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1. Introduction

Definition 1. Let n be an integer. A set of m positive integers is called
a Diophantine m-tuple with the property D(n), or simply D(n)-m-tuple, if
the product of any two of them increased by n is a perfect square.

Diophantus was the first to look for such sets in the case n = 1. He
found a set of four positive rational numbers with the above property:{

1
16 ,

33
16 ,

17
4 ,

105
16

}
. Fermat found a first D(1)-quadruple, the set {1, 3, 8, 120}.

Euler was later able to add the fifth positive rational, 777480
8288641 , to Fermat’s

set (see [3], [4, pp. 103–104, 232]). Recently, Gibbs [15] found several ex-
amples of D(n)-sextuples, e.g. {99, 315, 9920, 32768, 44460, 19534284} is a
D(2985984)-sextuple. There is a folklore conjecture that there does not exist
a D(1)-quintuple. The first result supporting this conjecture is due to Baker
and Davenport [1], who proved that Fermat’s set cannot be extended to a
D(1)-quintuple. Dujella [7] proved that there does not exist a D(1)-sextuple
and that there are only finitely many D(1)-quintuples. Considering congru-
ences modulo 8, it is easy to prove that a D(4)-m-tuple can contain at most
two odd numbers. So Dujella’s result implies that there does not exist a
D(4)-8-tuple and that there are only finitely many D(4)-septuples (see [9]).
The author [11, 12] improved this result by proving that there does not exist
a D(4)-sextuple. In the present paper we further improve this result.

For n = 4 it is conjectured that there does not exist a D(4)-quintuple.
Actually, there is even a stronger version of that conjecture.

Conjecture 1 (cf. [9, Conjecture 1]). There does not exist a D(4)-
quintuple. Moreover , if {a, b, c, d} is a D(4)-quadruple such that a < b <
c < d, then

d = a+ b+ c+ 1
2(abc+ rst),
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where r, s, t are positive integers defined by

ab+ 4 = r2, ac+ 4 = s2, bc+ 4 = t2.

If d = a+ b+ c+ 1
2(abc+ rst), then {a, b, c, d} is a D(4)-quadruple. We

will write d+ for this d. We also define d− = a + b + c + 1
2(abc − rst). If

d− 6= 0, the set {a, b, c, d−} is also a D(4)-quadruple, but d− < c.

Definition 2. A D(4)-quadruple {a, b, c, d} such that d > max{a, b, c}
is called regular if d = d+.

We have checked in [11] that all D(4)-quadruples {a, b, c, d} such that
max{a, b, c, d} ≤ 4 · 107 are regular; we use this at several places in this
paper.

Mohanty and Ramasamy [17] were the first to study the nonextendibil-
ity of D(4)-m-tuples. They proved that the D(4)-quadruple {1, 5, 12, 96}
cannot be extended to a D(4)-quintuple. Kedlaya [16] later proved that if
{1, 5, 12, d} is a D(4)-quadruple, then d = 96.

There are some generalizations of this result that support Conjecture 1.
One was given by Dujella and Ramasamy [9] who proved Conjecture 1 for
a parametric family of D(4)-quadruples. They showed that if k and d are
positive integers and

{F2k, 5F2k, 4F2k+2, d}
is a D(4)-quadruple, then d = 4L2kF4k+2, where Fk and Lk are Fibonacci
and Lucas numbers. Another generalization was given by Fujita [14], who
proved that if k ≥ 3 is an integer and {k−2, k+2, 4k, d} is a D(4)-quadruple,
then d = 4k3 − 4k.

Our main result is the following theorem.

Theorem 1. Any D(4)-quintuple contains a regular D(4)-quadruple.

The theorem implies that an irregular D(4)-quadruple cannot be ex-
tended to a quintuple with a larger element. In the proof we use the meth-
ods and results from [7, 11, 12]. We transform the problem of extending
a D(4)-triple {a, b, c} to a quadruple to solving a system of simultaneous
Pellian equations. This reduces to finding the intersection of binary recur-
rence sequences. Here we examine the elements of the sequences with small
indices more precisely than in [12] and obtain much better gap principles for
irregular D(4)-quadruples. Precisely, we are able to prove that if {a, b, c, d}
is an irregular D(4)-quadruple, then d > max{7b11, 1026} except for finitely
many a, b and c. This result, together with the results we have already
proved in [12], will imply the main theorem except in finitely many cases. In
particular, we prove that an irregular D(4)-quadruple cannot be extended
to a quintuple except for finitely many {a, b, c, d}. But for finitely many re-
maining D(4)-triples {a, b, c} we will prove that they can be extended to a
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quadruple in a unique way, using Baker–Davenport reduction. And because
this unique extension yields a regular quadruple, we get a contradiction if
we suppose that {a, b, c, d} is irregular.

