles $\Gamma_{1}, \ldots, \Gamma_{4}$ such that $\left(\Gamma_{j} \cdot \check{\Gamma}_{k}\right)=\delta_{j, k}(j, k=1, \ldots, 4)$. These 2 -cycles $\Gamma_{1}, \ldots, \Gamma_{4}$ give the period mapping (2.6).

Note that we have a biholomorphic mapping $j: \mathbb{H} \times \mathbb{H} \rightarrow \mathcal{D}_{+}$. The multivalued mapping $j^{-1} \circ \Phi$ on $\{\mathfrak{A} \neq 0\}$ is given by

$$
\begin{equation*}
(X, Y) \mapsto\left(z_{1}, z_{2}\right)=\left(-\frac{\int_{\Gamma_{3}} \omega+\frac{1-\sqrt{5}}{2} \int_{\Gamma_{4}} \omega}{\int_{\Gamma_{2}} \omega},-\frac{\int_{\Gamma_{3}} \omega+\frac{1+\sqrt{5}}{2} \int_{\Gamma_{4}} \omega}{\int_{\Gamma_{2}} \omega}\right) \tag{2.7}
\end{equation*}
$$

Theorem 2.5 ([11]). The multivalued period mapping $\sqrt{2.7) \text { gives a de- }}$ veloping map of the Hilbert modular orbifold $\overline{(\mathbb{H} \times \mathbb{H}) /\langle\mathrm{PSL}(2, \mathcal{O}), \tau\rangle}$ with the branch divisor

$$
Y\left(-1728 X^{5}+64\left(5 X^{2}-Y\right)^{2}+720 X^{3} Y-80 X Y^{2}+Y^{3}\right)=0
$$

The inverse of (2.7) gives a pair $\left(X\left(z_{1}, z_{2}\right), Y\left(z_{1}, z_{2}\right)\right)$ of symmetric Hilbert modular functions for $\mathbb{Q}(\sqrt{5})$.

REmARK 2.6. The icosahedral group is deeply related to Hilbert modular functions for $\mathbb{Q}(\sqrt{5})$ (see [4] or [6]). Since the divisor

$$
\begin{equation*}
-1728 X^{5}+64\left(5 X^{2}-Y\right)^{2}+720 X^{3} Y-80 X Y^{2}+Y^{3}=0 \tag{2.8}
\end{equation*}
$$

is derived from Klein's icosahedral invariants, this relation is called Klein's icosahedral relation.

REmark 2.7. The inverse $\left(X\left(z_{1}, z_{2}\right), Y\left(z_{1}, z_{2}\right)\right)$ of 2.7 has an explicit expression in terms of Müller's modular forms g_{2}, s_{6}, s_{10} (see [11]).
2.2. The Kummer surface for the Humbert surface of invariant 5. In this subsection, we recall the properties of the Humbert surface of invariant 5 .

Let \mathfrak{S}_{2} be the Siegel upper half-plane of degree 2. The symplectic group $\operatorname{Sp}(4, \mathbb{Z})$ acts on \mathfrak{S}_{2}. The quotient space $\mathfrak{S}_{2} / \operatorname{Sp}(4, \mathbb{Z})$ gives the moduli space of principally polarized Abelian surfaces. Take $\Omega=\left(\begin{array}{c}\sigma_{1} \\ \sigma_{2} \\ \sigma_{3}\end{array}\right) \in \mathfrak{S}_{2}$. Let L_{Ω} be the lattice generated by the columns of the matrix $\left(\Omega, I_{2}\right)$. The complex
torus $Z_{\Omega}=\mathbb{C} / L_{\Omega}$ of dimension 2 gives a principally polarized Abelian surface. We note that Z_{Ω} corresponds to the Jacobian variety of a hyperelliptic curve of genus 2 .

Let T be the involution of a 2-dimensional complex torus Z induced by $\left(z_{1}, z_{2}\right) \mapsto\left(-z_{1},-z_{2}\right)$ on the universal covering \mathbb{C}^{2}. The minimal resolution $\operatorname{Kum}(Z)=\overline{Z /\langle\mathrm{id}, T\rangle}$ is called the Kummer surface. $\operatorname{Kum}(Z)$ is a $K 3$ surface. Note that Z is an Abelian surface if and only if $\operatorname{Kum}(Z)$ is an algebraic $K 3$ surface.

REMARK 2.8. Let $\Omega \in \mathfrak{S}_{2}$ and Z_{Ω} be the corresponding principally polarized Abelian surface. The Kummer surface $\operatorname{Kum}\left(Z_{\Omega}\right)$ can be given by the double covering of $\mathbb{P}^{2}(\mathbb{C})=\left\{\left(\zeta_{0}: \zeta_{1}: \zeta_{2}\right)\right\}$ whose branch divisor is given by the six lines $\zeta_{2}=0, \zeta_{2}+2 \zeta_{1}+\zeta_{0}=0, \zeta_{0}=0$ and $\zeta_{2}+2 \lambda_{j} \zeta_{1}+\lambda_{j}^{2} \zeta_{0}=0$, $(j \in\{1,2,3\})$ with three complex parameters λ_{1}, λ_{2} and λ_{3}. In this paper, this Kummer surface is denoted by $K_{H}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$.

An element $\Omega=\left(\begin{array}{cc}\sigma_{1} & \sigma_{2} \\ \sigma_{2} & \sigma_{3}\end{array}\right) \in \mathfrak{S}_{2}$ is said to have a singular relation with invariant Δ if there exist relatively prime integers a, b, c, d, e such that $a \sigma_{1}+b \sigma_{2}+c \sigma_{3}+d\left(\sigma_{2}^{2}-\sigma_{1} \sigma_{3}\right)+e=0$ and $\Delta=b^{2}-4 a c-4 d e$. Set $\mathcal{N}_{5}=\left\{\Omega \in \mathfrak{S}_{2} \mid \sigma\right.$ has a singular relation with invariant $\left.\Delta\right\}$. Let p be the canonical projection $\mathfrak{S}_{2} \rightarrow \mathfrak{S}_{2} / \operatorname{Sp}(4, \mathbb{Z})$. Then $\mathcal{H}_{5}=p\left(\mathcal{N}_{5}\right)$, called the Humbert surface of invariant 5 , is the moduli space of principally polarized Abelian surfaces A such that $\mathcal{O} \subset \operatorname{End}(A)$.

