On the congruence $f(x)+g(y)+c \equiv 0(\bmod x y)$ (completion of Mordell's proof)

by

A. Schinzel (Warszawa)

L. J. Mordell [4] stated the following theorem, and outlined its proof:

The congruence

$$
a x^{3}+b y^{3}+c \equiv 0(\bmod x y),
$$

where a, b, c are given integers, has an infinite number of solutions in which $(c x, y)=1$, and we can give x, y as polynomials in a, b, c.

He also stated:
The same method proves the existence of an infinity of solutions of

$$
a x^{m}+b y^{n}+c \equiv 0(\bmod x y),
$$

where a, b, c are given integers, and also of

$$
\begin{equation*}
f(x)+g(y)+c \equiv 0(\bmod x y), \tag{1}
\end{equation*}
$$

where

$$
f(x)=a_{0} x^{m}+a_{1} x^{m-1}+\cdots+a_{m-1} x
$$

and

$$
g(y)=b_{0} y^{n}+b_{1} y^{n-1}+\cdots+b_{n-1} y,
$$

and the a 's and b 's are integers.
(See also [5, pp. 293-295]).
Mordell was to a certain extent anticipated by Jacobsthal [2], who assumed $g=f$ and required only $f(x)+c \equiv 0(\bmod y), f(y)+c \equiv 0(\bmod x)$.

We shall first assume $m \leq 3, n=1$ and prove
Theorem 1. The congruence

$$
\begin{equation*}
a X^{3}+a_{1} X^{2}+a_{2} X+b Y+c \equiv 0(\bmod X Y) \tag{2}
\end{equation*}
$$

2010 Mathematics Subject Classification: 11D09, 11D25, 11D41.
Key words and phrases: congruence, equation, polynomial, recurrence.
where $a, a_{1}, a_{2}, b, c \in \mathbb{Z}$, has infinitely many solutions in integers if and only if the equation

$$
\begin{equation*}
a X^{3}+a_{1} X^{2}+a_{2} X+b Y+c=0 \tag{3}
\end{equation*}
$$

is soluble in integers.
The conditions of Theorem 1 are satisfied for

$$
\left\langle a, a_{1}, a_{2}\right\rangle \in\{\langle 2,0,0\rangle,\langle 0,2,0\rangle,\langle 0,0,2\rangle\}, \quad b=2, \quad c=1,
$$

thus not only Mordell's last assertion above, but also his middle assertion is false for $m \leq 3, n=1$. For $m=n=2$ the falsity of the middle assertion was shown by Jacobsthal [2, §2, Theorem 5] for $a=b= \pm 1, c=\mp 2$, ∓ 3 (see also Barnes [1], Mills [3]). Moreover the middle assertion is false for $a=b=0, c \neq 0 ; a=0, b \neq 0, \sqrt[n]{-c / b} \notin \mathbb{Z} ; a \neq 0, b=0, \sqrt[m]{-c / a} \notin \mathbb{Z}$. Already I. Niven, the reviewer of [4] in Math. Reviews, pointed out [6] that the author seems to assume in the proofs that certain coefficients are not zero without formal hypothesis in the statement of the theorem. In the case $m=n=3, a>0, b>0, c>0$ Mordell's argument is valid only for $a>1$.

Ramasamy and Mohanty [7] found all solutions in positive integers x, y, z of the equation $a x^{3}+b y+c-x y z=0$, but even in this special case this does not prove Theorem 1 .

We shall prove
THEOREM 2. If $f(x)=a x^{2}+a_{1} x \in \mathbb{Z}[x], g(y)=b y^{2}+b_{1} y \in \mathbb{Z}[y]$, $c \in \mathbb{Z} \backslash\{0\}, \operatorname{Rad} c \mid\left(a_{1}, b_{1} a\right)$ and $|a b| \geq 9$, then the congruence (1) has infinitely many solutions in integers x, y such that $(y, c)=1$. If $0<|a b|<9$ and the remaining assumptions of the theorem are satisfied, there are only finitely many exceptions.

Rad c means here $\prod_{p \mid c, p \text { prime }} p$.
Jacobsthal [2, §2, Theorem 4] has shown that if $a=b=1, a_{1}=b_{1}$, $c= \pm 1$, the only exceptions are $a_{1}=b_{1}= \pm 1, c=-1$.

Corollary 1. The congruence

$$
a x^{2}+b y^{2}+c \equiv 0(\bmod x y)
$$

where $a, b, c \in \mathbb{Z} \backslash\{0\}$, has infinitely many solutions in integers x, y such that $(y, c)=1$ except for $a=b= \pm 1, c=\mp 2, \mp 3$.

ThEOREM 3. If $m \geq 4, n=1, a_{0} \in \mathbb{Z} \backslash\{0\}, a_{1}=a_{m-1}=0$ and $b_{0}, c \in \mathbb{Z} \backslash\{0\}$, then there exist infinitely many solutions of the congruence (1) in integers x, y such that $(y, c)=1$.

THEOREM 4. Let $m, n \in \mathbb{Z}$ with $(m-1)(n-1)>1$, $f(x)=a x^{m}+\sum_{i=1}^{m-1} a_{i} x^{m-i} \in \mathbb{Z}[x], \quad g(y)=b y^{n}+\sum_{i=1}^{n-1} b_{i} y^{n-i} \in \mathbb{Z}[y], \quad c \in \mathbb{Z}$,
$\operatorname{Rad} c \mid a_{m-1}$ and $\operatorname{Rad} c \mid b_{n-1} a$ if $m=2$, and either $|a b c|>1$, or $a, b, c>0$, $a_{i}, b_{j} \geq 0(1 \leq i \leq m-1,1 \leq j \leq n-1)$. Then the congruence (1) has infinitely many solutions in integers x, y such that $(y, c)=1$.

Corollary 2. The congruence

$$
a x^{m}+b y^{n}+c \equiv 0(\bmod x y)
$$

where $a, b, c, m, n \in \mathbb{Z} \backslash\{0\},(m-1)(n-1)>1$, has infinitely many solutions in integers x, y such that $(y, c)=1$.

The proofs of Theorems 24 use Mordell's method (Lemma 14); some repetitions are due to similarity of the theorems.

Lemma 1. If $r^{2}+s=w^{2}$, where $r, w \in \mathbb{Z}$ and $s \neq 0$, then $|r| \leq|s|$.
Proof. For $r \neq 0$ we have $|s| \geq r^{2}-(|r|-1)^{2}=2|r|-1$, thus

$$
|r| \leq \frac{1}{2}(|s|+1) \leq|s|
$$

which is also true for $r=0$.
Lemma 2. If

$$
\begin{equation*}
a x^{3}+a_{1} x^{2}+a_{2} x+c \equiv 0(\bmod p), \quad c \equiv 0(\bmod p), \quad x \not \equiv 0(\bmod p) \tag{4}
\end{equation*}
$$ and

$$
\begin{equation*}
\left\langle a, a_{1}, a_{2}\right\rangle \not \equiv\langle 0,0,0\rangle(\bmod p), \tag{5}
\end{equation*}
$$

where a, a_{1}, a_{2}, c, x are integers, and p is a prime, then for every positive integer α the congruence

$$
\begin{equation*}
a X^{3}+a_{1} X^{2}+a_{2} X+c \equiv 0\left(\bmod p^{\alpha}\right) \tag{6}
\end{equation*}
$$

is soluble.
Proof. By Hensel's lemma, if

$$
F \in \mathbb{Z}[X], \quad F\left(x_{0}\right) \equiv 0(\bmod p), \quad F^{\prime}\left(x_{0}\right) \not \equiv 0(\bmod p)
$$

then for every positive integer α the congruence $F(X) \equiv 0\left(\bmod p^{\alpha}\right)$ is soluble. Taking in this assertion $F(X)=a X^{3}+a_{1} X^{2}+a_{2} X+c$ and $x_{0}=0$, we infer that the congruence (6) is soluble provided $a_{2} \not \equiv 0(\bmod p)$. If $a_{2} \equiv 0(\bmod p)$, we infer from (4) that the congruence (6) is soluble provided $3 a x+2 a_{1} \equiv-a_{1} \not \equiv 0(\bmod p)$. If $a_{1} \equiv a_{2} \equiv 0(\bmod p)$, then, by (4), $a x \equiv 0$ $(\bmod p)$, contrary to (5).

Proof of Theorem 1. Necessity. If the congruence (2) has infinitely many solutions, but the equation (3) is insolvable, then for some integers x, y, z,

$$
\begin{equation*}
a x^{3}+a_{1} x^{2}+a_{2} x+b y+c=x y z \neq 0 \tag{7}
\end{equation*}
$$

Now we distinguish four cases: $1 . b=0 ; 2 . a=a_{1}=0 ; 3 . a=0, a_{1} b \neq 0$; 4. $a b \neq 0$.

1. If $b=0$, then the existence of infinitely many solutions of the congruence (2) implies that either $a x_{0}^{3}+a_{1} x_{0}^{2}+a_{2} x_{0}+c=0$ for some $x_{0} \neq 0$, or $c=0$. Thus (3) has the solution $\left\langle x_{0}, 0\right\rangle$ or $\langle 0,0\rangle$.

2 . If $a=a_{1}=0$ then (7) yields

$$
\begin{aligned}
\left|a_{2}\right||x|+|b||y|+|c| & \geq\left|a_{2} x+b y+c\right|=|x y z| \geq|x y| \\
\left|a_{2} b\right|+|c| & \geq(|x|-|b|)\left(|y|-\left|a_{2}\right|\right)
\end{aligned}
$$

thus either

$$
\begin{equation*}
|x| \leq|b|, \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
|y| \leq\left|a_{2}\right| \tag{9}
\end{equation*}
$$

or

$$
|x| \leq|b|+\left|a_{2} b\right|+|c|, \quad|y| \leq\left|a_{2}\right|+\left|a_{2} b\right|+|c|
$$

(8) implies by (7) either $|y| \leq\left|a_{2} x+c\right| \leq\left|a_{2} b\right|+|c|$ or $a_{2} x+c=0$; (9) implies by (7) either $|x| \leq|b y+c| \leq\left|a_{2} b\right|+|c|$ or $b y+c=0$. Therefore, either the number of solutions of (2) is finite, or (3) is soluble.
3. If $a=0$ and $a_{1} b \neq 0$, then (7) gives

$$
\left(y z^{2}-a_{2} z-2 a_{1} b\right)^{2}-4 a_{1}\left(c z^{2}+a_{2} b z+a_{1} b^{2}\right)=\left(2 a_{1} x z+a_{2} z-y z^{2}\right)^{2}
$$

(this identity was first given by J. Browkin), and by Lemma 1 either

$$
\begin{equation*}
\left|y z^{2}-a_{2} z-2 a_{1} b\right| \leq 4\left|a_{1}\left(c z^{2}+a_{2} b z+a_{1} b^{2}\right)\right| \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
c z^{2}+a_{2} b z+a_{1} b^{2}=0 \tag{11}
\end{equation*}
$$

Now (10) gives

$$
\begin{gathered}
\left|y z^{2}\right| \leq\left|a_{2} z\right|+2\left|a_{1} b\right|+4\left|a_{1}\right|\left|c z^{2}+a_{2} b z+a_{1} b^{2}\right| \\
|y| \leq\left|a_{2}\right|+2\left|a_{1} b\right|+4\left|a_{1}\right|\left(|c|+\left|a_{2} b\right|+\left|a_{1} b^{2}\right|\right)=B
\end{gathered}
$$

and by (7) either

$$
|x| \leq|b y+c| \leq|b B|+|c|
$$

or $b y+c=0$, which gives an integer solution to (3).
If (11) holds, we put $b=b_{1} b_{2}$, where b_{1} is the maximal unitary divisor of b dividing z. Then we take

$$
x_{0} \equiv\left\{\begin{array}{l}
x\left(\bmod b_{1}\right) \tag{12}\\
\frac{b /(b, z)}{z /(b, z)}\left(\bmod b_{2}\right)
\end{array}\right.
$$

(Note that $z /(b, z)$ is prime to b_{2}.) By (7) and (12) we have

$$
a_{1} x_{0}^{2}+a_{2} x_{0}+c \equiv a_{1} x^{2}+a_{2} x+c \equiv 0\left(\bmod b_{1}\right)
$$

while by (11) and (12),

$$
a_{1} x_{0}^{2}+a_{2} x_{0}+c \equiv a_{1} \frac{b^{2}}{z^{2}}+a_{2} \frac{b}{z}+c \equiv 0\left(\bmod b_{2}\right)
$$

thus

$$
a_{1} x_{0}^{2}+a_{2} x_{0}+c \equiv 0(\bmod b)
$$

and (3) is soluble in integers.
4. If $c=0$, then (3) has the solution $\langle 0,0\rangle$. If $c \neq 0$, let $\Omega(b c)=n$, where $\Omega(b c)$ is the total number of prime factors of $b c$. We assume the following (trivially true for $n=0$):
(13) If $\Omega(b c)<n$, then either (2) has only finitely many solutions X, Y, or (3) is soluble in integers X, Y.
If $(x, b)=d>1$, then $x=d x_{1}, b=d b_{1}, c=d c_{1}, c_{1} \in \mathbb{Z}$ and, by (7),

$$
\begin{equation*}
a d^{2} x_{1}^{3}+a_{1} d x_{1}^{2}+a_{2} x_{1}+b_{1} y+c_{1}=x_{1} y z \neq 0 \tag{14}
\end{equation*}
$$

