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1. Introduction. Let V be the nonsingular del Pezzo surface of degree
four defined by the zero locus of the equations

0 = x1x2 − x3x4,

0 = x2
1 + x2

2 + x2
3 − x2

4 − 2x2
5.

Let U ⊆ V be formed by deleting the lines from V . Given a rational point
x = [x1, . . . , x5] ∈ P4(Q) with x1, . . . , x5 ∈ Z and gcd(x1, . . . , x5) = 1, we
define the height of x to be ‖x‖ = max(|x1|, . . . , |x5|). Given B ≥ 1, the
density of rational points on U is specified by the cardinality

NU (B) = #{x ∈ U ∩ P4(Q) : ‖x‖ ≤ B}.
Manin’s conjecture, proposed in [4] for Fano varieties in general, predicts
that if the set of rational points on V is nonempty, then

NU (B) = cVB(logB)%−1(1 + o(1))

as B →∞, where cV is a positive constant and % is the rank of the Picard
group of V . Our principal result is the following:

Theorem 1.1. B(logB)%−1 � NU (B)� B(logB)%−1.

An overview of progress in proving Manin’s conjecture for del Pezzo
surfaces can be found in [2]. In general, singular del Pezzo surfaces of low
degree have proven more tractable than their nonsingular counterparts.

For nonsingular quartic del Pezzo surfaces, the best result until now is
due to Salberger, who proved NU (B) � B1+ε for any ε > 0, provided V
contains a rational conic; this work was presented at the 2001 Budapest con-
ference Higher dimensional varieties and rational points. Our result refines
Salberger’s.
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Both bounds comprising Theorem 1.1 involve fibering V into a family
of conics; this allows us to reduce the problem of estimating NU (B) to the
problem of estimating the density of certain rational points on these conics.
The same idea is central to Salberger’s result; our improved bound stems
from tighter control on the uniformity of bounds for rational points on the
conics. The method appears to be applicable in a far more general setting,
and we intend to explore this in a future paper.

2. The constant %. We begin by recounting some geometry of quartic
del Pezzo surfaces. We refer the reader to [5] for a comprehensive exposi-
tion.

In general, a nonsingular quartic del Pezzo surface X contains 16 lines,
each of which intersects exactly five others. Given any subset of five pairwise
skew lines L1, . . . , L5, X is isomorphic to P2 blown up along five points
P1, . . . , P5 in general position such that L1, . . . , L5 are the preimages of those
points under the blowup. Moreover, there exists a unique line L0 intersecting
L1, . . . , L5; L0 is the preimage of the unique conic on P2 through P1, . . . , P5.

Let K0, . . . ,K6 denote the linear equivalence classes of L0, . . . , L6, re-
spectively, and K denote the class of the preimage of a line on P2. Then

(2.1) K0 ∼ 2K − (K1 + · · ·+K5).

The geometric Picard group of X—that is, the Picard group of X defined
over an extension E of minimal degree over Q such that all the lines on X
are defined over E—has a basis {K,K1, . . . ,K5}. The Picard group of X
is that part of the geometric Picard group invariant under the action of
Gal(E/Q).

The 16 lines on V have the following parametrizations:

L1 : [a, b, a, b, a], L2 : [a, b, a, b,−a],

L3 : [a, b,−a,−b, a], L4 : [a, b,−a,−b,−a],

L5 : [a, b, b, a, b], L6 : [a, b, b, a,−b],

L7 : [a, b,−b,−a, b], L8 : [a, b,−b,−a,−b],

L9 : [a, b, ia,−ib, b], L10 : [a, b, ia,−ib,−b],

L11 : [a, b,−ia, ib, b], L12 : [a, b,−ia, ib,−b],

L13 : [a, b,−ib, ia, a], L14 : [a, b,−ib, ia,−a],

L15 : [a, b, ib,−ia, a], L16 : [a, b, ib,−ia,−a].