REMARK 2.9. Humbert [5] showed that Ω has s singular relation with $\Delta=5$ if and only if

$$
\begin{align*}
& 4\left(\lambda_{1}^{2} \lambda_{3}-\lambda_{2}^{2}+\lambda_{3}^{2}\left(1-\lambda_{1}\right)+\lambda_{2}^{2} \lambda_{3}\right)\left(\lambda_{1}^{2} \lambda_{2} \lambda_{3}-\lambda_{1} \lambda_{2}^{2} \lambda_{3}\right) \tag{2.9}\\
& \quad=\left(\lambda_{1}^{2}\left(\lambda_{2}+1\right) \lambda_{3}-\lambda_{2}^{2}\left(\lambda_{1}+\lambda_{3}\right)+\left(1-\lambda_{1}\right) \lambda_{2} \lambda_{3}^{2}+\lambda_{1}\left(\lambda_{2}-\lambda_{3}\right)\right)^{2}
\end{align*}
$$

(see also [3, Theorem 2.9]). This relation is called Humbert's modular equation for $\Delta=5$. Let $\mathcal{Q}: \mathcal{M}_{2,2} \rightarrow \mathfrak{S}_{2} / \operatorname{Sp}(4, \mathbb{Z})$ be the natural projection, where $\mathcal{M}_{2,2}$ is the moduli space of genus two curves with level 2 structure. The equation 2.9 defines a component of the inverse image $\mathcal{Q}^{-1}\left(\mathcal{H}_{5}\right)$.

This modular equation is studied in detail by several researchers (for example, Hashimoto and Murabayashi [3]). However, since (2.9) is complicated, studying the moduli properties of the family $\left\{K_{H}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)\right\}$ corresponding to \mathcal{H}_{5} does not seem to be easy.
2.3. The Shioda-Inose structure. Let X be an algebraic $K 3$ surface. Let ω be the unique holomorphic 2 -form on X up to a constant factor. If an involution $\iota: X \rightarrow X$ satisfies $\iota^{*} \omega=\omega$, we call ι a symplectic involution. Set $G=\langle\iota, \mathrm{id}\rangle \subset \operatorname{Aut}(X)$ and $\tilde{Y}=X / G$. If $Y \rightarrow \tilde{Y}$ is the minimal resolution, then Y is a $K 3$ surface. We have the rational quotient mapping $\chi: X \rightarrow Y$.

Definition 2.10. We say that a $K 3$ surface X admits a Shioda-Inose structure if there exists a symplectic involution $\iota \in \operatorname{Aut}(X)$ with rational quotient mapping $\chi: X \rightarrow Y$ such that Y is a Kummer surface and χ_{*} induces a Hodge isometry $\operatorname{Tr}(X)(2) \simeq \operatorname{Tr}(Y)$.

Theorem 2.11 (Morrison [9]). The K3 surface X admits a ShiodaInose structure if and only if there is an embedding $E_{8}(-1) \oplus E_{8}(-1) \hookrightarrow$ $\mathrm{NS}(X)$. A symplectic involution ι exchanging the two copies of $E_{8}(-1)$ induces a Shioda-Inose structure.
2.4. Kummer surface $K(X, Y)$. By Theorem 2.11, the $K 3$ surface $S(\mathfrak{A}: \mathfrak{B}: \mathfrak{C})$ for $(\mathfrak{A}: \mathfrak{B}: \mathfrak{C}) \neq(1: 0: 0)$ admits a Shioda-Inose structure. Therefore, there exists a Kummer surface $K(\mathfrak{A}: \mathfrak{B}: \mathfrak{C})$ and a symplectic involution ι of $S(\mathfrak{A}: \mathfrak{B}: \mathfrak{C})$ such that the corresponding rational quotient mapping $\chi: S(\mathfrak{A}: \mathfrak{B}: \mathfrak{C}) \rightarrow K(\mathfrak{A}: \mathfrak{B}: \mathfrak{C})$ induces a Hodge isometry $\operatorname{Tr}(S(\mathfrak{A}: \mathfrak{B}: \mathfrak{C}))(2) \simeq \operatorname{Tr}(K(\mathfrak{A}: \mathfrak{B}: \mathfrak{C}))$.

We shall obtain an explicit defining equation of $K(\mathfrak{A}: \mathfrak{B}: \mathfrak{C})$ by realizing the above symplectic involution ι. To find such an involution, we need a special elliptic fibration on $S(\mathfrak{A}: \mathfrak{B}: \mathfrak{C})$ given by the following lemma.

Lemma 2.12. The defining equation of $S(\mathfrak{A}: \mathfrak{B}: \mathfrak{C})$ in 2.5) is birationally equivalent to

$$
\begin{equation*}
z_{1}^{2}=x_{1}\left(x_{1}^{2}+\left(20 \mathfrak{A} y_{1}^{2}-20 \mathfrak{B} y_{1}+\mathfrak{C}\right) x_{1}+16 y_{1}^{5}\right) \tag{2.10}
\end{equation*}
$$

Proof. Apply the birational transformation

$$
x_{0}=\frac{x_{1}}{16 y_{1}}, \quad y_{0}=-\frac{x_{1}}{16 y_{1}^{2}}, \quad z_{0}=\frac{x_{1} z_{1}}{256 y_{1}^{4}}
$$

to 2.5 .

Fig. 1. The singular fibres given by 2.10

The mapping $\pi_{1}: S(\mathfrak{A}: \mathfrak{B}: \mathfrak{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ given by $\left(x_{1}, y_{1}, z_{1}\right) \mapsto y_{1}$ defines an elliptic fibration. The fibre $\pi_{1}^{-1}(0)\left(\pi_{1}^{-1}(\infty)\right.$, resp.) is a singular fibre of π_{1} of type $I_{10}\left(I I I^{*}\right.$, resp.). We set $\pi_{1}^{-1}(0)=a_{0}+a_{1}+\cdots+a_{4}+$ $a_{0}^{\prime}+a_{1}^{\prime}+\cdots+a_{4}^{\prime}$ and $\pi_{1}^{-1}(\infty)=b_{0}+b_{1}+c_{1}+c_{2}+c_{3}+c_{1}^{\prime}+c_{2}^{\prime}+c_{3}^{\prime}$. Let O be the zero of the Mordell-Weil group. Let O^{\prime} be the section of π_{1} given by $\left(x_{1}, y_{1}, z_{1}\right)=\left(0, y_{1}, 0\right)$. Note that $2 O^{\prime}=O$ (see Figure 1).

We have an involution ι of $S(\mathfrak{A}: \mathfrak{B}: \mathfrak{C})$ given by

$$
\left(x_{1}, y_{1}, z_{1}\right) \mapsto\left(\frac{16 y_{1}^{5}}{x_{1}}, y_{1}, \frac{-16 y_{1}^{5} z_{1}}{x_{1}^{2}}\right)
$$

This is a symplectic involution. Note that ι is a van Geemen-Sarti involution for elliptic surfaces (see [1]). Let $G=\langle\mathrm{id}, \iota\rangle$. Set

$$
\begin{equation*}
u_{1}=x_{1}+\frac{16 y_{1}^{5}}{x_{1}}, \quad v_{1}=\frac{x_{1}^{2}-16 y_{1}^{5}}{z_{1}} \tag{2.11}
\end{equation*}
$$

They are G-invariants. We can see that $\left(x_{1}, y_{1}, z_{1}\right) \mapsto\left(u_{1}, y_{1}, v_{1}\right)$ defines a 2-to-1 mapping.