However, $\Omega\left(b_{1} c_{1}\right)=n-2 \Omega(d)$ and by the assumption 13$)$ either the congruence

$$
a d^{2} X^{3}+a_{1} d X^{2}+a_{2} X+b_{1} Y+c_{1} \equiv 0(\bmod X Y)
$$

has only finitely many solutions X, Y, or the equation

$$
a d^{2} X^{3}+a_{1} d X^{2}+a_{2} X+b_{1} Y+c_{1}=0
$$

has an integer solution $\left\langle x_{0}, y_{0}\right\rangle$. In the former case x_{1}, y in (14) are bounded and so are x, y; in the latter, (3) has the solution $\left\langle d x_{0}, d y_{0}\right\rangle$. It remains to consider the case

$$
\begin{equation*}
(x, b)=1 \tag{15}
\end{equation*}
$$

We set

$$
\begin{equation*}
b=b_{0} b_{3} b_{4} \tag{16}
\end{equation*}
$$

where b_{0} is the maximal unitary divisor of b prime to c, and b_{3} is the maximal unitary divisor of b dividing c. For any reduced residue $r \bmod b$, let \bar{r} be the unique reduced residue $\bmod b$ satisfying $r \bar{r} \equiv 1(\bmod b)$ and $r \bar{r}=1+b s$ with $s \in \mathbb{Z}$. Then $x \equiv r(\bmod b)$ implies

$$
\begin{equation*}
b\left(\bar{r} \frac{x-r}{b}+s\right) \equiv-1(\bmod x) \tag{17}
\end{equation*}
$$

Now (7) gives

$$
a x^{3}+a_{1} x^{2}+a_{2} x+c=y(x z-b)
$$

and in view of (17),

$$
y \equiv c\left(\bar{r} \frac{x-r}{b}+s\right)(\bmod x)
$$

thus

$$
y=c\left(\bar{r} \frac{x-r}{b}+s\right)+x t, \quad t \in \mathbb{Z}
$$

Substituting in (7) we obtain

$$
a x^{3}+a_{1} x^{2}+a_{2} x+c=(x z-b)\left(x t+c \bar{r} \frac{x-r}{b} x+c s\right)
$$

hence on dividing by x and multiplying by b,

$$
a b x^{2}+a_{1} b x+a_{2} b=b x z t+c \bar{r} x z-c z-b^{2} t-b c \bar{r}
$$

which gives

$$
a b x^{2}+x\left(a_{1} b-b z t-c \bar{r} z\right)+\left(a_{2} b+c z+b^{2} t+b c \bar{r}\right)=0
$$

It follows that

$$
\begin{equation*}
\left(a_{1} b-b z t-c \bar{r} z\right)^{2}-4 a b\left(a_{2} b+c z+b^{2} t+b c \bar{r}\right)=\left(2 a b x+a_{1} b-b z t-c \bar{r} z\right)^{2} \tag{18}
\end{equation*}
$$

so by Lemma 1 either

$$
\begin{equation*}
a_{2} b+c z+b^{2} t+b c \bar{r}=0 \tag{19}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|a_{1} b-b z t-c \bar{r} z\right| \leq 4|a b|\left|a_{2} b+c z+b^{2} t+b c \bar{r}\right| . \tag{20}
\end{equation*}
$$

In the case (19), $b \mid c z$, hence, by 16),

$$
\begin{equation*}
\left.b_{0} \frac{b_{4}}{\left(b_{4}, c\right)} \right\rvert\, z \tag{21}
\end{equation*}
$$

If for at least one prime $p \mid b_{4}$ we have

$$
\begin{equation*}
\left\langle a, a_{1}, a_{2}\right\rangle \equiv\langle 0,0,0\rangle(\bmod p) \tag{22}
\end{equation*}
$$

then, by (7),

$$
\frac{a}{p} x^{3}+\frac{a_{1}}{p} x^{2}+\frac{a_{2}}{p} x+\frac{b}{p} y+\frac{c}{p}=x y \frac{z}{p}
$$

and since $\Omega\left(b c / p^{2}\right)=n-2$, by the assumption 13 either the congruence

$$
\frac{a}{p} X^{3}+\frac{a_{1}}{p} X^{2}+\frac{a_{2}}{p} X+\frac{b}{p} Y+\frac{c}{p} \equiv 0(\bmod X Y)
$$

has only finitely many solutions X, Y, or the equation

$$
\frac{a}{p} X^{3}+\frac{a_{1}}{p} X^{2}+\frac{a_{2}}{p} X+\frac{b}{p} Y+\frac{c}{p}=0
$$

has an integer solution $\left\langle x_{0}, y_{0}\right\rangle$. In the former case x, y are bounded; in the latter, (3) has the solution $\left\langle x_{0}, y_{0}\right\rangle$. If (22) holds for no prime $p \mid b_{4}$, then by Lemma 2 the congruence

$$
\begin{equation*}
a X^{3}+a_{1} X^{2}+a_{2} X+c \equiv 0\left(\bmod p^{\operatorname{ord}_{p} b_{4}}\right) \tag{23}
\end{equation*}
$$

has a solution x_{p}. Taking

$$
x_{0} \equiv\left\{\begin{array}{l}
x\left(\bmod b_{0}\right) \\
0\left(\bmod b_{3}\right) \\
x_{p}\left(\bmod p^{\operatorname{ord}_{p} b_{4}}\right) \quad \text { for all primes } p \mid b_{4}
\end{array}\right.
$$

we obtain, by (7), (16), (21) and (23),

$$
\begin{equation*}
a x_{0}^{3}+a_{1} x_{0}^{2}+a_{2} x_{0}+c \equiv 0(\bmod b) \tag{24}
\end{equation*}
$$

thus (3) is soluble in integers.
In the case we obtain

$$
\begin{aligned}
& |b||z||t|-\left|a_{1} b\right|-|c \bar{r}||z| \leq 4\left|a a_{2}\right| b^{2}+4|a b c||z|+4|a b| b^{2}|t|+4|a c \bar{r}| b^{2} \\
& \left(|z|-4 b^{2}|a|\right)(|b||t|-4|a b c|-|c \bar{r} b|) \\
& \quad \leq\left|a_{1} b\right|+4\left|a a_{2}\right| b^{2}|+4| a c\left|b^{2}+4 b^{2}\right| c \mid(4|a b c|+|c \bar{r}|)
\end{aligned}
$$

It follows that either

$$
\begin{equation*}
|z| \leq 4 b^{2}|a| \tag{25}
\end{equation*}
$$

or

$$
\begin{equation*}
|b||t| \leq 4|a b c|+|c \bar{r}| \leq 4|a b c|+|b c|, \quad|t| \leq 4|a c|+|c| \tag{26}
\end{equation*}
$$

or

$$
\begin{aligned}
& |z| \leq 4 b^{2}|a|+\left|a_{1} b\right|+4\left|a a_{2}\right| b^{2}+4|a c \bar{r}| b^{2}+4 b^{2}|a|(4|a b c|+|c|) \\
& |t| \leq 4|a c|+|c|+\left|a_{1}\right|+4\left|a a_{2} b\right|+4|a c| b^{2}+4|a| b^{2}(4|a c|+|c|)
\end{aligned}
$$

In the last case, by (18), there are finitely many possibilities for x and either, by (7), there are finitely many possibilities for y, or $a x^{3}+a_{1} x^{2}+a_{2} x+c=0$,
so (3) is soluble in integers. Thus it remains to consider the cases (25) and (26). In the case (25) we transform (18) to the form

$$
\begin{aligned}
&\left(b z^{2} t+c \bar{r} z^{2}-a_{1} b z-2 a b^{2}\right)^{2}-4 a b\left(a b^{3}+a_{1} b^{2} z+a_{2} b z^{2}+c z^{3}\right) \\
&=\left(2 a b x z+a_{1} b z-b z^{2} t-c \bar{r} z^{2}\right)^{2}
\end{aligned}
$$

and thus, by Lemma 1, either

$$
\begin{equation*}
B:=a b^{3}+a_{1} b^{2} z+a_{2} b z^{2}+c z^{3}=0 \tag{27}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|b z^{2} t+c \bar{r} z^{2}-a_{1} b z-2 a b^{2}\right| \leq 4|a b B| \tag{28}
\end{equation*}
$$

In the case 27, defining

$$
x_{0} \equiv\left\{\begin{array}{l}
x\left(\bmod b_{1}\right) \\
\frac{b /(b, z)}{z /(b, z)}\left(\bmod b_{2}\right),
\end{array}\right.
$$

we have (24), so (3) is soluble in integers. In the case (28), $|t|$ is bounded. Thus, again by (18) and (7), either there are finitely many possibilities for x and y, or (3) has an integer solution.

In the case (26) we transform (18) to the form

$$
\begin{aligned}
& \left(z(b t+c \bar{r})^{2}-a_{1} b(b t+c \bar{r})-2 a b c\right)^{2}-4 a a_{1} b^{2} c(b t+c \bar{r})-4 a^{2} b^{2} c^{2} \\
& \quad-4 a b(b t+c \bar{r})^{2}\left(a_{2} b+b^{2} t+b c \bar{r}\right)=(b t+c \bar{r})^{2}\left(2 a b x+a_{1} b-b z t-c \bar{r} z\right)^{2}
\end{aligned}
$$

and, by Lemma 1 , we have the following possibilities:

$$
\begin{aligned}
& b t+c \bar{r}=0, \\
& 4 a a_{1} b^{2} c(b t+c \bar{r})+4 a^{2} b^{2} c^{2}+4 a b(b t+c \bar{r})^{2}\left(a_{2} b+b^{2} t+b c \bar{r}\right)=: 4 a b^{2} C=0, \\
& \left|z(b t+c \bar{r})^{2}-a_{1} b(b t+c \bar{r})-2 a b c\right| \leq 4|a C| b^{2} \text { and }(b t+c \bar{r}) C \neq 0 .
\end{aligned}
$$

In the first case, $b \mid c$ and (3) is soluble in integers. In the third case, z is bounded and, by (18) and (7), either x and y are bounded, or (3) is soluble in integers. The second case gives

$$
c^{2}\left(a+a_{1} \bar{r}+a_{2} \bar{r}^{2}+c \bar{r}^{3}\right) \equiv 0(\bmod b(b, c)),
$$

hence by (16) and the definition of \bar{r},

$$
a x^{3}+a_{1} x^{2}+a_{2} x+c \equiv a r^{3}+a_{1} r^{2}+a_{2} r+c \equiv 0\left(\bmod b_{0} \frac{b_{4}}{\left(b_{4}, c\right)}\right) .
$$

If for at least one prime $p \mid b_{4}$ we have (22), then either, by (7), $p \mid z$ and the argument used after (22) applies, or $p \mid y$ and

$$
\frac{a}{p} x^{3}+\frac{a_{1}}{p} x^{2}+\frac{a_{2}}{p} x+b \frac{y}{p}+\frac{c}{p}=x \frac{y}{p} z .
$$

Since $\Omega(b c / p)=n-1$, by the assumption (13) either the congruence

$$
\frac{a}{p} X^{3}+\frac{a_{1}}{p} X^{2}+\frac{a_{2}}{p} X+b Y+\frac{c}{p} \equiv 0(\bmod X Y)
$$

has only finitely many solutions, or the equation

$$
\frac{a}{p} X^{3}+\frac{a_{1}}{p} X^{2}+\frac{a_{2}}{p} X+b Y+\frac{c}{p}=0
$$

has an integer solution $\left\langle x_{0}, y_{0}\right\rangle$. In the former case x and y are bounded; in the latter, (3) has the solution $\left\langle x_{0}, p y_{0}\right\rangle$.

If (22) holds for no prime $p \mid b_{4}$, then, by Lemma 2 , the congruence 23 has a solution x_{p}. Defining suitably x_{0} we obtain (24), so (3) is soluble in integers.

Sufficiency. We shall prove more generally that the solvability of

$$
\begin{equation*}
f(x)+b y+c=0 \tag{29}
\end{equation*}
$$

implies the existence of infinitely many solutions of (1) with $g(y)=b y$. We distinguish two cases: $b=0$ and $b \neq 0$. If $b=0$ and (29) has an
integer solution x_{0}, then either $x_{0}=0$ or $x_{0} \neq 0$. If $x_{0}=0$, then $c=0$ and (1) has infinitely many solutions $(0, t)$ (t an arbitrary non-zero integer). If $x_{0} \neq 0$, then (1) has infinitely many solutions $\left(x_{0}, t\right)(t$ an arbitrary nonzero integer). If $b \neq 0$ and (29) has a solution $\left(x_{0}, y_{0}\right)$, then (1) has infinitely many solutions

$$
x=x_{0}+b t \neq 0, \quad y=y_{0}+b^{-1}\left(f\left(x_{0}\right)-f\left(x_{0}+b t\right)\right) \neq 0
$$

where t is a suitable integer.
Notation. Let $a b c \neq 0$ and

$$
d_{k}= \begin{cases}m & \text { for } k \text { even } \\ n & \text { for } k \text { odd }\end{cases}
$$

$$
\lambda_{1}=0, \quad \lambda_{2}=1, \quad \lambda_{k}=d_{k} \lambda_{k-1}-\lambda_{k-2}
$$

$$
\mu_{1}=-1, \quad \mu_{2}=0, \quad \mu_{k}=d_{k} \mu_{k-1}-\mu_{k-2}
$$

$$
\nu_{1}=1, \quad \nu_{2}=m-1, \quad \nu_{k}=d_{k} \nu_{k-1}-\nu_{k-2}
$$

$$
\Pi_{0}=\Pi_{1}=c, \quad \Pi_{k}=a^{\lambda_{k}} b^{\mu_{k}} c^{\nu_{k}} \quad(k=2,3, \ldots)
$$

$$
f(x)=a x^{m}+a_{1} x^{m-1}+\cdots+a_{m-1} x
$$

$$
g(y)=b y^{n}+b_{1} y^{n-1}+\cdots+b_{n-1} y
$$

$$
g_{1}(x)=g(x)+c, \quad f_{2}(x)=x^{m}+\frac{1}{c} f\left(\frac{c}{x}\right) x^{m}
$$

$$
g_{\sigma+1}=\frac{1}{\Pi_{2 \sigma-1}} g_{\sigma}\left(\frac{\Pi_{2 \sigma}}{x}\right) x^{n}, \quad f_{\sigma+1}=\frac{1}{\Pi_{2 \sigma-2}} f_{\sigma}\left(\frac{\Pi_{2 \sigma-1}}{x}\right) x^{m}
$$

Corollary 3. $\Pi_{2}=a \Pi_{1}^{m} / \Pi_{0}, \Pi_{3}=b \Pi_{2}^{n} / \Pi_{1}, \Pi_{k}=\Pi_{k-1}^{d_{k}} / \Pi_{k-2}$ for $k \geq 4$.