Note that all the lines are defined over Q(i). Let K0, . . . ,K5 denote the
classes of L5, L1, L4, L6, L9 and L11, respectively. Note that the latter five
lines are pairwise skew, and that they are intersected by L5. Let K denote
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the class of the preimage of a line on P2. In view of (2.1), since K0, K1,
K2, K3 and K4 +K5 are invariant under the action of Gal(Q(i)/Q), so too
is K; and since {K,K1, . . . ,K5}, being a basis, is a linearly independent
set, the set {K,K1,K2,K3,K4 +K5} is also linearly independent. Therefore
the Picard group of V has rank at least 5. Since not all the lines on V
are invariant under the action of Gal(Q(i)/Q), we conclude that the Picard
group of V has rank exactly 5.

3. The lower bound

3.1. Preliminaries. Let B > 0 be given and

P = {(r, s) : s is even, gcd(r, s) = 1 and 1 ≤ r, s ≤ B1/100}.

Given (r, s) ∈ P , the first quadric of V is satisfied by taking x1 = rX1,
x2 = sX2, x3 = sX1 and x4 = rX2; and setting x5 = X3, the second
quadric of V is a ternary quadric 0 = Qr,s(X), where

Qr,s(X) = (r2 + s2)X2
1 − (r2 − s2)X2

2 − 2X2
3 .

If gcd(X1, X2, X3) = 1, then ‖x‖ ≤ B is implied by the bounds

(3.1) |X1|, |X2| ≤
B

max(r, s)
, |X3| ≤ B.

Let

Nr,s = #{X : 0 = Qr,s(X), gcd(X1, X2, X3) = 1 and (3.1) holds},

and let Pi denote the set of pairs (r, s) ∈ P in the dyadic ranges

2i−1 = Ri < r ≤ 2Ri = 2i, 2i = Si < s ≤ 2Si = 2i+1.

(Note that, given (r, s) ∈ Pi for any i, we have r < s.) Then

(3.2) NU (B)�
∑
i

∑
(r,s)∈Pi

Nr,s,

where the i are summed over those values such that the sets Pi are nonempty.

3.2. The cardinality Nr,s. Let (r, s) ∈ Pi be given. We estimate Nr,s by
parametrizing a subset of rational points on the quadric 0 = Qr,s(X).

We begin by observing that [1, 1, s] is a point on 0 = Qr,s(X). We fix
a nonzero integer constant c, and consider all points on the quadric of the
form

X = [c+ x+ 2sy, c+ x, cs],

where (x, y) is an integer pair satisfying the coprimality condition

(3.3) gcd(x, 2sy) = 1.
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Note that distinct pairs (x, y) parametrize distinct points X. We proceed to
eliminate the constant c. Substituting X back into 0 = Qr,s(X), we get

0 = (r2 + s2)((x+ 2sy)2 + 2c(x+ 2sy))− (r2 − s2)(x2 + 2cx).

We rearrange this to get

cfr,s(x, y) = −(r2 + s2)(x+ 2sy)2 + (r2 − s2)x2,

where
fr,s(x, y) = 2(r2 + s2)(x+ 2sy)− 2x(r2 − s2).

We simplify X by multiplying each of its components by fr,s(x, y) and then
dividing out by s2, getting X = [f1,r,s(x, y), f2,r,s(x, y), f3,r,s(x, y)], where

f1,r,s(x, y) = x2 + 4sxy + 2(r2 + s2)y2,

f2,r,s(x, y) = x2 − 2(r2 + s2)y2,

f3,r,s(x, y) =−sx2 − 2(r2 + s2)xy − 2s(r2 + s2)y2.

Now given an integer pair (x, y) satisfying (3.3), the forms f1,r,s(x, y),
f2,r,s(x, y) and f3,r,s(x, y) may have a nontrivial common divisor:

Lemma 3.1. Let (x, y) be an integer pair satisfying (3.3). Then the great-
est common divisor of f1,r,s(x, y), f2,r,s(x, y) and f3,r,s(x, y) is equal to

gcd(x, r2 + s2) gcd(x+ 2sy, r2 − s2).

Proof. Note that

f1,r,s(x, y) + f2,r,s(x, y) = 2x(x+ 2sy).