Theorem 2.13. The defining equation of the Kummer surface $K(\mathfrak{A}$: $\mathfrak{B}: \mathfrak{C})$ is given by

$$
\begin{equation*}
v^{2}=\left(u^{2}-2 y^{5}\right)\left(u-\left(5 \mathfrak{A} y^{2}-10 \mathfrak{B} y+\mathfrak{C}\right)\right) \tag{2.12}
\end{equation*}
$$

For generic $(\mathfrak{A}: \mathfrak{B}: \mathfrak{C}) \in \mathbb{P}(1: 3: 5)$, the intersection matrix of the transcendental lattice $\operatorname{Tr}(K(\mathfrak{A}: \mathfrak{B}: \mathfrak{C}))$ is given by

$$
A(2)=\left(\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right) \oplus\left(\begin{array}{cc}
4 & 2 \\
2 & -4
\end{array}\right)
$$

Proof. We can check directly that ι interchanges the two copies of $E_{8}(-1)$ in $\operatorname{NS}(S(\mathfrak{A}: \mathfrak{B}: \mathfrak{C}))$ (see Figure 2). Therefore, by Theorem 2.11, the involution ι gives a Shioda-Inose structure on $S(\mathfrak{A}: \mathfrak{B}: \mathfrak{C})$.

Fig. 2. $E_{8}(-1)$ lattices in $\operatorname{NS}(S(\mathfrak{A}: \mathfrak{B}: \mathfrak{C}))$
From 2.10, 2.11 and the birational transformation

$$
u_{1}=-u, \quad v_{1}=\frac{\sqrt{-1} v}{u-\left(5 \mathfrak{A} y^{2}-10 \mathfrak{B} y+\mathfrak{C}\right)}, \quad y_{1}=\frac{y}{2}
$$

we can check that the defining equation of $S(\mathfrak{A}: \mathfrak{B}: \mathfrak{C}) / G$ is 2.12).

The form of the intersection matrix of $\operatorname{Tr}(K(\mathfrak{A}: \mathfrak{B}: \mathfrak{C}))$ follows from the fact that ι gives the Shioda-Inose structure.

We thus have the family $\tilde{\mathcal{K}}=\{K(\mathfrak{A}: \mathfrak{B}: \mathfrak{C})\}$ of Kummer surfaces. The projection $(y, u, v) \mapsto(y, u)$ defines the double covering $\mathcal{P}: K(\mathfrak{A}: \mathfrak{B}: \mathfrak{C}) \rightarrow$ $\mathbb{P}(1: 1: 2)=\left\{\left(\zeta_{0}: \zeta_{1}: \zeta_{2}\right)\right\}$, where $y=\zeta_{1} / \zeta_{0}$ and $u=\zeta_{2} / \zeta_{0}^{2}$ on $\left\{\zeta_{0} \neq 0\right\}$. Its branch divisor is given by $\tilde{P} \cup \tilde{Q}$, where

$$
\begin{align*}
& \tilde{P} \cap\left\{\zeta_{0} \neq 0\right\}=\left\{(y, u) \mid u=5 \mathfrak{A} y^{2}-10 \mathfrak{B} y+\mathfrak{C}\right\}, \tag{2.13}\\
& \tilde{Q} \cap\left\{\zeta_{0} \neq 0\right\}=\left\{(y, u) \mid u^{2}=2 y^{5}\right\} .
\end{align*}
$$

REmark 2.14. The equation (2.12) gives an expression of the Kummer surface $\operatorname{Kum}\left(Z_{\Omega}\right)$ for $\Omega \in \mathcal{H}_{5}$. It is different from the expression of $K_{H}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ in Remark 2.9. Our expression has some advantages. For example, our parameter space has a simple compactification by adding the point $(\mathfrak{A}: \mathfrak{B}: \mathfrak{C})=(1: 0: 0)$. This point is equal to the cusp of the Hilbert modular surface $\overline{(\mathbb{H} \times \mathbb{H}) /\langle\operatorname{PSL}(2, \mathcal{O}), \tau\rangle}$ (see Remark 2.2).

Let ω_{K} be the unique holomorphic 2-form on $K(\mathfrak{A}: \mathfrak{B}: \mathfrak{C})$ up to a constant factor. Set $\chi_{*}\left(\Gamma_{j}\right)=\Delta_{j}$ for $j \in\{1,2,3,4\}$. The period mapping for \mathcal{K} is given by

$$
\begin{equation*}
\Phi_{K}:(\mathfrak{A}: \mathfrak{B}: \mathfrak{C}) \mapsto\left(\int_{\Delta_{1}} \omega_{K}: \int_{\Delta_{2}} \omega_{K}: \int_{\Delta_{3}} \omega_{K}: \int_{\Delta_{4}} \omega_{K}\right) \in \mathcal{D} . \tag{2.14}
\end{equation*}
$$

Since $\chi^{*}\left(\omega_{K}\right)=\omega$ and $\chi_{*}\left(\Gamma_{j}\right)=\Delta_{j}$, we clearly have the following proposition.

Proposition 2.15.

$$
\left(\int_{\Gamma_{1}} \omega: \cdots: \int_{\Gamma_{4}} \omega\right)=\left(\int_{\Delta_{1}} \omega_{K}: \cdots: \int_{\Delta_{4}} \omega_{K}\right)
$$

Remark 2.16. According to Theorem 2.5 and the above proposition, the inverse of $j^{-1} \circ \Phi_{K}$ gives the pair (X, Y) of Hilbert modular functions for $\mathbb{Q}(\sqrt{5})$ via the period mapping Φ_{K}.

Consider the projection $\pi: K(\mathfrak{A}: \mathfrak{B}: \mathfrak{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ given by $(u, y, v) \mapsto y$. The elliptic surface $K\left((\mathfrak{A}: \mathfrak{B}: \mathfrak{C}), \pi, \mathbb{P}^{1}(\mathbb{C})\right)$ has the singular fibre $\pi^{-1}(0)$ $\left(\pi^{-1}(\infty)\right.$, resp.) of type $I_{5}\left(I I I^{*}\right.$, resp.) and five other singular fibres $\pi^{-1}\left(s_{1}\right), \ldots, \pi^{-1}\left(s_{5}\right)$ of type I_{2}.