Lemma 3. Let

$$
\alpha=\frac{m n-2+\sqrt{m n(m n-4)}}{2}, \quad \beta=\frac{m n-2-\sqrt{m n(m n-4)}}{2} .
$$

If $m n \neq 4$, then

$$
\begin{align*}
\lambda_{2 k+1} & =n \frac{\alpha^{k}-\beta^{k}}{\alpha-\beta}, \quad \lambda_{2 k}=\frac{\alpha^{k}(\beta+1)-\beta^{k}(\alpha+1)}{\alpha-\beta} \tag{31}\\
\mu_{2 k+1} & =\frac{\alpha^{k-1}(\alpha+1)-\beta^{k-1}(\beta+1)}{\alpha-\beta}, \quad \mu_{2 k}=m \frac{\alpha^{k-1}-\beta^{k-1}}{\alpha-\beta} \tag{32}\\
\nu_{2 k+1} & =\frac{\alpha^{k-1}\left(\nu_{3} \alpha-1\right)-\beta^{k-1}\left(\nu_{3} \beta-1\right)}{\alpha-\beta} \tag{33}\\
\nu_{2 k} & =\frac{\alpha^{k-1}\left(\nu_{2} \alpha-1\right)-\beta^{k-1}\left(\nu_{2} \beta-1\right)}{\alpha-\beta} \tag{34}
\end{align*}
$$

If $m n=4$, then

$$
\begin{align*}
\lambda_{2 k+1} & =n k, \quad \lambda_{2 k}=2 k-1 \tag{35}\\
\mu_{2 k+1} & =2 k-1, \quad \mu_{2 k}=m(k-1) \tag{36}\\
\nu_{2 k+1} & =(2-n) k+1, \quad \nu_{2 k}=(m-2) k+1 \tag{37}
\end{align*}
$$

Proof. By induction.
Lemma 4. If $(m-1)(n-1)>1$ and $|a b| \geq 2$, then
(38) $\quad \lim _{\rho \rightarrow \infty}\left(\sum_{i=1}^{\rho} \log \left|\Pi_{2 i}\right|-(m-1) \sum_{i=1}^{\rho} \log \left|\Pi_{2 i-1}\right|-3 \rho \log (m n)\right)=\infty$,
(39) $\quad \lim _{\rho \rightarrow \infty}\left(\sum_{i=1}^{\rho} \log \left|\Pi_{2 i-1}\right|-(n-1) \sum_{i=1}^{\rho} \log \left|\Pi_{2 i-2}\right|-3 \rho \log (m n)\right)=\infty$.

If $m \geq 5, n=1$ and $a_{1}=a_{m-1}=0$, then

$$
\begin{equation*}
\lim _{\rho \rightarrow \infty}\left(\sum_{i=1}^{\rho} \log \left|\Pi_{2 i}\right|-(m-2) \sum_{i=1}^{\rho} \log \left|\Pi_{2 i-1}\right|-3 \rho \log m\right)=\infty \tag{40}
\end{equation*}
$$

Proof. By (30) we have

$$
\begin{equation*}
\sum_{i=1}^{\rho} \log \left|\Pi_{2 i}\right|=\sum_{i=1}^{\rho} \lambda_{2 i} \log |a|+\sum_{i=1}^{\rho} \mu_{2 i} \log |b|+\sum_{i=1}^{\rho} \nu_{2 i} \log |c| \tag{41}
\end{equation*}
$$

(42) $\quad \sum_{i=1}^{\rho} \log \left|\Pi_{2 i-1}\right|=\sum_{i=1}^{\rho} \lambda_{2 i-1} \log |a|+\sum_{i=1}^{\rho} \mu_{2 i-1} \log |b|+\sum_{i=1}^{\rho} \nu_{2 i-1} \log |c|$.

On the other hand, by Lemma 3, if $m n>4$,

$$
\begin{aligned}
\sum_{i=1}^{\rho} \lambda_{2 i} & =\frac{\left(\alpha^{\rho+1}-\alpha\right)(\beta+1)}{(\alpha-1)(\alpha-\beta)}-\frac{\left(\beta^{\rho+1}-\beta\right)(\alpha+1)}{(\beta-1)(\alpha-\beta)}, \\
\sum_{i=1}^{\rho} \lambda_{2 i-1} & =n \frac{\alpha^{\rho}-1}{(\alpha-1)(\alpha-\beta)}-n \frac{\beta^{\rho}-1}{(\beta-1)(\alpha-\beta)} ; \\
\sum_{i=1}^{\rho} \mu_{2 i} & =m \frac{\alpha^{\rho}-1}{(\alpha-1)(\alpha-\beta)}-m \frac{\beta^{\rho}-1}{(\beta-1)(\alpha-\beta)}, \\
\sum_{i=1}^{\rho} \mu_{2 i-1} & =\frac{\left(\alpha^{\rho-1}-\beta\right)(\alpha+1)}{(\alpha-1)(\alpha-\beta)}-\frac{\left(\beta^{\rho-1}-\alpha\right)(\beta+1)}{(\beta-1)(\alpha-\beta)} ; \\
\sum_{i=1}^{\rho} \nu_{2 i} & =\frac{\left(\alpha^{\rho}-1\right)\left(\nu_{2} \alpha-1\right)}{(\alpha-1)(\alpha-\beta)}-\frac{\left(\beta^{\rho}-1\right)\left(\nu_{2} \beta-1\right)}{(\beta-1)(\alpha-\beta)} \\
\sum_{i=1}^{\rho} \nu_{2 i-1} & =\frac{\left(\alpha^{\rho-1}-\beta\right)\left(\nu_{3} \alpha-1\right)}{(\alpha-1)(\alpha-\beta)}-\frac{\left(\beta^{\rho-1}-\alpha\right)\left(\nu_{3} \beta-1\right)}{(\beta-1)(\alpha-\beta)} .
\end{aligned}
$$

The first difference occurring in (38), by (41) and (42), is asymptotic to

$$
\begin{aligned}
\frac{\alpha^{\rho}}{(\alpha-1)(\alpha-\beta)} & (\alpha(\beta+1)-(m-1) n) \log |a| \\
& +\frac{\alpha^{\rho-1}}{(\alpha-1)(\alpha-\beta)}(m \alpha-(m-1)(\alpha+1)) \log |b| \\
& +\frac{\alpha^{\rho-1}}{(\alpha-1)(\alpha-\beta)}\left(\nu_{2} \alpha^{2}-\alpha-(m-1)\left(\nu_{3} \alpha-1\right)\right) \log |c|
\end{aligned}
$$

Now, (38) follows from the inequalities

$$
\begin{aligned}
& \alpha(\beta+1)-(m-1) n=\alpha-\nu_{3}>0 \\
& m \alpha-(m-1)(\alpha+1)=\alpha-\nu_{2}>0 \\
& \begin{array}{l}
\nu_{2} \alpha^{2}-\alpha-(m-1)\left(\nu_{3} \alpha-1\right) \\
\quad=(m-1)((m n-1) \alpha-1)-\alpha-(m-1) \nu_{3} \alpha+m-1 \\
\quad=\alpha((m-1)(n-1)-1)>0
\end{array}
\end{aligned}
$$

The differences occurring in (39) in front of $\log |a|, \log |b|, \log |c|$ (after expanding $\log \left|\Pi_{2 i-1}\right|$ and $\log \left|\Pi_{2 i-2}\right|$) are, by 41) and (42), asymptotic to

$$
\begin{aligned}
& \frac{\alpha^{\rho}}{(\alpha-1)(\alpha-\beta)}(1-(n-1) \beta), \quad \frac{\alpha^{\rho-1}}{(\alpha-1)(\alpha-\beta)}(\alpha+1-m(n-1)), \\
& \frac{\alpha^{\rho}}{(\alpha-1)(\alpha-\beta)}((m-2) \alpha+n-2)
\end{aligned}
$$

for $(m-1)(n-1)>1$ and (39) follows. The proof of 40 is similar.
Lemma 5. If either $(m-1)(n-1)>0$ or $m \geq 4, n=1, a_{1}=a_{m-1}=0$, and if $\sigma \geq 2$, then $f_{\sigma}, g_{\sigma} \in \mathbb{Z}[x]$ are monic of degree m, n, respectively, and $f_{\sigma}(0)=\Pi_{2 \sigma-2}$ and $g_{\sigma}(0)=\Pi_{2 \sigma-1}$. Moreover, if $(m-1)(n-1)>1$ then

$$
\begin{aligned}
& L\left(f_{\sigma}-x^{m}-\Pi_{2 \sigma-2}\right) \leq \frac{\left|\Pi_{2 \sigma-3} \cdots \Pi_{1}\right|^{m-1}}{\left|\Pi_{2 \sigma-4} \cdots \Pi_{0}\right|} L(f) \\
& L\left(g_{\sigma}-x^{n}-\Pi_{2 \sigma-1}\right) \leq \frac{\left|\Pi_{2 \sigma-2} \cdots \Pi_{2}\right|^{n-1}}{\left|\Pi_{2 \sigma-3} \cdots \Pi_{1}\right|} L(g),
\end{aligned}
$$

where $L(h)$ denotes the sum of the absolute values of the coefficients of the polynomial h.

If $m \geq 5, n=1, a_{1}=a_{m-1}=0$, then

$$
L\left(f_{\sigma}-x^{m}-\Pi_{2 \sigma-2}\right) \leq \frac{\left|\Pi_{2 \sigma-1} \cdots \Pi_{1}\right|^{m-2}}{\left|\Pi_{2 \sigma-2} \cdots \Pi_{0}\right|} L(f)
$$

If $m=4, n=1, a_{1}=a_{3}=0$, then for $\sigma \geq 3$,

$$
\begin{equation*}
f_{\sigma}(x)=x^{4}+a_{2} b \Pi_{2 \sigma-3} x^{2}+\Pi_{2 \sigma-2} \tag{43}
\end{equation*}
$$

Proof. By induction on σ. For $\sigma=2$ the assertions are true, except (43), in view of the definition of f_{2}, since

$$
g_{2}=x^{n}+\frac{1}{c} g\left(\frac{a c^{m-1}}{x}\right) x^{n} .
$$

The formula (43) is true for $\sigma=3$, since for $m=4, n=1$,

$$
f_{3}(x)=\frac{1}{a c^{3}} f_{2}\left(\frac{a b c^{2}}{x}\right) x^{4} .
$$

Assume that the assertions are true for $\sigma \geq 2$ and (43) for $\sigma \geq 3$. Since $f_{\sigma}(0)=\Pi_{2 \sigma-2}, f_{\sigma+1}$ is monic of degree m. Since, by (31) and Lemma 2 , $\Pi_{2 \sigma-2} \mid \Pi_{2 \sigma-1}$ for $(m-1)(n-1)>1$ and $\Pi_{2 \sigma-2} \mid \Pi_{2 \sigma-1}^{2}$ for $m \geq 4, n=1$, we have $f_{\sigma+1}-x^{m} \in \mathbb{Z}[x]$, thus $f_{\sigma+1} \in \mathbb{Z}[x]$. Also, since $f_{\sigma+1}$ is monic, we obtain $f_{\sigma+1}(0)=\Pi_{2 \sigma-1}^{m} / \Pi_{2 \sigma-2}=\Pi_{2 \sigma}$ by Corollary 3. If $(m-1)(n-1)>0$, then

$$
\begin{aligned}
L\left(f_{\sigma+1}-x^{m}-\Pi_{2 \sigma}\right) & \leq \frac{\left|\Pi_{2 \sigma-1}\right|^{m-1}}{\left|\Pi_{2 \sigma-2}\right|} L\left(f_{\sigma}-x^{m}-\Pi_{2 \sigma-1}\right) \\
& \leq \frac{\left|\Pi_{2 \sigma-1} \cdots \Pi_{1}\right|^{m-1}}{\left|\Pi_{2 \sigma-2} \cdots \Pi_{0}\right|} L(f) .
\end{aligned}
$$