Let us mention that recently Fujita [13] has proved the analogous re-
sult for D(1)-m-tuples. The main difference in our proof is that we con-
sider the binary recurrence sequences more carefully, so we obtain signifi-
cantly improved gap principles. Doing that we do not need to define stan-
dard triples as in the case n = 1. Fujita’s result implies that an irregu-
lar D(4)-quadruple with even elements cannot be extended with a larger
fifth even element. Results and methods for n = 1 and n = 4 are anal-
ogous, but they cannot be transferred to n = l2 in general. E.g. unique-
ness of extension does not hold for n = 16. We know that the D(16)-triple
{1, 20, 33} has exactly two extensions to a D(16)-quadruple: {1, 20, 33, 105}
and {1, 20, 33, 273} (see [10]). And there are also D(n)-quintuples for some n,
since the sets {1, 33, 105, 320, 18240} and {5, 21, 64, 285, 6720} are D(256)-
quintuples (see [5]).

2. System of Pellian equations. Let {a, b, c} be a D(4)-triple such
that a < b < c. Furthermore, let r, s, t be positive integers defined by

(1) ab+ 4 = r2, ac+ 4 = s2, bc+ 4 = t2.

Assume that we can extend {a, b, c} to an irregular D(4)-quadruple
{a, b, c, d}. Then there exist positive integers x, y, z satisfying

ad+ 4 = x2, bd+ 4 = y2, cd+ 4 = z2.

If we eliminate d we get the system of simultaneous Pellian equations

az2 − cx2 = 4(a− c),(2)
bz2 − cy2 = 4(b− c).(3)

We describe the sets of solutions of (2) and (3) in the following lemma.

Lemma 1 (cf. [9, Lemma 2], [11, Lemma 1]). There exist positive integers
i0, j0 and integers z(i)

0 , x
(i)
0 , z

(j)
1 , y

(j)
1 , i = 1, . . . , i0, j = 1, . . . , j0, with the

following properties:

(i) (z(i)
0 , x

(i)
0 ) and (z(j)

1 , y
(j)
1 ) are solutions of (2) and (3).

(ii) z
(i)
0 , x

(i)
0 , z

(j)
1 , y

(j)
1 satisfy the following inequalities

(4) 1 ≤ x(i)
0 ≤

√
a(c− a)
s− 2

<
√
s+ 2 < 1.236 4

√
ac,

(5) |z(i)
0 | ≤

√
(s− 2)(c− a)

a
<

√
c
√
c√
a
< 0.468c,
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(6) 1 ≤ y(j)
1 ≤

√
b(c− b)
t− 2

<
√
t+ 2 < 1.122 4

√
bc,

(7) |z(j)
1 | ≤

√
(t− 2)(c− b)

b
<

√
c
√
c√
b
< 0.360c.

(iii) If (z, x) and (z, y) are integer solutions of (2) and (3), then there
exist i ∈ {1, . . . , i0}, j ∈ {1, . . . , j0} and integers m,n ≥ 0 such that

z
√
a+ x

√
c = (z(i)

0

√
a+ x

(i)
0

√
c)
(
s+
√
ac

2

)m

,(8)

z
√
b+ y

√
c = (z(j)

1

√
b+ y

(j)
1

√
c)
(
t+
√
bc

2

)n

.(9)

Let (x, y, z) be a solution of the system (2)–(3). Then from (8) we get
z = v

(i)
m for some i and m ≥ 0, where

(10) v
(i)
0 = z

(i)
0 , v

(i)
1 = 1

2(sz(i)
0 + cx

(i)
0 ), v

(i)
m+2 = sv

(i)
m+1 − v

(i)
m .

From (9) we conclude that z = w
(j)
n for some j and n ≥ 0, where

(11) w
(j)
0 = z

(j)
1 , w

(j)
1 = 1

2(tz(j)
1 + cy

(j)
1 ), w

(j)
n+2 = tw

(j)
n+1 − w

(j)
n .

For simplicity, we will omit the indices i and j from now on. Because we
are interested in D(4)-quadruples that are not regular, we can take m,n > 2.
This follows from [11, Lemma 6].