Proposition 2.17. The vector space $\operatorname{NS}(K(\mathfrak{A}: \mathfrak{B}: \mathfrak{C})) \otimes_{\mathbb{Z}} \mathbb{Q}$ is generated by the components of the singular fibres, the section O given by the zero of the Mordell-Weil group and a general fibre F of π.

Proof. $\mathrm{NS}(K(\mathfrak{A}: \mathfrak{B}: \mathfrak{C})) \otimes_{\mathbb{Z}} \mathbb{Q}$ is an 18 -dimensional vector space over \mathbb{Q}. Set $\pi^{-1}(y)=\bigcup_{j=0}^{r(y)} \Theta_{y, j}$, where $\Theta_{y, j}$ is a connected component and $\Theta_{y, 0} \cap O$ $\neq \emptyset$. By calculating the intersection numbers, we can check that the 18
divisors $\Theta_{0,1}, \ldots, \Theta_{0,4}, \Theta_{s_{1}, 1}, \ldots, \Theta_{s_{5}, 1}, \Theta_{\infty, 1}, \ldots, \Theta_{\infty, 7}, O$ and F generate a sublattice of $\operatorname{NS}(K(\mathfrak{A}: \mathfrak{B}: \mathfrak{C}))$ of rank 18 . Hence the claim follows.

By (2.4) and (2.12), we have $K(X, Y)$ in (2.1).
3. Double integrals of an algebraic function on chambers surrounded by a parabola and a quintic curve. In this section, we obtain an extension of classical elliptic integrals. We shall study a single-valued branch $U_{0} \rightarrow \mathcal{D}_{+}$of the multivalued period mapping Φ_{K} explicitly where U_{0} is the open set in \mathbb{R}^{2} given by Figure 3. By the analytic continuation of this single-valued branch, we obtain the multivalued period mapping Φ_{K} of (2.14). The arrangement of P of (2.2) and Q of (2.3) determines the chambers R_{1}, R_{2}, R_{3} and R_{4} in Figure 9. Theorem 3.9 gives an extension of the classical elliptic integrals to the Hilbert modular case for $\mathbb{Q}(\sqrt{5})$.
3.1. The elliptic curve $E(y)$. For $y>0$, set $\alpha(y)=y^{2} \sqrt{2 y}, \beta(y)=$ $-y^{2} \sqrt{2 y}$ and $p(y)=5 y^{2}-10 X y+Y$ where $\sqrt{y}>0$. Note that $\alpha(y), \beta(y)$ and $p(y)$ are real valued analytic functions for $y \in \mathbb{R}_{+}$. Set

$$
\begin{equation*}
E(y): v^{2}=(u-\alpha(y))(u-\beta(y))(u-p(y)) \tag{3.1}
\end{equation*}
$$

for $y \in \mathbb{R}_{+}$. Of course, $E(y)$ gives the fibre for $y \in \mathbb{R}_{+}$of the elliptic surface $\left(K(X, Y), \pi, \mathbb{P}^{1}(\mathbb{C})\right)$. The discriminant of the right hand side of (3.1) for u has five roots in the y-plane.

Let U_{0} be the domain in $\mathbb{R}^{2}=\{(X, Y)\}$ described in Figure 3. The curve in Figure 3 is Klein's icosahedral relation in (2.8). If $(X, Y) \in U_{0}$,

Fig. 3. The domain U_{0} in (X, Y)-space \mathbb{R}^{2}.
the five roots of the discriminant of the right hand side of (3.1) for u are in $\mathbb{R}_{+}(\subset y$-space $)$. So, we let $s_{1}=s_{1}(X, Y), s_{2}=s_{2}(X, Y), s_{3}=s_{3}(X, Y)$, $s_{4}=s_{4}(X, Y)$ and $s_{5}=s_{5}(X, Y)$ be these five roots such that $0<s_{1}<$ $s_{2}<s_{3}<s_{4}<s_{5}$.

For $(X, Y) \in U_{0}$ and $s_{j-1}<y<s_{j}(j=0, \ldots, 6)$, we denote the right hand side of $E(y)$ by $\left(u-w_{1}(y)\right)\left(u-w_{2}(y)\right)\left(u-w_{3}(y)\right)$, where $w_{1}(y)<$ $w_{2}(y)<w_{3}(y)$ (see Table 2 and Figure 4).

Table 2. The correspondence between $\left\{w_{1}, w_{2}, w_{3}\right\}$ and $\{\alpha, \beta, p\}$

	$0<y<s_{1}$	$s_{1}<y<s_{2}$	$s_{2}<y<s_{3}$	$s_{3}<y<s_{4}$	$s_{4}<y<s_{5}$	$s_{5}<y$
$w_{1}(y)$	$\beta(y)$	$\beta(y)$	$p(y)$	$\beta(y)$	$\beta(y)$	$\beta(y)$
$w_{2}(y)$	$\alpha(y)$	$p(y)$	$\beta(y)$	$p(y)$	$\alpha(y)$	$p(y)$
$w_{3}(y)$	$p(y)$	$\alpha(y)$	$\alpha(y)$	$\alpha(y)$	$p(y)$	$\alpha(y)$

Fig. 4. The graph of $u=\alpha(y), \beta(y), p(y)$
Since $\alpha(y), \beta(y)$ and $p(y)$ are real for $y \in \mathbb{R}_{+}$, the function

$$
F\left(y, u_{+}\right)=\sqrt{\left(u_{+}-\alpha(y)\right)\left(u_{+}-\beta(y)\right)\left(u_{+}-p(y)\right)}
$$

is single-valued on $\left\{\left(y, u_{+}\right) \mid y \in \mathbb{R}_{+}, \operatorname{Im}\left(u_{+}\right)>0\right\}$. Hence,

$$
\begin{equation*}
F(y, u)=\lim _{t \rightarrow 0} F(y, u+\sqrt{-1} t) \in \mathbb{R} \tag{3.2}
\end{equation*}
$$

is single-valued for $s_{j-1}<y<s_{j}$ and $u \notin\{\alpha(y), \beta(y), p(y), \infty\}$, as is seen in Table 3.