If $m \geq 5, n=1$, then

$$
\begin{aligned}
L\left(f_{\sigma+1}-x^{m}-\Pi_{2 \sigma}\right) & \leq \frac{\left|\Pi_{2 \sigma-1}\right|^{m-2}}{\left|\Pi_{2 \sigma-2}\right|} L\left(f_{\sigma}-x^{m}-\Pi_{2 \sigma-2}\right) \\
& \leq \frac{\left|\Pi_{2 \sigma-1} \cdots \Pi_{1}\right|^{m-2}}{\left|\Pi_{2 \sigma-2} \cdots \Pi_{0}\right|} L(f) .
\end{aligned}
$$

Finally, by Corollary 3 for $m=4, n=1$,

$$
\begin{aligned}
& f_{\sigma+1}(x)=\frac{1}{\Pi_{2 \sigma-2}} f_{\sigma}\left(\frac{\Pi_{2 \sigma-1}}{x}\right) x^{4} \\
& =\frac{1}{\Pi_{2 \sigma-2}}\left(\Pi_{2 \sigma-2} x^{4}+a_{2} b \Pi_{2 \sigma-3} \Pi_{2 \sigma-1}^{2} x^{2}+\Pi_{2 \sigma-1}^{4}\right)=x^{4}+a_{2} b \Pi_{2 \sigma-1} x^{2}+\Pi_{2 \sigma} .
\end{aligned}
$$

Similarly, since $g_{\sigma}(0)=\Pi_{2 \sigma-1}$, it follows that $g_{\sigma+1}$ is monic of degree n. Since $\Pi_{2 \sigma-1} \mid \Pi_{2 \sigma}$, we have $g_{\sigma+1}-x^{n} \in \mathbb{Z}[x]$, so $g_{\sigma+1} \in \mathbb{Z}[x]$. Also, since g_{σ} is monic, $g_{\sigma+1}(0)=\Pi_{2 \sigma}^{n} / \Pi_{2 \sigma-1}=\Pi_{2 \sigma+1}$ by Corollary 3. Finally, if $(m-1)(n-1)>0$, then

$$
\begin{aligned}
L\left(g_{\sigma+1}-x^{n}-\Pi_{2 \sigma-1}\right) & \leq \frac{\left|\Pi_{2 \sigma}\right|^{n-1}}{\left|\Pi_{2 \sigma-1}\right|} L\left(g_{\sigma}-x^{n}-\Pi_{2 \sigma-1}\right) \\
& \leq \frac{\left|\Pi_{2 \sigma} \cdots \Pi_{2}\right|^{n-1}}{\left|\Pi_{2 \sigma-1} \cdots \Pi_{1}\right|} L(g)
\end{aligned}
$$

$$
\begin{equation*}
\text { Congruence } f(x)+g(y)+c \equiv 0(\bmod x y) \tag{359}
\end{equation*}
$$

LEMMA 6. If $m=n=2, \sigma \geq 2$, then

$$
\begin{aligned}
& \left|f_{\sigma}(x)-x^{2}-\Pi_{2 \sigma-2}\right| \leq|a b|^{\sigma-2} L(f) \max (1,|x|) \\
& \left|g_{\sigma}(x)-x^{2}-\Pi_{2 \sigma-1}\right| \leq|a b|^{\sigma-2}|a| L(g) \max (1,|x|)
\end{aligned}
$$

Proof. For $m=n=2$ by Lemma 5 we have, for $\sigma \geq 2$,

$$
\begin{aligned}
& L\left(f_{\sigma}-x^{2}-\Pi_{2 \sigma-2}\right) \leq \frac{\left|\Pi_{2 \sigma-3} \cdots \Pi_{1}\right|}{\left|\Pi_{2 \sigma-4} \cdots \Pi_{0}\right|} L(f) \\
& L\left(g_{\sigma}-x^{2}-\Pi_{2 \sigma-1}\right) \leq \frac{\left|\Pi_{2 \sigma-2} \cdots \Pi_{2}\right|}{\left|\Pi_{2 \sigma-3} \cdots \Pi_{1}\right|} L(g)
\end{aligned}
$$

However, by (30) and Lemma 3 ,

$$
\Pi_{0}=\Pi_{1}=c, \quad \Pi_{2}=a c, \quad \Pi_{k}=a^{k-1} b^{k-2} c
$$

hence for $\sigma \geq 2$,

$$
\begin{aligned}
& \left|f_{\sigma}(x)-x^{2}-\Pi_{2 \sigma-2}\right| \leq|a b|^{\sigma-2} L(f) \max \{1,|x|\} \\
& \left|g_{\sigma}(x)-x^{2}-\Pi_{2 \sigma-1}\right| \leq|a b|^{\sigma-2}|a| L(g) \max \{1,|x|\}
\end{aligned}
$$

LEMMA 7. For $(m-1)(n-1)>1,|a b c|>1$ and for ρ sufficiently large in terms of m, n, if $2 \leq \sigma \leq \rho$ then

$$
\begin{align*}
\left|f_{\sigma}(x)-x^{m}-\Pi_{2 \sigma-2}\right| & \leq \max \{1,|x|\}^{m-1}\left|\Pi_{2 \rho-3}\right|^{m-1} \tag{44}\\
\left|g_{\sigma}(x)-x^{n}-\Pi_{2 \sigma-1}\right| & \leq \max \{1,|x|\}^{n-1}\left|\Pi_{2 \rho-2}\right|^{m-1} \tag{45}
\end{align*}
$$

For $m \geq 5, n=1, a_{1}=a_{m-1}=0,|a b c|>1$, and ρ sufficiently large in terms of m, if $2 \leq \sigma \leq \rho$ then

$$
\begin{equation*}
\left|f_{\sigma}(x)-x^{m}-\Pi_{2 \sigma-2}\right| \leq \max \{1,|x|\}^{m-2}\left|\Pi_{2 \rho-3}\right|^{m-2} \tag{46}
\end{equation*}
$$

Proof. By Lemma 5 we have

$$
\begin{aligned}
L\left(f_{\sigma}-x^{m}-\Pi_{2 \sigma-2}\right) & \leq \max \{1,|x|\}^{m-1} L\left(f_{\sigma}-x^{m}-\Pi_{2 \sigma-2}\right) \\
& \leq \max \{1,|x|\}^{m-1} \frac{\left|\Pi_{2 \sigma-3} \cdots \Pi_{1}\right|^{m-1}}{\left|\Pi_{2 \sigma-4} \cdots \Pi_{0}\right|} L(f)
\end{aligned}
$$

In order to show (44) it is enough to show that

$$
\lim _{\rho \rightarrow \infty} \max _{2 \leq \sigma \leq \rho} \frac{\left|\Pi_{2 \sigma-3} \cdots \Pi_{1}\right|^{m-1}}{\left|\Pi_{2 \sigma-4} \cdots \Pi_{0}\right|\left|\Pi_{2 \sigma-3}\right|^{m-1}}=0
$$

but for $\sigma \leq \rho$ we have $\left|\Pi_{2 \rho-3}\right| \geq\left|\Pi_{2 \sigma-3}\right|$ and by Lemma 4 for every $\varepsilon>0$ and $\sigma>\sigma_{0}(\varepsilon)$,

$$
\frac{\left|\Pi_{2 \sigma-3} \cdots \Pi_{1}\right|^{m-1}}{\left|\Pi_{2 \sigma-4} \cdots \Pi_{0} \Pi_{2 \rho-3}^{m-1}\right|}<\varepsilon
$$

For $\sigma \leq \sigma_{0}(\varepsilon)$ and $\rho>\rho_{0}(\varepsilon)$ the same inequality holds. This proves (44). The proofs of (45) and of (46) are similar.

Lemma 8. For every real t we have

$$
\begin{equation*}
e^{t} \geq 1+t \tag{47}
\end{equation*}
$$

and for every $t \in[0,1]$,

$$
\begin{equation*}
e^{-t} \leq 1-t / 2 \tag{48}
\end{equation*}
$$

Proof. The inequality (47) is well known, while (48) is equivalent to

$$
\frac{t}{2}-\frac{t^{2}}{2}+\sum_{i=3}^{\infty}(-1)^{1-i} \frac{t^{i}}{i!} \geq 0
$$

which clearly holds for $t \in[0,1]$.
Lemma 9. The numbers

$$
c_{1}=\frac{\log 3}{\log 2}, \quad c_{2}=\frac{\log 7}{\log 2}, \quad c_{3}=0, \quad c_{4}=\frac{\log (23 / 12)}{\log 2}
$$

for every $d \geq 2$ satisfy the inequalities

$$
\begin{array}{ll}
d^{c_{1}}>d^{c_{2}-3}+d^{c_{3}+1} \tag{49}
\end{array}, \quad d^{c_{2}}>d^{c_{1}-3}+d^{c_{4}+1}, ~ 子 d^{c_{1}+1}, \quad d^{c_{4}+3}>d^{c_{2}+1}+d^{c_{3}} .
$$

Proof. For $d=2$ the inequalities in question take the form

$$
3>\frac{7}{8}+2, \quad 7>\frac{3}{8}+\frac{23}{6}, \quad 8>\frac{23}{12}+6, \quad \frac{46}{3}>14+1,
$$

and since $c_{1}>\max \left\{c_{2}-3, c_{3}+1\right\}, c_{2}>\max \left\{c_{1}, c_{4}+1\right\}, c_{3}+3>\max \left\{c_{4}, c_{1}+1\right\}$, $c_{4}+3>\max \left\{c_{2}+1, c_{3}\right\}$, the inequalities 49) hold for all $d \geq 2$.

Lemma 10. If $m=n=2,|a b| \geq 9$ and ρ is large enough, and for $2 \leq \sigma \leq \rho+1, x_{\sigma}$ and $y_{\sigma-1}$ are given using backward induction by the formulae

$$
\begin{align*}
y_{\rho+1} & =1 \tag{50}\\
x_{\rho+1} & =1 \tag{51}\\
y_{\sigma-1} & =\frac{f_{\sigma}\left(x_{\sigma}\right)}{y_{\sigma}} \quad(\sigma \leq \rho+1) \tag{52}\\
x_{\sigma} & =\frac{g_{\sigma}\left(y_{\sigma}\right)}{x_{\sigma+1}} \quad(\sigma \leq \rho) \tag{53}
\end{align*}
$$

then for every non-negative integer $\tau<\rho$,

$$
\begin{equation*}
\exp \left(-2^{3(\tau-\rho)+c_{2}-3}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+1}} \leq\left|x_{\rho-\tau+1}\right| \leq \exp \left(2^{3(\tau-\rho)+c_{1}-3}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+1}} \tag{54}
\end{equation*}
$$

$$
\begin{equation*}
\exp \left(-2^{3(\tau-\rho)+c_{4}}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+2}} \leq\left|y_{\rho-\tau}\right| \leq \exp \left(2^{3(\tau-\rho)+c_{3}}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+2}} \tag{55}
\end{equation*}
$$

Proof by induction on τ. For $\tau=0$ the inequality (54) follows from (50).
For (55), if $\tau=0$ in view of Lemma 6 we have, for $\rho \geq 2$,

$$
\left|y_{\rho}-1-\Pi_{2 \rho}\right|<|a b|^{\rho-2} L(f)
$$

then in view of Lemmas 3 and 8 , 55 follows for ρ large enough from

$$
\lim _{n \rightarrow \infty}\left|\Pi_{2 \rho}\right||a b|^{2-\rho} 2^{-3 \rho}=\infty
$$

Assume now that (54) and (55) are true for $\tau<\rho-1$. Then by Lemmas 6 and 9 and the inductive assumption, for ρ large enough,

$$
\begin{aligned}
\left|g_{\rho-\tau}\left(y_{\rho-\tau}\right)\right| \leq & \left|y_{\rho-\tau}\right|^{2}+\max \left\{1,\left|y_{\rho-\tau}\right|\right\}|a b|^{\rho-\tau-2}|a| L(g)+\left|\Pi_{2 \rho-2 \tau-1}\right| \\
\leq & \exp \left(2 \cdot 2^{3(\tau-\rho)+c_{3}}\right)\left|\Pi_{2 \rho}\right|^{2 \lambda_{2 \tau+2}} \\
& +\exp \left(2^{3(\tau-\rho)+c_{3}}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+2}}|a b|^{\rho-\tau}|a| L(g)+\left|\Pi_{2 \rho-1}\right| \\
\leq & \exp \left(2^{3(\tau-\rho)}\left(2^{c_{1}}-2^{c_{2}-3}\right)\right)\left|\Pi_{2 \rho}\right|^{2 \lambda_{2 \tau+2}},
\end{aligned}
$$

hence, by (53) and the inductive assumption,

$$
\begin{equation*}
\left|x_{\rho-\tau}\right| \leq \frac{\exp \left(2^{3(\tau-\rho)}\left(2^{c_{1}}-2^{c_{2}-3}\right)\right)\left|\Pi_{2 \rho}\right|^{2 \lambda_{2 \tau+2}}}{\exp \left(-2^{3(\tau-\rho)+c_{2}-3}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+1}}}=\exp \left(2^{3(\tau-\rho)+c_{1}}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+3}} \tag{56}
\end{equation*}
$$