3. Gap principles. In this section we will significantly improve the gap
principles from [12]. First we need some lemmata proved in [11, 12].

Lemma 2 (cf. [11, Lemma 9]).

(i) If the equation v2m = w2n has a solution, then z0 = z1. Moreover ,
|z0| = 2, or |z0| = 1

2(cr − st), or |z0| < 1.608a−5/14c9/14.
(ii) If the equation v2m+1 = w2n has a solution, then |z0| = t, |z1| =

1
2(cr − st), z0z1 < 0.

(iii) If the equation v2m = w2n+1 has a solution, then |z1| = s, |z0| =
1
2(cr − st), z0z1 < 0.

(iv) If the equation v2m+1 = w2n+1 has a solution, then |z0| = t, |z1| = s,
z0z1 > 0.

Lemma 3. If z = vm = wn, then 5 ≤ m ≤ 2n + 1, or m = n = 4 and
|z0| < 1.608a−5/14c9/14.

Proof. See the proofs of [11, Lemma 5] and [12, Lemma 5].

We are now ready to prove the main lemma that gives the desired gap
principle. Let us mention that here we come upon some equations vm = wn

that are not as trivially solvable as in [11, 12], but we succeed in solving
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them by considering congruence relations more carefully and checking for
finitely many a, b and c if we get any new D(4)-triple for which we did not
prove the uniqueness of extension to a quadruple. For that we also need one
more useful lemma.

Lemma 4 (cf. [6, Lemma 3]). If {a, b, c} is a D(4)-triple such that a <
b < c, then there exist positive integers e, x′, y′, z′ such that

ae+ 16 = (x′)2, be+ 16 = (y′)2, ce+ 16 = (z′)2

and
c = a+ b+ 1

4e+ 1
8(abe+ rx′y′).

From this lemma we can conclude that c = a + b + 2r or c > 1
4aeb, for

some positive integer e satisfying the equalities in the lemma.

Lemma 5. Let z = vm = wn. Then at least one of the following two
statements is valid :

(i) n ≥ 7,
(ii) n ≥ 4 and c > 0.036b3.5.

Proof. Let us mention that we get (ii) when |z0| < 1.608a−5/14c9/14, as
in [12]. So we can consider only the cases from Lemma 2 when we know the
exact values of fundamental solutions. Because n ≥ 3, we have to consider
the cases n = 3, 4, 5, 6, and we succeed in obtaining a contradiction in all
of them. Also in [12] we have proved, using Baker–Davenport reduction,
uniqueness of extension of D(4)-triples {a, b, c} when ab2c < 107. In doing
that, we have used slightly worse constants than needed. So in the proof of
the lemma we may assume c ≥ 80, ac ≥ 96, and bc ≥ 6325.

Case 1. Let first w2n+1 = v2m+1. Then |z0| = t, |z1| = s and z0z1 > 0.
If we take z0 = t, z1 = s, then x0 = y1 = r and

w3 = 1
2bc

2r + 1
2bcst+ 3

2cr + 1
2st,

w5 = 1
2b

2c3r + 1
2b

2c2st+ 5
2bc

2r + 3
2bcst+ 5

2cr + 1
2st,

v5 = 1
2a

2c3r + 1
2a

2c2st+ 5
2ac

2r + 3
2acst+ 5

2cr + 1
2st,

v7 = 1
2a

3c4r + 1
2a

3c3st+ 7
2a

2c3r + 5
2a

2c2st+ 7ac2r + 3acst+ 7
2cr + 1

2st.

Now from b < a2c, we get w3 < v5 < v7. Furthermore, if b2 < a3c, then we
deduce v5 < w5 < v7 < v9 < v11. And if b2 > a3c, from the estimate for
z0 = t we get

bc < t2 <
c
√
c√
a
,

which implies a2 < 1, a contradiction.
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If z0 = −t, z1 = −s, then also x0 = y1 = r and

w3 = 1
2bc

2r − 1
2bcst+ 3

2cr −
1
2st,

w5 = 1
2b

2c3r − 1
2b

2c2st+ 5
2bc

2r − 3
2bcst+ 5

2cr −
1
2st,

v5 = 1
2a

2c3r − 1
2a

2c2st+ 5
2ac

2r − 3
2acst+ 5

2cr −
1
2st,

v7 = 1
2a

3c4r − 1
2a

3c3st+ 7
2a

2c3r − 5
2a

2c2st+ 7ac2r − 3acst+ 7
2cr −

1
2st.