Table 3. The values of $F(u, y)$

	$-\infty<u<w_{1}$	$w_{1}<u<w_{2}$	$w_{2}<u<w_{3}$	$w_{3}<u<\infty$
$F(u, y)$	$-\sqrt{-1} \mathbb{R}_{+}$	$-\mathbb{R}_{+}$	$\sqrt{-1} \mathbb{R}_{+}$	\mathbb{R}_{+}

Take a base point $b \in\left(s_{2}, s_{3}\right)(\subset \mathbb{R})$. We can take a basis $\left\{\gamma_{1}, \gamma_{2}\right\}$ of the homology group $H_{1}\left(\pi^{-1}(b), \mathbb{Z}\right)$ such that $\left(\gamma_{1} \cdot \gamma_{2}\right)=1$ and

$$
\int_{\gamma_{1}} \omega=2 \int_{\beta(b)}^{p(b)} \frac{d u}{\sqrt{F(b, u)}}, \quad \int_{\gamma_{2}} \omega=2 \int_{\alpha(b)}^{\beta(b)} \frac{d u}{\sqrt{F(b, u)}}
$$

For $j \in\{0,1,2\} \quad(\in\{3,4,5\}$, resp. $)$, we set $l_{j}=\left\{\left(s_{j},-\sqrt{-1} t\right) \mid t \geq 0\right\}$ $\left(=\left\{\left(s_{j}, \sqrt{-1} t\right) \mid t \geq 0\right\}\right.$, resp.). We call l_{j} the cut line for s_{j}. For y in
$\mathbb{C}-\left\{l_{0}, \ldots, l_{5}\right\}$, take an arc α_{y} which does not meet the cut lines $l_{j}(j \in$ $\{0, \ldots, 5\}$) with the start (end, resp.) point b (y, resp.). Let $u \mapsto a_{y}(u)$ $(0 \leq u \leq 1)$ be the parametric representation of α_{y}. Take a 1 -cycle γ on $E(b)$. For $\gamma \in H_{1}\left(\pi^{-1}(b), \mathbb{Z}\right)$, we choose a 1 -cycle $\gamma_{\alpha_{y}}(u)$ on $\pi^{-1}\left(a_{y}(u)\right)$ which depends continuously on u with $\gamma_{\alpha_{y}}(0)=\gamma$. If α_{y}^{\prime} is homotopic to α_{y} in $\mathbb{C}-\left\{l_{0} \cup \cdots \cup l_{5}\right\}$, we have $\gamma_{\alpha_{y}}(1)=\gamma_{\alpha_{y}^{\prime}}(1)$. So, we have a well-defined correspondence $\mathbb{C}-\left\{l_{0} \cup \cdots \cup l_{5}\right\} \ni y \mapsto \gamma_{\alpha_{y}}(1) \in H_{1}\left(\pi^{-1}(y), \mathbb{Z}\right)$. Then, we set

$$
\begin{equation*}
\gamma=\gamma_{\alpha_{y}}(1) \in H_{1}\left(\pi^{-1}(y), \mathbb{Z}\right) \quad\left(y \in \mathbb{C}-\left\{y_{0}, \ldots, y_{5}\right\}\right) . \tag{3.3}
\end{equation*}
$$

Next, let $r_{j}(j=0,1, \ldots, 5)$ be a closed arc in $\mathbb{C}-\left\{0, s_{1}, \ldots, s_{5}\right\}$, starting at b, going around s_{j} with the positive orientation and ending at b. We assume that r_{j} does not meet the cut line l_{k} if $j \neq k$. Let $t \mapsto u_{j}(t)(0 \leq t \leq 1)$ be the parametric representation of r_{j}. For instance, we can take an arc r_{1} as in Figure 5. We choose 1-cycles $\gamma_{1}(t)$ and $\gamma_{2}(t)$ on $\pi^{-1}\left(u_{j}(t)\right)$ which depend continuously on t such that $\gamma_{1}(0)=\gamma_{1}$ and $\gamma_{2}(0)=\gamma_{2}$. So, we have

$$
\binom{\gamma_{1}(1)}{\gamma_{2}(1)}=\left(\begin{array}{cc}
a_{j} & b_{j} \\
c_{j} & d_{j}
\end{array}\right)\binom{\gamma_{1}}{\gamma_{2}},
$$

where $a_{j}, b_{j}, c_{j}, d_{j} \in \mathbb{Z}$ and $a_{j} d_{j}-b_{j} c_{j}=1$. The correspondence $r_{j} \mapsto M_{j}=$ $\binom{a_{j} b_{j}}{c_{j} d_{j}}$ gives a representation of the fundamental group $\pi_{1}\left(\mathbb{C}-\left\{0, s_{1}, \ldots, s_{5}\right\}\right)$. We call M_{j} the monodromy matrix for r_{j}.

Fig. 5. The points $0, s_{1}, \ldots, s_{5}$, the cut lines and an arc r_{1} going around s_{1}
Remark 3.1. If an arc r in the base space of an elliptic fibration goes around a singular fibre with the positive orientation, the monodromy matrix M_{r} is obtained by K. Kodaira [7. Theorem 9.1]. For example, if the singular fibre is of type $I_{b}(b>0)$ or $I I I^{*}$, the monodromy matrix M_{r} is given by $B^{-1} M_{r}^{0} B$, where M_{r}^{0} is given by Table 4 and $B \in \mathrm{GL}(2, \mathbb{Z})$.

Lemma 3.2. The monodromy matrices M_{j} for $\left\{\gamma_{1}, \gamma_{2}\right\}$ are given by Table 5.

Table 4. The matrices M_{r}^{0} for the singular fibres of type I_{b} and $I I I^{*}$

Singular fibre	Matrix M_{r}^{0}
I_{b}	$\left(\begin{array}{cc}1 & 0 \\ b & 1\end{array}\right)$
$I I I^{*}$	$\left(\begin{array}{ll}0 & 1 \\ -1 & 0\end{array}\right)$

Table 5. The monodromy matrices $M_{j}(j=0,1, \ldots, 5, \infty)$

	Type of singular fibre	Monodromy matrix for γ_{1}, γ_{2}
y_{1}	I_{2}	$M_{1}=\left(\begin{array}{ll}3 & -2 \\ 2 & -1\end{array}\right)$
y_{2}	I_{2}	$M_{2}=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$
y_{3}	I_{2}	$M_{3}=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$
y_{4}	I_{2}	$M_{4}=\left(\begin{array}{ll}3 & -2 \\ 2 & -1 \\ \hline\end{array}\right.$
y_{5}	I_{2}	$M_{5}=\left(\begin{array}{ll}3 & -2 \\ 2 & -1\end{array}\right)$
0	I_{5}	$M_{0}=\left(\begin{array}{ll}1 & -5 \\ 0 & 1\end{array}\right)$
∞	$I I I^{*}$	$M_{\infty}=\left(\begin{array}{ll}3 & 5 \\ -2 & -3\end{array}\right)$