Since the function $t \mapsto t^{2}-A t$ is increasing for $t \geq A / 2(A \geq 0)$, and we have, for large ρ, by the inductive assumption,

$$
\left|y_{\rho-\tau}\right| \geq \frac{1}{e}\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+2}} \geq \frac{1}{2}|a b|^{\rho-\tau}|a| L(g),
$$

it follows from Lemmas 6 and 9 that

$$
\begin{aligned}
\left|g_{\rho-\tau}\left(y_{\rho-\tau}\right)\right| \geq & \left|y_{\rho-\tau}\right|^{2}-\max \left\{1,\left|y_{\rho-\tau}\right|\right\}|a b|^{\rho-\tau}|a| L(g)-\left|\Pi_{2 \rho-2 \tau-1}\right| \\
\geq & \exp \left(-2 \cdot 2^{3(\tau-\rho)+c_{4}}\right)\left|\Pi_{2 \rho}\right|^{2 \lambda_{2 \tau+2}} \\
& -\exp \left(-2^{3(\tau-\rho)+c_{4}}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+2}}|a b|^{\rho-\tau}|a| L(g)-\left|\Pi_{2 \rho-2}\right| \\
\geq & \exp \left(-2^{3(\tau-\rho)}\left(2^{c_{2}}-2^{c_{1}-3}\right)\right)\left|\Pi_{2 \rho}\right|^{2 \lambda_{2 \tau+2}},
\end{aligned}
$$

hence, by (53) and the inductive assumption,

$$
\begin{align*}
\left|x_{\rho-\tau}\right| & \geq \frac{\exp \left(-2^{3(\tau-\rho)}\left(2^{c_{2}}-2^{c_{1}-3}\right)\right)\left|\Pi_{2 \rho}\right|^{2 \lambda_{2 \tau+2}}}{\exp \left(2^{3(\tau-\rho)+c_{1}-3}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+1}}} \tag{57}\\
& =\exp \left(-2^{3(\tau-\rho)+c_{2}}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+3}}
\end{align*}
$$

Similarly, by Lemmas 6 and 9 and (56), for ρ large enough and $\tau<\rho-1$,

$$
\begin{aligned}
\left|f_{\rho}\left(x_{\rho-\tau}\right)\right| \leq & \left|x_{\rho-\tau}\right|^{2}+\max \left\{1,\left|x_{\rho-\tau}\right|\right\}|a b|^{\rho-\tau} L(f)+\left|\Pi_{2 \rho-2 \tau-1}\right| \\
\leq & \exp \left(2 \cdot 2^{3(\tau-\rho)+c_{1}}\right)\left|\Pi_{2 \rho}\right|^{2 \lambda_{2 \tau+3}} \\
& +\exp \left(2^{3(\tau-\rho)+c_{1}}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+3}}|a b|^{\rho-\tau} L(f)+\left|\Pi_{2 \rho-1}\right| \\
\leq & \exp \left(2^{3(\tau-\rho)}\left(2^{c_{3}+3}-2^{c_{4}}\right)\right)\left|\Pi_{2 \rho}\right|^{2 \lambda_{2 \tau+3}},
\end{aligned}
$$

hence, by (52), the inductive assumption and Lemma 9 ,

$$
\begin{aligned}
\left|y_{\rho-\tau-1}\right| & \leq \frac{\exp \left(2^{3(\tau-\rho)}\left(2^{c_{3}+3}-2^{c_{4}}\right)\right)\left|\Pi_{2 \rho}\right|^{2 \lambda_{2 \tau+3}}}{\exp \left(-2^{3(\tau-\rho)+c_{4}}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+2}}} \\
& =\exp \left(2^{3(\tau-\rho)+c_{3}+3}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+4}}
\end{aligned}
$$

Since the function $t \mapsto t^{2}-B t$ is increasing for $t \geq B / 2(B \geq 0)$ and we have for large ρ, by (57),

$$
\left|x_{\rho-\tau}\right| \geq \frac{1}{e}\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+3}} \geq \frac{1}{2}|a b|^{\rho-\tau} L(f)
$$

it follows from Lemmas 6 and 9 and 57 that, for large ρ,

$$
\begin{aligned}
\left|f_{\rho-\tau}\left(x_{\rho-\tau}\right)\right| \geq & \left|x_{\rho-\tau}\right|^{2}-\max \left\{1,\left|x_{\rho-\tau}\right|\right\}|a b|^{\rho-\tau} L(f)-\left|\Pi_{2 \rho-2}\right| \\
\geq & \exp \left(2 \cdot 2^{3(\tau-\rho)+c_{2}}\right)\left|\Pi_{2 \rho}\right|^{2 \lambda_{2 \tau+3}} \\
& \quad-\exp \left(2^{3(\tau-\rho)+c_{2}}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+3}}|a b|^{\rho-\tau} L(f)-\left|\Pi_{2 \rho-2}\right| \\
\geq & \exp \left(-2^{3(\tau-\rho)}\left(2^{c_{4}+3}-2^{c_{3}}\right)\right)\left|\Pi_{2 \rho}\right|^{2 \lambda_{2 \tau+3}},
\end{aligned}
$$

hence, by 52 and the inductive assumption,

$$
\begin{aligned}
\left|y_{\rho-\tau-1}\right| & \geq \frac{\exp \left(-2^{3(\tau-\rho)}\left(2^{c_{4}+3}-2^{c_{3}}\right)\right)\left|\Pi_{2 \rho}\right|^{2 \lambda_{2 \tau+3}}}{\exp \left(2^{3(\tau-\rho)+c_{3}}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+2}}} \\
& =\exp \left(-2^{3(\tau-\rho)+c_{4}+3}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+4}}
\end{aligned}
$$

LEMMA 11. If $f(x)=a x^{4}+a_{2} x^{2}, g=b y, a, a_{2}, b, c$ integers, $|a b c|>1$, ρ is large enough in terms of a, a_{2}, b, c, and x_{σ}, y_{σ} are given by (50)-(53), then $2 \leq \sigma \leq \rho$ implies

$$
\begin{equation*}
\left|x_{\sigma}\right|>\max \left\{\left|\Pi_{2 \rho-2}\right|, \sigma\left|x_{\sigma+1}\right|\right\} \tag{58}
\end{equation*}
$$

Proof by backward induction on σ. For $\sigma=\rho$ we have by (51), (53) and Lemma 5, for large ρ,

$$
\begin{aligned}
\left|x_{\rho}\right| & =\left|f_{\rho+1}(1)+\Pi_{2 \rho-1}\right|=\left|1+\left(a_{2} b+1\right) \Pi_{2 \rho-1}+\Pi_{2 \rho}\right| \\
& \geq\left|\Pi_{2 \rho}\right|-\left|a_{2} b+1\right|\left|\Pi_{2 \rho-1}\right|-1 \\
& =|a|^{2 \rho-1}|b|^{4 \rho-4}|c|^{2 \rho+1}-\left|a_{2} b+1\right||a|^{\rho-1}|b|^{2 \rho-3}|c|^{\rho}-1 \\
& >|a|^{2 \rho-3}|b|^{4 \rho-8}|c|^{2 \rho-1}=\max \left\{\left|\Pi_{2 \rho-2}\right|, \rho\left|x_{\rho+1}\right|\right\} .
\end{aligned}
$$

Assume now that (58) holds for $3 \leq \sigma+1 \leq \rho$. Then, by (52)-(53), we have

$$
\begin{gathered}
x_{\sigma}=\frac{y_{\sigma}+\Pi_{2 \sigma-1}}{x_{\sigma+1}}, \quad y_{\sigma}=\frac{x_{\sigma+1}^{4}+a_{2} b \Pi_{2 \sigma-1} x_{\sigma+1}^{2}+\Pi_{2 \sigma}}{y_{\sigma+1}}, \\
x_{\sigma+1}=\frac{y_{\sigma+1}+\Pi_{2 \sigma+1}}{x_{\sigma+2}},
\end{gathered}
$$

hence

$$
\begin{gathered}
y_{\sigma+1}=x_{\sigma+1} x_{\sigma+2}-\Pi_{2 \sigma+1} \\
\left|y_{\sigma}\right|=\frac{\left|x_{\sigma+1}^{4}+a_{2} b \Pi_{2 \sigma-1} x_{\sigma+1}^{2}+\Pi_{2 \sigma}\right|}{\left|x_{\sigma+1} x_{\sigma+2}-\Pi_{2 \sigma+1}\right|} \geq \frac{x_{\sigma+1}^{4}-\left|a_{2} b\right|\left|\Pi_{2 \sigma-1}\right| x_{\sigma+1}^{2}-\left|\Pi_{2 \sigma}\right|}{\frac{x_{\sigma+1}^{2}}{\sigma+1}+\left|\Pi_{2 \sigma+1}\right|} \\
\left|x_{\sigma}\right|=\frac{\left|y_{\sigma}+\Pi_{2 \sigma-1}\right|}{\left|x_{\sigma+1}\right|} \geq \frac{x_{\sigma+1}^{4}-\left|\Pi_{2 \sigma}\right|-\left|\Pi_{2 \sigma-1}\right|\left(\left|a_{2} b\right| x_{\sigma+1}^{2}+\frac{x_{\sigma+1}^{2}}{\sigma+1}+\left|\Pi_{2 \sigma+1}\right|\right)}{\left|x_{\sigma+1}\right|\left(\frac{x_{\sigma+1}^{2}}{\sigma+1}+\left|\Pi_{2 \sigma+1}\right|\right)}
\end{gathered}
$$

and the inequality (58) follows from

$$
\begin{align*}
& x_{\sigma+1}^{4}-\left|\Pi_{2 \sigma}\right|-\left|\Pi_{2 \sigma-1}\right|\left(\left|a_{2} b\right| x_{\sigma+1}^{2}+\frac{x_{\sigma+1}^{2}}{\sigma+1}+\left|\Pi_{2 \sigma+1}\right|\right) \tag{59}\\
\geq & \max \left\{\left|\Pi_{2 \rho-2}\right|\left(\frac{\left|x_{\sigma+1}^{3}\right|}{\sigma+1}+\left|x_{\sigma+1}\right|\left|\Pi_{2 \sigma+1}\right|\right), \frac{\sigma x_{\sigma+1}^{4}}{\sigma+1}+\sigma x_{\sigma+1}^{2}\left|\Pi_{2 \sigma+1}\right|\right\}
\end{align*}
$$

For $\left|x_{\sigma+1}\right| \geq\left|\Pi_{2 \rho-2}\right|$ the second term of the maximum is greater and the difference between the left-hand side and the right-hand side of 59 for ρ large enough is at least
$\frac{\Pi_{2 \rho-2}^{4}}{\sigma+1}-\left|\Pi_{2 \sigma}\right|-\left|\Pi_{2 \sigma-1} \Pi_{2 \sigma+1}\right|-\Pi_{2 \rho-2}^{2}\left(\left|a_{2} b\right|\left|\Pi_{2 \sigma-1}\right|+\frac{\left|\Pi_{2 \sigma-1}\right|}{\sigma+1}+\sigma\left|\Pi_{2 \sigma+1}\right|\right)$, which is positive for ρ large enough.

Lemma 12. If either $(m-1)(n-1)>1,|a b c| \geq 2$, or $m \geq 5, n=1$, $a_{1}=a_{m-1}=0,|a b c| \geq 2$ and ρ is large enough in terms of m, n, and for $2 \leq \sigma \leq \rho+1, x_{\sigma}$ and $y_{\sigma-1}$ are given by (50)-(53), then for every non-negative integer $\tau<\rho$,

$$
\begin{align*}
\exp \left(-(m n)^{3(\tau-\rho)+c_{2}-3}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+1}} & \leq\left|x_{\rho-\tau+1}\right| \tag{60}\\
& \leq \exp \left((m n)^{3(\tau-\rho)+c_{1}-3}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+1}} \\
\exp \left(-(m n)^{3(\tau-\rho)+c_{4}}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+2}} & \leq\left|y_{\rho-\tau}\right| \tag{61}\\
& \leq \exp \left((m n)^{3(\tau-\rho)+c_{3}}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+2}}
\end{align*}
$$

Proof by induction on τ. For $\tau=0$ the inequality (60) follows from (51). For (61), if $\tau=0$ in view of Lemma 7 we have

$$
\left|y_{\rho}-1-\Pi_{2 \rho}\right| \leq\left|\Pi_{2 \rho-1}\right|^{m-\varepsilon}
$$

where $\varepsilon=1$ if $(m-1)(n-1)>1$ and $\varepsilon=2$ if $m \geq 5, n=1$, thus in view of Lemma 8, 61) follows for ρ large enough from

$$
\lim _{n \rightarrow \infty}\left|\bar{\Pi}_{2 \rho}\right|\left|\Pi_{2 \rho-1}\right|^{1-m}(m n)^{-3 \rho}=\lim _{\rho \rightarrow \infty}\left|\Pi_{2 \rho-1} / \Pi_{2 \rho-2}\right|(m n)^{-3 \rho}=\infty
$$

and

$$
\lim _{n \rightarrow \infty}\left|\Pi_{2 \rho}\right|\left|\Pi_{2 \rho-1}\right|^{2-m}(m n)^{-3 \rho}=\lim _{\rho \rightarrow \infty}\left|\Pi_{2 \rho-1}^{2} / \Pi_{2 \rho-2}\right|(m n)^{-3 \rho}=\infty
$$

for $(m-1)(n-1)>1$ or $m \geq 5, n=1$, respectively, which in turn follows from (30) and Lemma 3.