Now 2, x and x + 2sy are pairwise coprime; hence the greatest common
divisor of f1,r,s(x, y), f2,r,s(x, y) and f3,r,s(x, y) is equal to the product of
the factors gcd(2, f2,r,s(x, y), f3,r,s(x, y)), gcd(x, f2,r,s(x, y), f3,r,s(x, y)) and
gcd(x+ 2sy, f2,r,s(x, y), f3,r,s(x, y)). We denote these factors F1, F2 and F3,
respectively, and simplify each in turn. For the first, (3.3) implies that x,
hence f2,r,s(x, y), is odd; thus F1 = 1. For the second, we again apply (3.3),
getting

F2 = gcd(x, 2(r2 + s2)y2, 2s(r2 + s2)y2) = gcd(x, r2 + s2).

For the third, note that f2,r,s(x, y) = (x+ 2sy)(x− 2sy)− 2(r2 − s2)y2 and
f3,r,s(x, y) = −(x+ 2sy)(sx+ 2r2y) + 2s(r2 − s2)y2; hence

F3 = gcd(x+ 2sy, 2(r2 − s2)y2, 2s(r2 − s2)y2) = gcd(x+ 2sy, r2 − s2),

which completes the proof.

Suppose we have gcd(x, r2 + s2) gcd(x+ 2sy, r2− s2) = n. Then, given a
point X = [f1,r,s(x, y), f2,r,s(x, y), f3,r,s(x, y)], the bounds (3.1) are implied
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by the bounds

|f1,r,s(x, y)|
n

,
|f2,r,s(x, y)|

n
≤ B

s
,
|f3,r,s(x, y)|

n
≤ B,

which are themselves implied by the bounds

1 ≤ x ≤ X =
(
Bn

4s

)1/2

, |y| ≤ Y =
(
Bn

16s3

)1/2

.

For convenience, we let z = x + 2sy, which allows us to replace the above
bounds with 1 ≤ x, z ≤ X.

We estimate Nr,s by indexing the pairs (x, z) contributing to Nr,s ac-
cording to the greatest common divisor of the components of X. Let

Nn,r,s = #
{

(x, z) :
gcd(x, sz) = 1, 2s |x− z, 1 ≤ x, z ≤ X,
gcd(x, r2 + s2) gcd(z, r2 − s2) = n

}
.

Then
Nr,s ≥

∑
n≥1

Nn,r,s.

The most cumbersome condition on Nn,r,s is the last. In order to keep
track of it, we redefine Nn,r,s in terms of positive integer pairs (a, b), where
gcd(x, r2 + s2) = a, gcd(z, r2 − s2) = b and ab = n. We write x = au,
r2 + s2 = ac, z = bv and r2 − s2 = bd, where

(3.4) gcd(u, c) = 1 and gcd(v, d) = 1.

The last condition on Nn,r,s is implicit in these definitions. The coprimality
condition gcd(x, sz) = 1 is implied by

(3.5) gcd(a, v) = gcd(u, b) = 1 = gcd(u, v) = 1 = gcd(u, s) = 1;

the divisibility condition 2s |x− z is simply restated as

(3.6) 2s | au− bv;

and the bounds 1 ≤ x, z ≤ X are implied by the bounds

(3.7) 1 ≤ u ≤ U =
(
Bb

4as

)1/2

, 1 ≤ v ≤ V =
(
Ba

4bs

)1/2

.

Thus, defining

Na,b,r,s = #{(u, v) : (3.4)–(3.7) hold},

we have

(3.8) Nr,s ≥
∑

a|r2+s2

∑
b|r2−s2

Na,b,r,s.



182 F.-S. Leung

3.3. The cardinality Na,b,r,s. Let (r, s) ∈ Pi, a | r2 + s2 and b | r2 − s2 be
given. We estimate Na,b,r,s by fixing u and then estimating the number of v
such that (u, v) contributes to Na,b,r,s. Given u such that gcd(u, s) = 1, let

Nu,a,b,r,s = #
{
v :

gcd(v, d) = gcd(v, a) = gcd(v, u) = 1,
2s | au− bv, 1 ≤ v ≤ V

}
.

Then
Na,b,r,s =

∑
u

Nu,a,b,r,s,

where the sum is taken over a suitable set of u. We shall define this set
below.