Proof. Let us determine the matrix M_{2} around s_{2}. The fibre $\pi^{-1}\left(s_{2}\right)$ is a singular fibre of type I_{2}. So, the monodromy matrix M_{2} is of the form

$$
M_{2}=B^{-1}\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right) B
$$

where $B \in \mathrm{GL}(2, \mathbb{Z})$. Observe that $p(y)=w_{1}^{(3)}(y)$ converges to $\beta(y)=$ $w_{2}^{(3)}(y)$ when $y \rightarrow y_{2}+0$. So, the matrix M_{2} fixes the 1-cycle $\gamma_{1}=\gamma_{1}^{(3)}$. Hence, $B=I_{2}$ and $M_{2}=\left(\begin{array}{cc}1 & 0 \\ 2 & 1\end{array}\right)$. By the same argument, we obtain Table 5.
3.2. The transcendental lattice $\left\langle D_{1}, \ldots, D_{4}\right\rangle$. From Table 5, we have the following relations:

$$
\begin{align*}
& M_{1} M_{2} M_{4} M_{3}=\left(\begin{array}{ll}
1 & 4 \\
0 & 1
\end{array}\right), \quad M_{1} M_{2} M_{5} M_{3}=\left(\begin{array}{ll}
1 & 4 \\
0 & 1
\end{array}\right), \\
& M_{2}^{-1} M_{3}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad M_{0} M_{1} M_{2} M_{0}^{-1} M_{3}^{-1}=\left(\begin{array}{ll}
3 & -2 \\
2 & -1
\end{array}\right) . \tag{3.4}
\end{align*}
$$

The transformation given by the matrix $M_{1} M_{2} M_{4} M_{3}$ fixes the 1-cycle γ_{2}. Let ρ_{1} be a closed curve in the y-plane starting from the base point b and going around s_{1}, s_{2}, s_{4} and s_{3} successively. Let $t \mapsto s(t)$ be a parametric representation of ρ_{1}. For $0 \leq t \leq 1$, we define a 1 -cycle $\gamma^{(1)}(t)$ on the elliptic curve $\pi^{-1}(s(t))$. The 1-cycle $\gamma^{(1)}(t)$ depends continuously on t and $\gamma^{(1)}(0)=\gamma^{(1)}(1)=\gamma_{2}$ on $\pi^{-1}(b)=\pi^{-1}(s(0))=\pi^{-1}(s(1))$. Then the set

$$
C_{1}=\bigcup_{0 \leq t \leq 1} \gamma^{(1)}(t)
$$

defines a 2-cycle on the surface $K(X, Y)$. Similarly, we have the 2-cycles C_{2}, C_{3} in Figure 6 and C_{4} in Figure 7.

Fig. 6. 2-cycles C_{1}, C_{2}, C_{3}

Fig. 7. 2-cycle C_{4}

Lemma 3.3. The intersection matrix for $\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}$ is

$$
\left(\left(C_{j} \cdot C_{k}\right)\right)_{j, k=1, \ldots, 4}=\left(\begin{array}{cccc}
0 & 2 & 0 & 0 \\
2 & 0 & 0 & 0 \\
0 & 0 & -4 & -6 \\
0 & 0 & -6 & -4
\end{array}\right) .
$$

Proof. Let ρ_{j} be the base arc of C_{j}. For $y \in \rho_{j}$, let $\gamma^{(j)}(y)=C_{j} \cap \pi^{-1}(y)$. Suppose the base arcs ρ_{j} and ρ_{k} intersect in s points y_{1}, \ldots, y_{s} in the y-plane. Then the intersection number $\left(C_{j} \cdot C_{k}\right)$ is given by

$$
\begin{equation*}
\left(C_{j} \cdot C_{k}\right)=\sum_{l=1}^{s}(-1)\left(\rho_{j} \cdot \rho_{k}\right)_{y_{l}}\left(\gamma^{(j)}\left(y_{l}\right) \cdot \gamma^{(k)}\left(y_{l}\right)\right), \tag{3.5}
\end{equation*}
$$

where $\left(\rho_{j} \cdot \rho_{k}\right)_{y_{l}}$ is the intersection number of the base arcs ρ_{j} and ρ_{k} at the point y_{l}, and $\left(\gamma^{(j)}\left(y_{l}\right) \cdot \gamma^{(k)}\left(y_{l}\right)\right)$ is the intersection number of 1-cycles on the elliptic curve $\pi^{-1}\left(y_{j}\right)$. See Figure 6. The base arcs ρ_{1} and ρ_{2} intersect in two points a_{1} and a_{2}. We have $\left(\rho_{1} \cdot \rho_{2}\right)_{a_{1}}=+1$ and $\left(\rho_{1} \cdot \rho_{2}\right)_{a_{2}}=-1$. Then, from (3.5), we have

$$
\begin{aligned}
\left(C_{1} \cdot C_{2}\right) & =(-1)(+1)\left(-\gamma_{2} \cdot-2 \gamma_{1}+\gamma_{2}\right)+(-1)(-1)\left(-2 \gamma_{1}+\gamma_{2} \cdot-2 \gamma_{1}+\gamma_{2}\right) \\
& =(-1)(-2)+0=2 .
\end{aligned}
$$

By the same argument, the claim follows.
The following corollary to the above lemma is obvious.
Corollary 3.4. Set

$$
\begin{equation*}
D_{1}=C_{1}, \quad D_{2}=C_{2}, \quad D_{3}=C_{4}-C_{3}, \quad D_{4}=C_{4} . \tag{3.6}
\end{equation*}
$$

Then the intersection matrix for $\left\{D_{1}, \ldots, D_{4}\right\}$ is

$$
\left(\left(D_{j} \cdot D_{k}\right)\right)_{j, k=1, \ldots, 4}=\left(\begin{array}{cccc}
0 & 2 & 0 & 0 \tag{3.7}\\
2 & 0 & 0 & 0 \\
0 & 0 & 4 & 2 \\
0 & 0 & 2 & -4
\end{array}\right) .
$$

Proposition 3.5. The system $\left\{D_{1}, D_{2}, D_{3}, D_{4}\right\}$ gives a basis of the transcendental lattice of $K(X, Y)$ with intersection matrix $A(2)$.