Now we get a contradiction in the same way as in the last case, we only
have to take into account that cr > st.

Case 2. Assume now w2n+1 = v2m. Then |z0| = 1
2(cr− st), |z1| = s and

z0z1 < 0.
Let us first take z1 = s, z0 = 1

2(st − cr). Then x0 = 1
2(rs − at), y1 = r

and
w3 = 1

2bc
2r + 1

2bcst+ 3
2cr + 1

2st,

w5 = 1
2b

2c3r + 1
2b

2c2st+ 5
2bc

2r + 3
2bcst+ 5

2cr + 1
2st,

v6 = 1
2a

2c3r + 1
2a

2c2st+ 5
2ac

2r + 3
2acst+ 5

2cr + 1
2st,

v8 = 1
2a

3c4r + 1
2a

3c3st+ 7
2a

2c3r + 5
2a

2c2st+ 7ac2r + 3acst+ 7
2cr + 1

2st,

v10 = 1
2a

4c5r + 1
2a

4c4st+ 9
2a

3c4r + 7
2a

3c3st+ 27
2 a

2c3r

+ 15
2 a

2c2st+ 15ac2r + 5acst+ 9
2cr + 1

2st.

Now obviously w3 < v6. Moreover, v6 < w5 < v10, so the only possibility
here is w5 = v8 and only if b2 > a3c. But from w1 = v2 = 1

2(cr + st), we
have the estimates

(t− 1)4v2 < w5 = v8 < v2s
6,

which implies 0.95b2c2 < 1.1303a3c3, i.e. b2 < 1.19a3c. Furthermore, we get
this case when {a, b, d−, c} is a proper regular quadruple (see the proof of
[11, Lemma 9]). So we can deduce 0 < d− < b. Otherwise we would get
c > b2, a contradiction. Now, w5 = v8 implies

3
2bst− 3ast ≡ r (mod c).

If we multiply both sides by st we get

24b− 48a ≡ rst (mod c).

Now it can be checked that the left side of this congruence is less than c.
We see that a problem can only occur for small a and d−, because we know
c > b+ ad−b. But it is easy to check by computer that triples which satisfy
c < 24b and a3c < b2 < 1.19a3c do not exist. Here we use the fact that
c > 1

4aeb, because otherwise d− = 0, and see what is happening for ae ≤ 96,
where a and e satisfy the conditions from Lemma 4. From 0 < d− < b, we
conclude

2a+ 2c+ abc < rst < 2a+ 2b+ 2c+ abc.
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But then 24b−48a = α for some α with 2a < α < 2a+2b. We also know that
b > a

√
c > 8.94a, which gives us a contradiction because then 24b−48a > α.

The case z1 = −s, z0 = 1
2(cr − st) can be proven in exactly the same

way.

Case 3. Let now w2n = v2m+1. Then |z0| = t, |z1| = 1
2(cr − st) and

z0z1 < 0. But this case is exactly the same as the previous one. We get
similar congruences. This case also comes from the case when {a, b, d−, c} is
a proper regular quadruple.

Case 4. Let us now assume w2n = v2m. The case |z0| = |z1| = 1
2(cr−st)

is the same as the previous two cases, so we can take |z0| = |z1| = 2.
Let first z0 = z1 = 2. Then it is easy to see that v1 < w1 < 2v1.

From (t− 1)3v1 < w4 < 2v1t3, we conclude that the only possible equation
for w4 that might have a solution is w4 = v6, because v8 > (s − 1)7v1 >
2t3v1 > w4. In the case w4 = v6, we have

(t− 1)3v1 < w4 < 2v1t3, (s− 1)5v1 < v6 < s5v1,

which after short computations gives

0.3816a2.5c < b1.5 < 1.1503a2.5c.

Furthermore, we have 4b+ 2t ≡ 9a+ 3s (mod c) (see [11, Lemma 12]). We
can also see that b > 11a. Now we get a contradiction if this congruence is
an equality, because 4b+ 2t > 9a+ 3s. To prove that, it is enough to show
4b+ 2t < c, i.e. c > 12b. But if c 6= a+ b+ 2r, we have c > 1

4aeb, where e is
the positive integer from Lemma 4. So we check if there exist triples {a, b, c}
such that ae < 48, b < c < 12b, and

0.3816a2.5c < b1.5 < 1.1503a2.5c.