We use the Möbius function to pick out the coprimality conditions on
Nu,a,b,r,s. Let

N ′u,a,b,r,s(n1, n2, n3) = #{v : lcm(n1, n2, n3) | v, 2s | au− bv, 1 ≤ v ≤ V }.

Then

Nu,a,b,r,s =
∑
n1|d

∑
n2|a

∑
n3|u

µ(n1)µ(n2)µ(n3)N ′u,a,b,r,s(n1, n2, n3).

Let n1, n2 and n3 be in the range of summation above. Then gcd(2s, n1) = 1,
since n1 | r2 − s2 and gcd(2s, r2 − s2) = 1; gcd(2s, n2) = 1, since n2 | r2 + s2

and gcd(2s, r2 + s2) = 1; and gcd(2s, n3) = 1, since gcd(u, s) = 1 and s is
even. Moreover, gcd(2s, b) = 1, since b | r2 − s2. Thus

N ′u,a,b,r,s(n1, n2, n3) =
V

2s · lcm(n1, n2, n3)
+O(1),

and

Nu,a,b,r,s =
∑
n1|d

∑
n2|a

∑
n3|u

µ(n1)µ(n2)µ(n3)
(

V

2s · lcm(n1, n2, n3)
+O(1)

)
.

We estimate Na,b,r,s by summing Nu,a,b,r,s over the set

Pa,b,r,s(n3) = {u : gcd(u, c) = gcd(u, b) = gcd(u, s) = 1, n3 |u, 1 ≤ u ≤ U};

that is, Na,b,r,s is equal to∑
n1|d

∑
n2|a

∑
n3≤U

∑
u∈Pa,b,r,s(n3)

µ(n1)µ(n2)µ(n3)
(

V

2s · lcm(n1, n2, n3)
+O(1)

)
.

Since the cardinality of Pa,b,r,s(n3) has an upper bound U/n3, the contribu-
tion to Na,b,r,s of the error term above is of order at most

U
∑
n1|d

∑
n2|a

∑
n3≤U

1
n3
≤ U(RiSiU)ε
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for any ε > 0, provided i and B are sufficiently large; that is,

Na,b,r,s =
V

2s

∑
n1|d

∑
n2|a

∑
n3≤U

∑
u∈Pa,b,r,s(n3)

µ(n1)µ(n2)µ(n3)
lcm(n1, n2, n3)

+O(U(RiSiU)ε).

We now estimate the cardinality of Pa,b,r,s(n3) more precisely. As in
the case of Nu,a,b,r,s, we use the Möbius function to pick out coprimality
conditions on the set. Let

P ′a,b,r,s(n3,m1,m2,m3) = {u : lcm(n3,m1,m2,m3) |u, 1 ≤ u ≤ U}.

Then

#Pa,b,r,s =
∑
m1|c

∑
m2|b

∑
m3|s

µ(m1)µ(m2)µ(m3)#P ′a,b,r,s(n3,m1,m2,m3).

Now

#P ′a,b,r,s(n3,m1,m2,m3) =
U

lcm(n3,m1,m2,m3)
+O(1).

The contribution to Na,b,r,s of the error term is of order at most

V

s

∑
n1|d

∑
n2|a

∑
n3≤U

∑
m1|c

∑
m2|b

∑
m3|s

1
lcm(n1, n2, n3)

≤ V

s
(RiSiU)ε

for any ε > 0, provided i and B are sufficiently large; that is, Na,b,r,s equals

UV

2s

∑
n1|d

∑
n2|a

∑
n3≤U

∑
m1|c

∑
m2|b

∑
m3|s

µ(n1)µ(n2)µ(n3)µ(m1)µ(m2)µ(m3)
lcm(n1, n2, n3) · lcm(n3,m1,m2,m3)

+O

((
U +

V

s

)
(RiSiU)ε

)
.