Proof. By the above construction, the 2-cycle $D_{j}(j=1, \ldots, 4)$ does not meet the singular fibres of $\left(K(X, Y), \pi, \mathbb{P}^{1}(\mathbb{C})\right)$. So, from Theorem 2.5 and Proposition 2.17, the system $\left\{D_{1}, \ldots, D_{4}\right\}$ gives a basis of $\operatorname{Tr}(K(X, Y))$.
3.3. The 2 -cycles L_{1}, \ldots, L_{6}. Next, we define 2 -cycles L_{1}, \ldots, L_{6} on $K(X, Y)$. Let $\varrho_{j}(j=1, \ldots, 6)$ be an arc in the y-plane with a parametric representation $t \mapsto q_{j}(t)(0 \leq t \leq 1)$ whose start point and end point are
given by Table 6 . We take them so that ϱ_{j} does not meet the cut lines l_{k}
Table 6. The arc ϱ_{j} and 1-cycles for 2-cycles $L_{j}(j=1, \ldots, 6)$

	L_{1}	L_{2}	L_{3}	L_{4}	L_{5}	L_{6}
start point of ϱ_{j}	s_{5}	s_{4}	s_{3}	s_{2}	s_{1}	0
end point of ϱ_{j}	∞	s_{5}	∞	s_{3}	s_{4}	∞
1-cycle $\delta^{(j)}$	$\gamma_{1}-\gamma_{2}$	$\gamma_{1}-\gamma_{2}$	γ_{1}	γ_{1}	$\gamma_{1}-\gamma_{2}$	γ_{2}

$(k \in\{0, \ldots, 5\})$ if $0<t<1$. Hence, we can define a 1-cycle $\delta^{(j)}\left(q_{j}(t)\right)$ on $\pi^{-1}\left(q_{j}(t)\right)$ as in Table 6 in the manner of 3.3$)$. Then we can see that $L_{j}=\bigcup_{0 \leq t \leq 1} \delta^{(j)}\left(q_{j}(t)\right)$ gives a 2-cycle on $K(X, Y)$ (see Figure 8).

Fig. 8. 2-cycles $L_{1}, L_{2}, L_{3}, L_{4}, L_{5}$ and L_{6}
Just as we proved Lemma 3.3, we can prove the following lemma and corollary.

Lemma 3.6.

$$
\left(\left(L_{j} \cdot C_{k}\right)\right)_{1 \leq j \leq 6,1 \leq k \leq 4}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{3.8}\\
1 & -1 & 0 & 0 \\
1 & 1 & 1 & -1 \\
0 & 0 & -2 & -3 \\
0 & 1 & -2 & -3 \\
0 & 0 & 2 & 0
\end{array}\right)
$$

Corollary 3.7.

$$
\left(\left(L_{j} \cdot D_{k}\right)\right)_{1 \leq j \leq 6,1 \leq k \leq 4}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{3.9}\\
1 & -1 & 0 & 0 \\
1 & 1 & -2 & -1 \\
0 & 0 & -1 & -3 \\
0 & 1 & -1 & -3 \\
0 & 0 & -2 & 0
\end{array}\right)
$$

Proposition 3.8. A branch of the period mapping Φ_{K} in (2.14) on U_{0} has the following expression:

$$
\int_{\Delta_{1}} \omega_{K}=\int_{L_{1}+L_{2}} \omega_{K}, \quad \int_{\Delta_{2}} \omega_{K}=\int_{L_{1}} \omega_{K}=\int_{L_{5}-L_{4}} \omega_{K}
$$

$$
\begin{align*}
\int_{\Delta_{3}} \omega_{K} & \int_{-L_{4}-3\left(L_{6}+L_{5}-L_{4}-L_{3}+L_{2}+L_{1}\right)} \omega_{K}, \tag{3.10}\\
\int_{\Delta_{4}} \omega_{K} & =\int_{L_{6}+L_{5}-L_{4}-L_{3}+L_{2}+L_{1}} \omega_{K}
\end{align*}
$$

Proof. According to Proposition 3.5, $\left\{D_{1}, \ldots, D_{4}\right\}$ gives a basis of $\operatorname{Tr}(K(X, Y))$. Recall the construction of the 2-cycles $\Gamma_{1}, \ldots, \Gamma_{4}$ on $S(X, Y)$ in Remark 2.4. Together with Proposition 2.15, it is sufficient to take 2-cycles $\Delta_{1}, \ldots, \Delta_{4} \in \mathrm{H}_{2}(K(X, Y), \mathbb{Z})$ such that $\left(\Delta_{j} \cdot D_{k}\right)=\delta_{j k}$. By Corollary 3.7, we can check that the 2 -cycles on the right hand side of 3.10 have these properties.
3.4. The chambers R_{1}, R_{2}, R_{3} and R_{4}. We define the following chambers in \mathbb{R}^{2} (see Figure 9):

$$
\begin{align*}
& R_{1}=\left\{(u, y) \mid 0 \leq y \leq s_{2}, w_{1}(y) \leq u \leq w_{2}(y)\right\} \\
& R_{2}=\left\{(u, y) \mid s_{1} \leq y \leq s_{4}, w_{2}(y) \leq u \leq w_{3}(y)\right\} \tag{3.11}\\
& R_{3}=\left\{(u, y) \mid s_{2} \leq y \leq s_{3}, w_{1}(y) \leq u \leq w_{2}(y)\right\} \\
& R_{4}=\left\{(u, y) \mid s_{4} \leq y \leq s_{5}, w_{2}(y) \leq u \leq w_{3}(y)\right\}
\end{align*}
$$

They are surrounded by the branch divisors P and Q. From Table 2, we obtain Table 7.

THEOREM 3.9. A branch of the period mapping Φ_{K} in 2.14) on U_{0} is given by the following double integrals on the chambers R_{1}, R_{2}, R_{3} and R_{4} :

$$
\begin{array}{ll}
\int_{\Delta_{1}} \omega_{K}=2 \int_{R_{2}} \frac{d u d y}{F(u, y)}+2 \int_{R_{4}} \frac{d u d y}{F(u, y)}, \quad \int_{\Delta_{2}} \omega_{K}=2 \int_{R_{2}} \frac{d u d y}{F(u, y)} \\
\int_{\Delta_{3}} \omega_{K}=6 \int_{R_{1}} \frac{d u d y}{F(u, y)}+2 \int_{R_{3}} \frac{d u d y}{F(u, y)}, \quad \int_{\Delta_{4}} \omega_{K}=-2 \int_{R_{1}} \frac{d u d y}{F(u, y)} \tag{3.12}
\end{array}
$$