Assume now that (60) and (61) are true for $\tau<\rho-1$. Then by Lemma 7 and the inductive assumption, for ρ large enough,

$$
\begin{aligned}
\left|g_{\rho-\tau}\left(y_{\rho-\tau}\right)\right| & \leq\left|y_{\rho-\tau}\right|^{n}+\max \left\{1,\left|y_{\rho-\tau}\right|\right\}^{n-\varepsilon}\left|\Pi_{2 \rho-2}\right|^{n-\varepsilon}+\left|\Pi_{2 \rho-2 \tau-1}\right| \\
& \leq \exp \left(n(m n)^{3(\tau-\rho)+c_{3}}\right)\left|\Pi_{2 \rho}\right|^{n \lambda_{2 \tau+2}} \\
+ & \exp \left((n-\varepsilon)(m n)^{3(\tau-\rho)+c_{3}}\right)\left|\Pi_{2 \rho}\right|^{(n-\varepsilon) \lambda_{2 \tau+2}}\left|\Pi_{2 \rho-2}\right|^{n-\varepsilon}+\left|\Pi_{2 \rho-1}\right| \\
& \leq \exp \left((m n)^{3(\tau-\rho)+c_{3}+1}\right)\left|\Pi_{2 \rho}\right|^{n \lambda_{2 \tau+2}} .
\end{aligned}
$$

Hence by (53), the inductive assumption and Lemma 9 ,

$$
\begin{align*}
\left|x_{\rho-\tau}\right| & \leq \frac{\exp \left((m n)^{3(\tau-\rho)+c_{3}+1}\right)\left|\Pi_{2 \rho}\right|^{n \lambda_{2 \tau+2}}}{\exp \left(-(m n)^{3(\tau-\rho)+c_{1}-3}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+2}}} \tag{62}\\
& \leq \exp \left((m n)^{3(\tau-\rho)+c_{1}}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+3}}
\end{align*}
$$

Since the functions $t \mapsto t^{n}-A t^{n-\varepsilon}$ are increasing for $t \geq A>0$, and by the inductive assumption we have

$$
\left|y_{\rho-\tau}\right| \geq \frac{1}{e}\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+2}} \geq\left|\Pi_{2 \rho-2}\right|^{n-\varepsilon}
$$

it follows from Lemma 7 that

$$
\begin{aligned}
& \left|g_{\rho-\tau}\left(y_{\rho-\tau}\right)\right| \geq\left|y_{\rho-\tau}\right|^{n}-\max \left\{1,\left|y_{\rho-\tau}\right|\right\}^{n-\varepsilon}\left|\Pi_{2 \rho-2}\right|^{n-\varepsilon}-\left|\Pi_{2 \rho-2 \tau-1}\right| \\
& \quad \geq \exp \left(-n(m n)^{3(\tau-\rho)+c_{4}}\right)\left|\Pi_{2 \rho}\right|^{n \lambda_{2 \tau+2}} \\
& \quad-\exp \left(-(n-\varepsilon)(m n)^{3(\tau-\rho)+c_{4}}\right)\left|\Pi_{2 \rho}\right|^{(n-\varepsilon) \lambda_{2 \tau+2}}\left|\Pi_{2 \rho-2}\right|^{n-\varepsilon}-\left|\Pi_{2 \rho-1}\right| \\
& \quad \geq \exp \left(-(m n)^{3(\tau-\rho)+c_{4}+1}\right)\left|\Pi_{2 \rho}\right|^{n \lambda_{2 \tau+2}},
\end{aligned}
$$

hence by (53), the inductive assumption and Lemma 9 ,

$$
\begin{align*}
\left|x_{\rho-\tau}\right| & \geq \frac{\exp \left(-(m n)^{3(\tau-\rho)+c_{4}+1}\right)\left|\Pi_{2 \rho}\right|^{n \lambda_{2 \tau+2}}}{\exp \left((m n)^{3(\tau-\rho)+c_{1}-3}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+1}}} \tag{63}\\
& \geq \exp \left(-(m n)^{3(\tau-\rho)+c_{2}}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+3}}
\end{align*}
$$

Similarly, by Lemmas 7 and 9 and (62), for ρ large enough and $\tau<\rho-1$,

$$
\begin{aligned}
&\left|f_{\rho-\tau}\left(x_{\rho-\tau}\right)\right| \leq\left|x_{\rho-\tau}\right|^{m}+\max \left\{1,\left|x_{\rho-\tau}\right|\right\}^{m-\varepsilon}\left|\Pi_{2 \rho-3}\right|^{m-\varepsilon}+\left|\Pi_{2 \rho-2 \tau-2}\right| \\
& \leq \exp \left(m(m n)^{3(\tau-\rho)+c_{1}}\right)\left|\Pi_{2 \rho}\right|^{m \lambda_{2 \tau+3}} \\
&+\exp \left((m-\varepsilon)(m n)^{3(\tau-\rho)+c_{1}}\right)\left|\Pi_{2 \rho}\right|^{(m-\varepsilon) \lambda_{2 \tau+3}}\left|\Pi_{2 \rho-3}\right|^{m-\varepsilon}+\left|\Pi_{2 \rho-2}\right| \\
& \leq \exp \left((m n)^{3(\tau-\rho)}\left((m n)^{c_{3}+3}-(m n)^{c_{4}}\right)\right)\left|\Pi_{2 \rho}\right|^{m \lambda_{2 \tau+3}}
\end{aligned}
$$

$$
\text { Congruence } f(x)+g(y)+c \equiv 0(\bmod x y)
$$

hence by (52) and the inductive assumption

$$
\begin{aligned}
\left|y_{\rho-\tau-1}\right| & \leq \frac{\exp \left((m n)^{3(\tau-\rho)}\left((m n)^{c_{3}+3}-(m n)^{c_{4}}\right)\right)\left|\Pi_{2 \rho}\right|^{m \lambda_{2 \tau+3}}}{\exp \left(-(m n)^{3(\tau-\rho)+c_{4}}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+2}}} \\
& =\exp \left((m n)^{3(\tau-\rho)+c_{3}+3}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+4}}
\end{aligned}
$$

Finally, since the functions $t \mapsto t^{m}-B t^{m-\varepsilon}$ are increasing for $t \geq B \geq 0$, and by (63) we have

$$
\left|x_{\rho-\tau}\right| \geq \frac{1}{e}\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+3}} \geq\left|\Pi_{2 \rho-3}\right|^{m-\varepsilon},
$$

it follows by Lemmas 7 and 9 and (63) that, for large ρ,

$$
\begin{aligned}
&\left|f_{\rho-\tau}\left(x_{\rho-\tau}\right)\right| \geq\left|x_{\rho-\tau}\right|^{m}-\max \left\{1,\left|x_{\rho-\tau}\right|\right\}^{m-\varepsilon}\left|\Pi_{2 \rho-3}\right|^{m-\varepsilon}-\left|\Pi_{2 \rho-2 \tau-2}\right| \\
& \geq \exp \left(m(m n)^{3(\tau-\rho)+c_{2}}\right)\left|\Pi_{2 \rho}\right|^{m \lambda_{2 \tau+3}} \\
&-\exp \left((m-\varepsilon)(m n)^{3(\tau-\rho)+c_{2}}\right)\left|\Pi_{2 \rho}\right|^{(m-\varepsilon) \lambda_{2 \tau+3}}\left|\Pi_{2 \rho-3}\right|^{m-2}-\left|\Pi_{2 \rho-2}\right| \\
& \geq \exp \left(-(m n)^{3(\tau-\rho)}\left((m n)^{c_{4}+3}-(m n)^{c_{3}}\right)\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+3}},
\end{aligned}
$$

hence, by (52) and the inductive assumption,

$$
\begin{aligned}
\left|y_{\rho-\tau-1}\right| & \geq \frac{\exp \left(-(m n)^{3(\tau-\rho)}\left((m n)^{c_{4}+3}-(m n)^{c_{3}}\right)\right)\left|\Pi_{2 \rho}\right|^{m \lambda_{2 \tau+3}}}{\exp \left((m n)^{3(\tau-\rho)+c_{3}}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+2}}} \\
& =\exp \left(-(m n)^{3(\tau-\rho)+c_{4}+3}\right)\left|\Pi_{2 \rho}\right|^{\lambda_{2 \tau+4}}
\end{aligned}
$$

Lemma 13. If $(m-1)(n-1)>0, a, b, c>0, a_{i}, b_{j} \geq 0(0<i<m$, $0<j<n)$ and, for $2 \leq \sigma \leq \rho+1, x_{\sigma}$ and $y_{\sigma-1}$ are given by (50)-(53), then for $1 \leq \sigma \leq \rho$,

$$
\begin{equation*}
0<x_{\sigma+1}<y_{\sigma}<x_{\sigma} \tag{64}
\end{equation*}
$$

Proof by backward induction. For $\sigma=\rho$ the first and second inequality are clear, and the third follows from

$$
x_{\rho}=g_{\rho}\left(y_{\rho}\right)>y_{\rho}
$$

Assume that the inequality (64) holds for $\sigma+1<\rho$. Then

$$
\begin{aligned}
& y_{\sigma}=\frac{f_{\sigma+1}\left(x_{\sigma+1}\right)}{y_{\sigma+1}}>\frac{f_{\sigma+1}\left(x_{\sigma+1}\right)}{x_{\sigma+1}}>x_{\sigma+1} \\
& x_{\sigma}=\frac{g_{\sigma}\left(y_{\sigma}\right)}{x_{\sigma+1}}>\frac{g_{\sigma}\left(y_{\sigma}\right)}{y_{\sigma}}>y_{\sigma}
\end{aligned}
$$

Corollary 4. Under the assumptions of Theorems 24 the numbers $x_{\sigma}, y_{\sigma-1}$ given for $2 \leq \sigma \leq \rho+1$ by (50)-(53) are non-zero.

Proof. Clear from (54), (55), (58), (60), (61) and (64).

LEMMA 14. Under the assumptions of Theorems 2, 4, let the numbers $x_{\sigma}, y_{\sigma-1}$ for $2 \leq \sigma \leq \rho+1, \rho \geq 2$, be given by (50)-(53) and moreover set

$$
x_{1}=\frac{g_{1}\left(y_{1}\right)}{x_{2}}
$$

Then for $\sigma \leq \rho+1$,

$$
\begin{align*}
x_{\sigma} \in \mathbb{Z} & (\sigma \geq 1) \tag{65}\\
y_{\sigma-1} \in \mathbb{Z} & (\sigma \geq 2) \tag{66}
\end{align*}
$$

and for $\sigma \geq 2$,

$$
\begin{align*}
\left(x_{\sigma}, \Pi_{2 \sigma-2}\right) & =1 \tag{67}\\
\left(y_{\sigma-1}, \Pi_{2 \sigma-3}\right) & =1 \tag{68}
\end{align*}
$$

Proof by backward induction on σ. For $\sigma=\rho+1$, 65)-(67) are clear. Now,

$$
y_{\rho}=f_{\rho+1}(1)=\frac{1}{\Pi_{2 \rho-2}} f_{\rho}\left(\Pi_{2 \rho-1}\right)
$$

and since by the assumption $\operatorname{Rad} c \mid a_{m-1}$, in any case we have

$$
\left(y_{\rho}, \Pi_{2 \rho-1}\right)=1
$$

Assume now that (65)-(68) are true for $\sigma+1 \leq \rho+1$ and $\sigma \geq 2$. In the case of (65) the last step of the induction is from $\sigma=2$ to $\sigma=1$. Thus, by Corollary $4, x_{\sigma+1} \neq 0$, and by (53) with $g_{\sigma}(y)=\sum_{i=0}^{n} g_{\sigma i} y^{n-i}$,

$$
\begin{aligned}
y_{\sigma+1}^{n} x_{\sigma} & =\frac{y_{\sigma+1}^{n} g_{\sigma}\left(y_{s}\right)}{x_{\sigma+1}} \\
& =\frac{\left(y_{\sigma} y_{\sigma+1}\right)^{n}+\sum_{i=1}^{n-1} g_{\sigma i} y_{\sigma+1}^{i}\left(y_{\sigma} y_{\sigma+1}\right)^{n-i}+\Pi_{2 \sigma-1} y_{\sigma+1}^{n}}{x_{\sigma+1}} \\
& \equiv \frac{\Pi_{2 \sigma}^{n}+\sum_{i=1}^{n-1} g_{\sigma i} y_{\sigma+1}^{i} \Pi_{2 \sigma}^{n-i}+\Pi_{2 \sigma-1} y_{\sigma+1}^{n}}{x_{\sigma+1}} \\
& =\Pi_{2 \sigma-1} \frac{\frac{1}{\Pi_{2 \sigma-1}} g_{\sigma}\left(\frac{\Pi_{2 \sigma}}{y_{\sigma+1}}\right) y_{\sigma+1}^{n}}{x_{\sigma+1}} \equiv \Pi_{2 \sigma-1} \frac{g_{\sigma+1}\left(y_{\sigma+1}\right)}{x_{\sigma+1}}(\bmod 1)
\end{aligned}
$$

For $\sigma=\rho$ the right-hand side is clearly an integer; for $\sigma<\rho$ it is equal to $\Pi_{2 \sigma-1} x_{\sigma+2}$, hence it is also an integer. Thus

$$
\begin{equation*}
y_{\sigma+1}^{n} x_{\sigma} \in \mathbb{Z} \tag{69}
\end{equation*}
$$