We get only one such triple, namely {1, 12, 96}, but for this triple we have
already used Baker–Davenport reduction to prove uniqueness of extension.

If c = a+b+2r, we get s = a+r and t = b+r. Then v1 = 2a+b+3r and
w1 = a+ 2b+ 3r. Here we have somewhat better estimates v1 < w1 < 1.5v1.
So w4 = v6 implies

0.5088a2.5c < b1.5 < 1.1503a2.5c

and 4b+ 2t ≡ 9a+ 3s (mod c). From c > b we get b > 0.5088a5 and b > 14a,
if a = 1. Obviously the left side of the congruence is larger, so we conclude

4b+ 2(r + b) = 9a+ 3(r + a) +A(a+ b+ 2r)

for some integer 0 < A < 6. This always yields a contradiction, because
the left hand side of the equality is larger. To see this, it is enough to show
17a+ 11r < b, because then we would have

(12 +A)a+ (3 + 2A)r+Ab ≤ 17a+ 11r+ 2r+Ab < (1 +A)b+ 2r ≤ 6b+ 2r.
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If a ≥ 3, we have b > 41.21a, i.e. 17a + 11r < b. If a = 1, 2 we can repeat
the procedure already used. Namely, we have exact values for a, an estimate
for b if b ≤ 17a+ 11r, and c = a+ b+ 2r. Checking with a short computer
program does not give us any new triple.

The case when n = 6 is completely analogous.
The case when z0 = z1 = −2 gives us a contradiction in the same way,

with slightly different congruences.

Proposition 1. If {a, b, c, d} is an irregular D(4)-quadruple such that
a < b < c < d, then at least one of the following two statements is valid :

(i) d ≥ 0.173c6.5a5.5.
(ii) d ≥ 0.087c3.5b2.5 and c > 0.036b3.5.

Proof. From Lemma 5 we have two possibilities. First, if n ≥ 7, then
from the proof of [11, Lemma 5],

z ≥ w7 > (t− 1)6
c

2.224 4
√
bc
> 0.416b2.75c3.75,

which implies

d =
z2 − 4
c

> 0.173c6.5b5.5.

The second statement can be proven the same way (see [12, Proposition 1]).

4. Any D(4)-quintuple contains a regular quadruple. We have
prepared almost everything for the proof of the main theorem; we only need
the following lemma.

Lemma 6 (cf. [12, Lemma 8]). Let {a, b, c, d} be a D(4)-quadruple such
that a < b < c < d and c > max{7b11, 1026}. Then d = d+.

In the proof of the lemma we have used congruence relations together
with Bennett’s theorem [2, Theorem 3.2] on simultaneous approximation of
square roots that are close to 1.

Proof of Theorem 1. Suppose that an irregularD(4)-quadruple {a, b, c, d}
can be extended to a D(4)-quintuple {a, b, c, d, e}, where a < b < c < d < e.
From Proposition 1 we have two possibilities. First let

d ≥ 0.087c3.5b2.5, c > 0.036b3.5.

Because this case comes from the irregular quadruple {a, b, d0, c} we know
that c > 4 · 107, which implies d > 1026. Furthermore, d > 7b11 for b > 71.
But if b ≤ 71 we have c > b4, which again implies d > 7b11.

Let now
d > 0.173c6.5b5.5.

It is easy to see d > 7b11. Moreover, from d > 0.173c6b6, we deduce that
d > 1026 if bc > 28861. We can now find all triples {a, b, c} such that
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bc ≤ 28861 and ab2c > 107. We find 58 of them, and for each we can
apply Baker–Davenport reduction using Lemma 5 from [8]. We have done
this in Mathematica 5.2. In all cases, in at most four steps of reduction
we get m ≤ 3, which gives us a contradiction. The smallest such triple was
{4, 143, 195}, and the largest {81, 85, 332}. We needed less than half an hour
to finish that with Mathematica. We see that if d > 1026 is not satisfied then
we cannot extend the triple {a, b, c} to an irregular quadruple at all, and we
do not consider those cases.

So we have proved d > max{7b11, 1026}. Then we can apply Lemma 6 to
a quadruple {a, b, d, e} and infer that e = e+. But then e < d(ab+ 4) < d3.
On the other hand, {b, c, d, e} is not a regular D(4)-quadruple. Then the
gap principles from Propositon 1 imply e > d3, a contradiction.
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