$0<y<0.2$

$0<y<1.5$

$$
0<y<12
$$

Fig. 9. The chambers R_{1}, R_{2}, R_{3} and R_{4}
Table 7. Elliptic integrals on $E(y)$ for $\left(s_{j-1}, s_{j}\right)$

y	$\frac{1}{2}\left(\int_{\gamma_{1}(y)} \omega_{y}\right)$	$\frac{1}{2}\left(\int_{\gamma_{2}(y)} \omega_{y}\right)$
$0<y<s_{1}$	$\int_{\alpha(y)}^{p(y)}$	$\frac{d u}{F(u, y)}+\int_{p(y)}^{\infty} \frac{d u}{F(u, y)}$
$s_{1}<y<s_{2}$	$\int_{p(y)}^{\beta(y)} \frac{d u}{F(u, y)}$	$\int_{\alpha(y)}^{\beta(y)} \frac{d u}{F(u, y)}$
$s_{2}<y<s_{3}$	$\int_{\beta(y)}^{p(y)} \frac{d u}{F(u, y)}$	$\int_{\alpha(y)}^{p(y)} \frac{d u}{F(u, y)}+\int_{p(y)}^{\beta(y)} \frac{d u}{F(u, y)}$
$s_{3}<y<s_{4}$	$\int_{p(y)}^{\beta(y)} \frac{d u}{F(u, y)}$	$\int_{\alpha(y)}^{\beta(y)} \frac{d u}{F(u, y)}$
$s_{4}<y<s_{5}$	$\int_{\alpha(y)}^{p(y)} \frac{d u}{F(u, y)}+\int_{p(y)}^{\infty} \frac{d u}{F(u, y)}$	$\int_{\alpha(y)}^{p(y)} \frac{d u}{F(u, y)}+\int_{p(y)}^{\beta(y)} \frac{d u}{F(u, y)}$
$s_{5}<y$	$\int_{p(y)}^{\beta(y)} \frac{d u}{F(u, y)}$	$\int_{p(y)}^{p(y)} \frac{d u}{F(u, y)}$

Proof. From Proposition 3.8 and Tables 6 and 7, we have

$$
\begin{aligned}
\int_{\Delta_{2}} \omega_{K} & =\int_{L_{5}} \omega_{K}-\int_{L_{4}} \omega_{K}=2 \int_{s_{1}}^{s_{4}} \int_{\gamma_{1}(y)-\gamma_{2}(y)} \frac{d y d u}{F(u, y)}-2 \int_{s_{2}}^{s_{3}} \int_{\gamma_{1}(y)} \omega_{K} \\
& =2 \int_{s_{1}}^{s_{4}} \int_{p(y)}^{\alpha(y)} \frac{d y d u}{F(u, y)}=\int_{R_{2}} \frac{d y d u}{F(u, y)}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\int_{\Delta_{1}} \omega_{K} & =\int_{L_{5}} \omega_{K}-\int_{L_{4}} \omega_{K}+\int_{L_{2}} \omega_{K}=2 \int_{R_{2}} \frac{d y d u}{F(u, y)}+2 \int_{s_{4}}^{s_{5}} \int_{\alpha(y)}^{p(y)} \frac{d y d u}{F(u, y)} \\
& =2 \int_{R_{2}} \frac{d y d u}{F(u, y)}+2 \int_{R_{4}} \frac{d y d u}{F(u, y)}, \\
\int_{\Delta_{4}} \omega_{K} & =\int_{L_{6}} \omega_{K}+\int_{L_{5}} \omega_{K}-\int_{L_{4}} \omega_{K}-\int_{L_{3}} \omega_{K}+\int_{L_{2}} \omega_{K}+\int_{L_{1}} \omega_{K} \\
& =2 \int_{0}^{s_{1} \alpha(y)} \int_{\beta(y)}^{\alpha} \frac{d y d u}{F(u, y)}+2 \int_{s_{1}}^{s_{2} \beta(y)} \int_{p(y)} \frac{d y d u}{F(u, y)}=-\int_{R_{1}} \frac{d y d u}{F(u, y)}, \\
\int_{\Delta_{3}} \omega_{K} & =-\int_{L_{4}} \omega_{K}-3 \int_{\Delta_{4}} \omega_{K}=2 \int_{s_{2}}^{s_{3} \beta(y)} \int_{p(y)}^{\beta(u)} \frac{d y d u}{F(u, y)}+6 \int_{R_{1}} \frac{d y d u}{F(u, y)} \\
& =2 \int_{R_{3}} \frac{d y d u}{F(u, y)}+6 \int_{R_{1}} \frac{d y d u}{F(u, y)} .
\end{aligned}
$$

By the analytic continuation of the single-valued branch on U_{0} given by the integrals in (3.12), we obtain the multivalued period mapping Φ_{K} for the family \mathcal{K}. Hence, the Hilbert modular functions for $\mathbb{Q}(\sqrt{5})$ are closely connected with the arrangement of the divisors P of (2.2) and Q of (2.3). The above theorem gives a canonical extension of the classical elliptic integrals to the Hilbert modular case with the smallest discriminant.

Acknowledgements. The author would like to thank Professor Hironori Shiga for helpful advice and valuable suggestions. He is also grateful to Professor Kimio Ueno and the members of his laboratory for kind encouragement. He is grateful to the referee for the careful reading and valuable comments.

This work is supported by Waseda University Grant for Special Research Project 2013A-870 and 2014B-169.

References

[1] B. van Geemen and A. Sarti, Nikulin involutions on K3 surfaces, Math. Z. 255 (2007), 731-753.
[2] K. B. Gundlach, Die Bestimmung der Funktionen zur Hilbertschen Modulgruppe des Zahlkörpers $\mathbb{Q}(\sqrt{5})$, Math. Ann. 152 (1963), 226-256.
[3] K. Hashimoto and Y. Murabayashi, Shimura curves as intersections of Humbert equations and defining equations of QM-curves of genus two, Tohoku Math. J. 47 (1995), 271-296.
[4] F. Hirzebruch, The ring of Hilbert modular forms for real quadratic fields of small discriminant, in: Lecture Notes in Math. 627, Springer, 1977, 287-323.
[5] G. Humbert, Sur les fonctions abéliennes singulières, in: Oeuvres de G. Humbert 2, Gauthier-Villars, 1936, 297-401.
[6] R. Kobayashi, K. Kushibiki and I. Naruki, Polygons and Hilbert modular groups, Tohoku Math. 41 (1989), 633-646.
[7] K. Kodaira, On analytic surfaces II, Ann. of Math. 77 (1963), 563-626.
[8] K. Matsumoto, T. Sasaki and M. Yoshida, The monodromy of the period map of a 4-parameter family of $K 3$ surfaces and the hypergeometric function of type $(3,6)$, Int. J. Math. 3 (1992), 1-164.
[9] D. R. Morrison, On K3 surfaces with large Picard number, Invent. Math. 75 (1984), 105-121.
[10] R. Müller, Hilbertsche Modulformen und Modulfunktionen zu $\mathbb{Q}(\sqrt{5})$, Arch. Math. (Basel) 45 (1985), 239-251.
[11] A. Nagano, A theta expression of the Hilbert modular functions for $\sqrt{5}$ via the periods of K3 surfaces, Kyoto J. Math. 53 (2013), 815-843.
[12] A. Nagano and H. Shiga, Modular map for the family of Kummer surfaces via K3 surfaces, Math. Nachr. 288 (2015), 89-114.

Atsuhira Nagano
Department of Mathematics
Waseda University
Okubo 3-4-1, Shinjuku-ku
Tokyo 169-8555, Japan
E-mail: a.nagano@aoni.waseda.jp