Moreover, by the inductive assumption

$$
\left(x_{\sigma+1}, \Pi_{2 \sigma}\right)=1
$$

and it follows from 52 and Lemma 5 that

$$
\begin{equation*}
\left(y_{\sigma} y_{\sigma+1}, \Pi_{2 \sigma-1} x_{\sigma+1}\right)=1 \tag{70}
\end{equation*}
$$

Since by (53), $x_{\sigma} x_{\sigma+1} \in \mathbb{Z}$, it follows from (69) and (70) that $x_{\sigma} \in \mathbb{Z}$.

$$
\text { Congruence } f(x)+g(y)+c \equiv 0(\bmod x y)
$$

Similarly, since $y_{\sigma} \neq 0$, by (52) and (53) with $f_{\sigma}(x)=\sum_{i=0}^{m} f_{\sigma i} x^{m-i}$ we have

$$
\begin{align*}
x_{\sigma+1}^{m} y_{\sigma-1} & =\frac{x_{\sigma+1}^{m} f_{\sigma}\left(x_{\sigma}\right)}{y_{\sigma}} \tag{71}\\
& =\frac{\left(x_{\sigma} x_{\sigma+1}\right)^{m}+\sum_{i=1}^{m-1} f_{\sigma i} x_{\sigma+1}^{i}\left(x_{\sigma} x_{\sigma+1}\right)^{m-i}+\Pi_{2 \sigma-2} x_{\sigma+1}^{m}}{y_{s}} \\
& \equiv \frac{\Pi_{2 \sigma-1}^{m}+\sum_{i=1}^{m-1} f_{\sigma i} x_{\sigma+1}^{i} \Pi_{2 \sigma-1}^{m-i}+\Pi_{2 \sigma-2} x_{\sigma+1}^{m}}{y_{\sigma}} \\
& =\Pi_{2 \sigma-1} \frac{f_{\sigma+1}\left(x_{\sigma+1}\right)}{y_{\sigma}}=\Pi_{2 \sigma-1} y_{\sigma+1}(\bmod 1) .
\end{align*}
$$

Since by (52), $y_{\sigma-1} y_{\sigma} \in \mathbb{Z}$, it follows from 70 and (71) that $y_{\sigma-1} \in \mathbb{Z}$.
Moreover, under the assumptions of the lemma,

$$
\operatorname{Rad} \Pi_{2 \sigma-2} \mid g_{\sigma}\left(y_{\sigma}\right)-y_{\sigma}^{n}
$$

hence by (53) and (70),

$$
\begin{equation*}
\left(x_{\sigma}, \Pi_{2 \sigma-2}\right)=1 \tag{72}
\end{equation*}
$$

Finally, under the assumptions of the lemma,

$$
\operatorname{Rad} \Pi_{2 \sigma-3} \mid f_{\sigma}\left(x_{\sigma}\right)-x_{\sigma}^{m}
$$

so by (52) and (72),

$$
\left(y_{\sigma-1}, \Pi_{2 \sigma-3}\right)=1
$$

Lemma 15. If $a, b, c \neq 0, a_{1}, b_{1}, z$ are integers and the equation $a x^{2}-$ $z x y+b y^{2}+a_{1} x+b_{1} y+c=0$ has a solution in integers x, y such that $(y, c)=1$, then it has infinitely many such solutions provided

$$
D=z^{2}-4 a b \quad \text { is positive, but not a perfect square }
$$

and

$$
\Delta=4 a b c-z a_{1} b_{1}-a b_{1}^{2}-b a_{1}^{2}-c z^{2} \neq 0
$$

Proof. The proof follows the proof of Theorem 2 in [5, p. 59]. Only the solution of the Pell equation $T^{2}-D u^{2}=1$ has to be chosen so that $T \equiv 1$ $(\bmod D c), u \equiv 0(\bmod D c)$.

Notation. For $\varepsilon, \eta \in\{1,-1\}$ set $\Delta(\varepsilon, \eta)=4 a b c-\left(a+b+\varepsilon a_{1}+\eta b_{1}+c\right) \varepsilon \eta a_{1} b_{1}-a b_{1}^{2}-b a_{1}^{2}-c\left(a+b+\varepsilon a_{1}+\eta b_{1}+c\right)^{2}$.

Lemma 16. If $a b c \Delta(\varepsilon, \eta) \neq 0$, then either the congruence

$$
a x^{2}+a_{1} x+b y^{2}+b_{1} y+c \equiv 0(\bmod x y)
$$

has infinitely many solutions in integers x, y such that $(y, c)=1$, or $\left|a+\varepsilon a_{1}+b+\eta b_{1}+c\right| \leq 4|a b|$.

Proof. The equation

$$
a x^{2}+a_{1} x+b y^{2}+b_{1} y+c=\left(a+a_{1} \varepsilon+b+b_{1} \eta+c\right) x y
$$

has a solution $x=\varepsilon, y=\eta$, hence by Lemma 15 either it has infinitely many solutions in integers such that $(y, c)=1$, or

$$
\begin{equation*}
\left(a+\varepsilon a_{1}+b+\eta b_{1}+c\right)^{2}-4 a b \leq 0 \tag{73}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(a+\varepsilon a_{1}+b+\eta b_{1}+c\right)^{2}-4 a b \quad \text { is a perfect square. } \tag{74}
\end{equation*}
$$

In the case (73) the assertion is clear; in the case (74) we use Lemma 1 .
Lemma 17. If $a, b \neq 0, c, a_{1}, b_{1}$ are integers and

$$
\begin{equation*}
\Delta(\varepsilon, \eta)=\Delta(-\varepsilon,-\eta)=0, \tag{75}
\end{equation*}
$$

then either $\varepsilon \eta a_{1} b_{1}+2 c(a+b+c)=0, a_{1}^{2}+b_{1}^{2}>0$, or $b_{1}=-\varepsilon \eta a_{1}, c=0$, or a_{1}, b_{1}, c are bounded in terms of a, b.

Proof. The equations (75) give on subtraction

$$
-2 \varepsilon \eta\left(\varepsilon a_{1}+\eta b_{1}\right) a_{1} b_{1}-4 c\left(\varepsilon a_{1}+\eta b_{1}\right)(a+b+c)=0,
$$

and if

$$
\varepsilon \eta a_{1} b_{1}+2 c(a+b+c) \neq 0 \quad \text { or } \quad a_{1}^{2}+b_{1}^{2}=0
$$

we obtain

$$
\varepsilon a_{1}+\eta b_{1}=0, \quad b_{1}=-\varepsilon \eta a_{1} .
$$

On substituting in (75) we obtain

$$
4 a b c+(a+b+c) a_{1}^{2}-a a_{1}^{2}-b a_{1}^{2}-c(a+b+c)^{2}=0
$$

thus either $c=0$, or

$$
4 a b+a_{1}^{2}-(a+b+c)^{2}=0
$$

and, by Lemma 1, $a_{1}, a+b+c$ are bounded in terms of a, b. Since $b_{1}=-\varepsilon \eta a_{1}$, the same applies to a_{1}, b_{1}, c.

Lemma 18. If $a, b \neq 0, c, a_{1}, b_{1}$ are integers and

$$
\begin{equation*}
\Delta(\varepsilon, \eta)=\Delta(\varepsilon,-\eta)=0, \tag{76}
\end{equation*}
$$

then either $b_{1}=0$, or a_{1}, b_{1}, c are bounded in terms of a, b.
Proof. The equations (76) give on subtraction

$$
-2 \varepsilon \eta\left(a+b+c+\varepsilon a_{1}\right) a_{1} b_{1}-4 c \eta b_{1}\left(a+b+c+\varepsilon a_{1}\right)=0,
$$

hence either

$$
\begin{equation*}
a+b+c+\varepsilon a_{1}=0 \tag{77}
\end{equation*}
$$

or

$$
\begin{equation*}
\varepsilon \eta a_{1} b_{1}+2 c \eta b_{1}=0 . \tag{78}
\end{equation*}
$$

In the case 77 substituting in 76 we obtain

$$
\begin{aligned}
& 4 a b c-\varepsilon a_{1} b_{1}^{2}-a b_{1}^{2}-b a_{1}^{2}-c b_{1}^{2}=0 \\
& 4 a b c-\left(\varepsilon a_{1}+a+c\right) b_{1}^{2}-b a_{1}^{2}=0, \quad 4 a b c+b b_{1}^{2}-b a_{1}^{2}=0
\end{aligned}
$$

and on dividing by b,

$$
4 a c=a_{1}^{2}-b_{1}^{2}=\left(a_{1}+b_{1}\right)\left(a_{1}-b_{1}\right)
$$

Since the numbers $a_{1}+b_{1}$ and $a_{1}-b_{1}$ are of the same parity, they are even. Thus we obtain, for some integers x, β, γ, δ,

$$
\begin{equation*}
a=\alpha \beta, \quad c=\gamma \delta, \quad a_{1}+b_{1}=2 \alpha \gamma, \quad a_{1}-b_{1}=2 \beta \delta \tag{79}
\end{equation*}
$$

hence

$$
\begin{equation*}
a_{1}=\alpha \gamma+\beta \delta, \quad b_{1}=\alpha \gamma-\beta \delta \tag{80}
\end{equation*}
$$

and the equation 77 gives

$$
\alpha \beta+b+\gamma \delta+\varepsilon(\alpha \gamma+\beta \delta)=0
$$

thus

$$
b=-(\alpha+\varepsilon \delta)(\beta+\varepsilon \gamma)
$$

which gives finitely many choices for $\alpha+\varepsilon \delta, \beta+\varepsilon \gamma$. However, by (79) there are only finitely many choices for α and β, thus there are only finitely many choices for δ and γ, hence by (79) and 80 also for c, a_{1}, b_{1}.

Consider now the case 78 . If $b_{1} \neq 0$, we obtain $\varepsilon a_{1}+2 c=0$, hence by (76),

$$
\begin{aligned}
0 & =4 a b c-\varepsilon \eta\left(a+b-c+\eta b_{1}\right) a_{1} b_{1}-a b_{1}^{2}-b a_{1}^{2}-c\left(a+b-c+\eta b_{1}\right)^{2} \\
& =4 a b c+2 c \eta\left(a+b-c+\eta b_{1}\right) b_{1}-a b_{1}^{2}-4 b c^{2}-c\left(a+b-c+\eta b_{1}\right)^{2} \\
& =4 a b c+c\left(a+b-c+\eta b_{1}\right)\left(2 \eta b_{1}-a-b+c-\eta b_{1}\right)-a b_{1}^{2}-4 b c^{2} \\
& =4 a b c+c\left(b_{1}^{2}-(a+b-c)^{2}\right)-a b_{1}^{2}-4 b c^{2} \\
& =4 a b c-c(a+b-c)^{2}-4 b c^{2}+(c-a) b_{1}^{2} \\
& =4 a b c-a^{2} c-2 a b c+2 a c^{2}-b^{2} c+2 b c^{2}-c^{3}-4 b c^{2}+(c-a) b_{1}^{2} \\
& =-c(a-b-c)^{2}+(c-a) b_{1}^{2} .
\end{aligned}
$$

It follows that

$$
\left(\frac{a-b-c}{b_{1}}\right)^{2}=\frac{c-a}{c}
$$

and for some integers $\alpha, \beta, \gamma, \delta$,

$$
a-b-c=\alpha \beta, \quad b_{1}=\alpha \gamma, \quad c-a=\delta \beta^{2}, \quad c=\delta \gamma^{2}, \quad a=\delta \gamma^{2}-\delta \beta^{2}
$$

hence β, γ, δ are bounded in terms of a, and c is bounded. If $\beta=0$, then $a-b-c=0, c-a=0, b=0$. Therefore $\beta \neq 0$ and α is bounded, b_{1} is bounded, and so is $a_{1}=-2 \varepsilon c$.

Lemma 19. If $a, b \neq 0, c, a_{1}, b_{1}$ are integers and

$$
\Delta(\varepsilon, \eta)=\Delta(-\varepsilon, \eta)=0,
$$

then either $a_{1}=0$, or a_{1}, b_{1}, c are bounded in terms of a, b.
The proof is analogous to the proof of Lemma 18 .
Proof of Theorem 2. If $|a b| \geq 9$ and $\operatorname{Rad} c \mid\left(a_{1}, b_{1} a\right)$, by Lemmas 10 and 14, for ρ large enough there exist arbitrarily large (in absolute value) integers $x_{1}, y_{1}, x_{2}, y_{2}$ such that

$$
\begin{align*}
x_{1} x_{2} & =g_{1}\left(y_{1}\right)=g\left(y_{1}\right)+c, \\
y_{1} y_{2} & =f_{2}\left(x_{2}\right)=x_{2}^{2}+\frac{1}{c} f\left(\frac{c}{x_{2}}\right) x_{2}^{2} \tag{81}
\end{align*}
$$

and

$$
\begin{equation*}
\left(y_{1}, c\right)=1 . \tag{82}
\end{equation*}
$$

We have

$$
\begin{aligned}
& c\left(f\left(x_{1}\right)+c\right)=a c x_{1}^{2}+a_{1} c x_{1}+c^{2} \\
& \quad \equiv\left(x_{1} x_{2}\right)^{2}+\frac{1}{c}\left(a\left(\frac{c}{x_{2}}\right)^{2}+a_{1}\left(\frac{c}{x_{2}}\right)\right)\left(x_{1} x_{2}\right)^{2}=x_{1}^{2} f_{2}\left(x_{2}\right) \equiv 0\left(\bmod y_{1}\right)
\end{aligned}
$$

and by (82),

$$
f\left(x_{1}\right)+c \equiv 0\left(\bmod y_{1}\right) .
$$

Since by (81),

$$
g\left(y_{1}\right)+c \equiv 0\left(\bmod x_{1}\right),
$$

and by (81) and 82),

$$
\left(x_{1}, y_{1}\right)=\left(y_{1}, c\right)=1,
$$

it follows that

$$
\begin{equation*}
f\left(x_{1}\right)+g\left(y_{1}\right)+c \equiv 0\left(\bmod x_{1} y_{1}\right) . \tag{83}
\end{equation*}
$$

It remains to show that for $0<|a b|<9$ there exist only finitely many triples of integers a_{1}, b_{1}, c such that the congruence

$$
\begin{equation*}
a x^{2}+a_{1} x+b y^{2}+b_{1} y+c \equiv 0(\bmod x y) \tag{84}
\end{equation*}
$$

has only finitely many solutions in integers x, y with $(y, c)=1$. Assuming this is false, we shall use Lemmas 1619 .

If $a_{1}=b_{1}=0$ and $\Delta(1,1) \neq 0$, then by Lemma 16, c is bounded in terms of a, b. If $a_{1}=b_{1}=0$ and $\Delta(1,1)=0$, then $\Delta(-1,-1)=0$, thus by Lemma 17, c is bounded in terms of a, b.

If $a_{1}^{2}+b_{1}^{2}>0$ and $a_{1} b_{1}=0$, then we may assume without loss of generality that $a_{1}=0$ and $b_{1} \neq 0$. If $\Delta(1,1) \neq 0$ and $\Delta(1,-1) \neq 0$, then we use Lemma 16. If $\Delta(1,1) \neq 0$ and $\Delta(1,-1)=0$, then by Lemma 16,

$$
\begin{equation*}
\left|a+b+b_{1}+c\right| \leq 4|a b| \tag{85}
\end{equation*}
$$

and

$$
\begin{equation*}
4 a b c-a b_{1}^{2}-c\left(a+b-b_{1}+c\right)^{2}=0 \tag{86}
\end{equation*}
$$

(86) implies $c \mid a\left(b_{1}+c\right)^{2}$, and since, by (85), $b_{1}+c$ is bounded in terms of a, b, we conclude that either b_{1} and c are bounded in terms of a, b, or $b_{1}+c=0$, which gives, by (86) and the assumption $c \neq 0, c \mid(a-b)^{2}$. Hence either b_{1} and c are bounded in terms of a, b, or $a=b$ and, by 86$), 9 a+4 c=0$, and c and b_{1} are determined by a, b.

If $\Delta(1,1)=0$ and $\Delta(1,-1) \neq 0$, the argument is analogous. If $\Delta(1,1)=$ $\Delta(1,-1)=0$, then by Lemma $18, b_{1}, c$ are bounded in terms of a, b. If $a_{1} b_{1} \neq 0$ and, for an $\varepsilon= \pm 1, \Delta(\varepsilon, \varepsilon) \neq 0, \Delta(-1,1) \neq 0, \Delta(1,-1) \neq 0$, then we use Lemma 16. If $\Delta(\varepsilon, \varepsilon) \neq 0, \Delta(-1,1) \neq 0$ and $\Delta(1,-1)=0$, then by Lemmas 18 and 19 either $\Delta(-\varepsilon,-\varepsilon) \neq 0$, or a_{1}, b_{1}, c are bounded in terms of a, b. In the former case we use Lemma 16 again. If $\Delta(\varepsilon, \varepsilon) \neq 0$, $\Delta(-1,1)=0$ and $\Delta(1,-1) \neq 0$, the argument is analogous. If $\Delta(\varepsilon, \varepsilon) \neq 0$ and $\Delta(1,-1)=\Delta(-1,1)=0$, then by Lemma 16 ,

$$
\begin{equation*}
\left|a+b+c+\varepsilon a_{1}+\varepsilon b_{1}\right| \leq 4|a b| \tag{87}
\end{equation*}
$$

and by Lemma 17 either

$$
\begin{equation*}
-a_{1} b_{1}+2 c(a+b+c)=0 \tag{88}
\end{equation*}
$$

or

$$
\begin{equation*}
c=0, \quad b_{1}=a_{1} \tag{89}
\end{equation*}
$$

or a_{1}, b_{1}, c are bounded in terms of a, b.
If $\Delta(-\varepsilon,-\varepsilon) \neq 0$, then by Lemma 16 we have

$$
\left|a+b+c-\varepsilon a_{1}-\varepsilon b_{1}\right| \leq 4|a b|
$$

hence by (87),

$$
|a+b+c| \leq 4|a b|,
$$

c is bounded in terms of a, b and, by (88), so are a_{1}, b_{1} different from 0 . The case (89) is excluded by the assumption of the theorem.

If $\Delta(-\varepsilon,-\varepsilon)=0$, then, by Lemma $18, a_{1}, b_{1}, c$ are bounded in terms of a, b.

If $\Delta(1,1)=\Delta(-1,-1)=0$, then by Lemma 18 either $\Delta(1,-1) \neq 0$ and $\Delta(-1,1) \neq 0$, or a_{1}, b_{1}, c are bounded in terms of a, b. In the former case, by Lemma 16 ,

$$
\begin{align*}
& \left|a+a_{1}+b-b_{1}+c\right| \leq 4|a b| \\
& \left|a-a_{1}+b+b_{1}+c\right| \leq 4|a b| \tag{90}
\end{align*}
$$

hence

$$
|a+b+c| \leq 4|a b|
$$

and c is bounded in terms of a, b. On the other hand, by Lemma 17 either

$$
\begin{equation*}
a_{1} b_{1}+2 c(a+b+c)=0 \tag{91}
\end{equation*}
$$

or

$$
\begin{equation*}
c=0, \quad b_{1}=-a_{1} \tag{92}
\end{equation*}
$$

or a_{1}, b_{1}, c are bounded in terms of a, b. In the case (91), a_{1}, b_{1} are bounded in terms of a, b. The case (92) is excluded by the assumptions of the theorem.

Proof of Corollary 1. An analysis of the proof of Theorem 2 shows that for $a_{1}=b_{1}=0$ it works for $|a b|>2$. Therefore, it suffices to consider $|a b| \leq 2$ and we may assume without loss of generality that $a=1$ or $b=1$. Lemma 15 with $x=y=1, z=a+b+c$ leaves open the cases where $(a+b+c)^{2}-4 a b$ is negative or a perfect square, thus

$$
\begin{gathered}
a=b=1, \quad c=-4,-3,-2,-1 \\
\{a, b\}=\{1,2\}, \quad c=-6,-5,-4,-3,-2,-1 \\
a=1, \quad b=-2, \quad c=2 ; \quad a=-2, b=1, c=2
\end{gathered}
$$

For $a=b=1, c=-4$ we take $x=2 t-1, y=2 t+1$ (t an arbitrary integer). For $a=b=1, c=-3,-2$ there are only finitely many solutions (see [1] or [2]). For $a=b=1, c=-1 ; a=1, b=2, c=-4 ; a=1, b=2, c=-2$; $a=1, b=2, c=-1$; and $a=1, b=-2, c=2$, we take respectively $x=1$, y arbitrary; $x=2, y$ arbitrary odd; x arbitrary, $y=1 ; x=1, y$ arbitrary; and $y=1, x$ arbitrary.

For $a=1, b=2, c=-6 ; a=1, b=2, c=-5 ; a=1, b=2, c=-3$; and $a=2, b=1, c=-4$, we take in Lemma 15 respectively $x=1, y=5$, $z=9 ; x=1, y=4, z=7 ; x=5, y=22, z=9$; and $x=3, y=1, z=5$.

For $a=2, b=1, c=-2$ we take $x=1, y$ arbitrary odd; for $a=2$, $b=1, c=-1$ we take x arbitrary, $y=1$; for $a=-2, b=1, c=2$ we take $x=1, y$ arbitrary odd.

Proof of Theorem 3. If $m \geq 4, n=1$ and $|a b c| \geq 2$, then by Lemmas 10, 11 and 14 , for ρ large enough in terms of m there exist arbitrarily large (in absolute value) integers $x_{1}, y_{1}, x_{2}, y_{2}$ such that (81) and (82) hold. We infer, as in the proof of Theorem 2 , that 83 holds.

It remains to consider the case $m \geq 4, n=1$ and $|a b c|=1$. Then $a, b, c \in\{1,-1\}$ and the congruence (1) has infinitely many solutions satisfying $(y, c)=1$ given by $x \neq 0$ arbitrary, $y=-b(f(x)+c) \neq 0$.

Proof of Theorem 4. If $(m-1)(n-1)>1$ and either $|a b c|>1$, or $a, b, c>0, a_{i}, b_{j} \geq 0(0<i<m, 0<j<n)$, by Lemmas 12 and 14 or by Lemmas 13 and 14 , respectively, for ρ large enough in terms of m, n there exist arbitrarily large (in absolute value) integers $x_{1}, y_{1}, x_{2}, y_{2}$ such that (81) and (82) hold. We infer, as in the proof of Theorem 2, that 83)
holds, namely

$$
c^{m-1}\left(f\left(x_{1}\right)+c\right) \equiv\left(x_{1} x_{2}\right)^{m}+\frac{1}{c}\left(x_{1} x_{2}\right)^{m} f\left(x_{1}\right) \equiv x_{1}^{m} f_{2}\left(x_{2}\right) \equiv 0\left(\bmod y_{1}\right)
$$

Proof of Corollary2. It remains to consider the case $|a b c|=1$. If $\Pi_{2 \rho}=1$ and for $2 \leq \sigma \leq \rho+1, x_{\sigma}$ and $y_{\sigma-1}$ are given by (50)-53), then we shall show by backward induction that for $2 \leq \sigma \leq \rho$,

$$
\begin{equation*}
0<y_{\sigma}<x_{\sigma}<y_{\sigma-1} \tag{93}
\end{equation*}
$$

For $\sigma=\rho$ we have, by $50-(53)$,

$$
\begin{aligned}
y_{\rho} & =1+\Pi_{2 \rho}=2 \\
x_{\rho} & =\frac{g_{\rho}\left(y_{\rho}\right)}{x_{\rho+1}}=2^{n}+\Pi_{2 \rho-1} \geq 2^{n}-1>2 \\
y_{\rho-1} & =\frac{f_{\rho}\left(x_{\rho}\right)}{y_{\rho}} \geq \frac{x_{\rho}^{m}+\Pi_{2 \rho-2}}{x_{\rho}-1} \geq \frac{x_{\rho}^{m}-1}{x_{\rho}-1}>x_{\rho}
\end{aligned}
$$

Assuming now that (93) holds for $\sigma \geq 3$ we have

$$
\begin{aligned}
& x_{\sigma-1}=\frac{g_{\sigma-1}\left(y_{\sigma-1}\right)}{x_{\sigma}} \geq \frac{y_{\sigma-1}^{n}+\Pi_{2 \sigma-3}}{y_{\sigma-1}-1}>y_{\sigma-1} \\
& y_{\sigma-2}=\frac{f_{\sigma-1}\left(x_{\sigma-1}\right)}{y_{\sigma-1}} \geq \frac{y_{\sigma-1}^{m}+\Pi_{2 \sigma-1}}{x_{\sigma-1}-1}>x_{\sigma-1}
\end{aligned}
$$

Thus by Lemma 14 , for ρ large enough in terms of m, n, there exist arbitrarily large $x_{1}, x_{2}, y_{1}, y_{2}$ such that $(81)-(82)$ hold. We infer as in the proof of Theorem 2 that 83 holds. If $\Pi_{2 \rho}=-1$ for all large ρ, since the congruence (1) can be multiplied by -1 we may assume that $c=1$ and then the condition $\Pi_{2 \rho}=-1$ for all large ρ implies $a=b=-1, \lambda_{2 \rho}+\mu_{2 \rho} \equiv 1$ $(\bmod 2)$, which in view of symmetry in x and y implies $m \equiv n \equiv 0(\bmod 2)$. Taking $x=1, y \neq 0$ arbitrary, we obtain infinitely many solutions of (1) satisfying $(y, c)=1$.

References

[1] E. S. Barnes, On the Diophantine equation $x^{2}+y^{2}+c=x y z$, J. London Math. Soc. 28 (1953), 242-244.
[2] E. Jacobsthal, Zahlentheoretische Eigenschaften ganzzahliger Polynome, Compos. Math. 6 (1939), 407-427.
[3] W. H. Mills, A method for solving certain Diophantine equations, Proc. Amer. Math. Soc. 5 (1954), 473-475.
[4] L. J. Mordell, The congruence $a x^{3}+b y^{3}+c \equiv 0(\bmod x y)$, and integer solutions of cubic equations in three variables, Acta Math. 88 (1952), 77-83.
[5] L. J. Mordell, Diophantine Equations, Pure Appl. Math. 30, Academic Press, London, 1969.
[6] I. Niven, Review of 4], MR0051852 (14,536f), 1953.
[7] A. M. S. Ramasamy and S. P. Mohanty, On the positive integral solutions of the Diophantine equation $a x^{3}+b y+c-x y z=0$, J. Indian Math. Soc. (N.S.) 62 (1996), 210-214.

A. Schinzel
Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-656 Warszawa, Poland
E-mail: schinzel@impan.pl

Received on 23.5.2014
and in revised form on 10.10.2014