Finally, we estimate the main term above. Let Ta,b,r,s denote this term,
and T ′a,b,r,s denote Ta,b,r,s but with the difference that, in T ′a,b,r,s, we sum
over all positive integers n3 rather than over the range n3 ≤ U . Now the
difference between T ′a,b,r,s and Ta,b,r,s is of order at most

UV

s

∑
n1|d

∑
n2|a

∑
n3>U

∑
m1|c

∑
m2|b

∑
m3|s

1
n2

3

≤ UV

s
(RiSi)ε

∑
n3>U

1
n2

3

≤ V

s
(RiSi)ε

for any ε > 0, provided i and B are sufficiently large; that is,

Na,b,r,s = T ′a,b,r,s +O

((
U +

V

s

)
(RiSiU)ε

)
.

In order to estimate T ′a,b,r,s, we define the condition

(3.9) n1 | d, n2 | a, m1 | c, m2 | b and m3 | s,
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and the function fa,b,r,s(n1, n2, n3,m1,m2,m3) to be equal to{
µ(n1)µ(n2)µ(n3)µ(m1)µ(m2)µ(m3)
lcm(n1, n2, n3) · lcm(n3,m1,m2,m3)

if (3.9) holds,

0 otherwise.
Then

T ′a,b,r,s =
UV

2s

∑
ni,mi≥1

for 1 ≤ i ≤ 3

fa,b,r,s(n1, n2, n3,m1,m2,m3).

Because fa,b,r,s is multiplicative and we have∑
ni,mi≥1

for 1 ≤ i ≤ 3

|fa,b,r,s(n1, n2, n3,m1,m2,m3)| ≤
∑
n1|d

∑
n2|a

∑
m1|c

∑
m2|b

∑
m3|2s

∑
n3≥1

1
n2

3

,

which converges, we may write

T ′a,b,r,s =
UV

2s

∏
p

fp,a,b,r,s,

where the product is taken over all primes p, and the local factors fp,a,b,r,s
are defined by

fp,a,b,r,s =
∑

ei,e
′
i∈{0,1}

for 1 ≤ i ≤ 3

fa,b,r,s(pe1 , pe2 , pe3 , pe
′
1 , pe

′
2 , pe

′
3).

We evaluate fp,a,b,r,s directly, in three cases. If p does not divide any element
in the set {a, b, c, d, s}, then fp,a,b,r,s = 1 − p−2; if p divides exactly one
element in the set {a, b, c, d, s}, then fp,a,b,r,s = 1 − p−1; and if p divides
exactly two elements in the set {a, b, c, d, s}—that is, either p | a and p | c, or
p | b and p | d—then fp,a,b,r,s = (1− p−1)2. Hence

T ′a,b,r,s ≥
UV

2s

∏
p-s∆r,s

(
1− 1

p2

)∏
p|s

(
1− 1

p

) ∏
p|∆r,s

(
1− 1

p

)2

� UV

s

∏
p|s

(
1− 1

p

) ∏
p|∆r,s

(
1− 1

p

)2

,

where ∆r,s denotes |r4 − s4|, and the relation � does not depend on our
choice of a, b, r or s. (For the remainder of this section we assume that all
relations � are thus independent.) Thus

Na,b,r,s �
UV

s

∏
p|s

(
1− 1

p

) ∏
p|∆r,s

(
1− 1

p

)2

+O

((
U +

V

s

)
(RiSiU)ε

)
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for any ε > 0, provided i and B are sufficiently large. We conclude that

(3.10) Na,b,r,s �
B

s2

∏
p|s

(
1− 1

p

) ∏
p|∆r,s

(
1− 1

p

)2

.

3.4. The cardinality NU (B). For convenience we define the multiplica-
tive function

f(n) =
∏
p|n

(
1− 1

p

)
for any n ∈ N, with f(1) = 1. With this notation, and in view of the bounds
(3.2), (3.8) and (3.10), we have

NU (B)� B
∑
i

1
S2
i

∑
(r,s)∈Pi

∑
a|r2+s2

b|r2−s2

f(s)f(∆r,s)2

≥ B
∑
i

1
S2
i

∑
(r,s)∈Pi

d(∆r,s)f(s)f(∆r,s)2,

where we sum over those i such that the Pi are nonempty. We may restrict
the range of summation on the right-hand side above without invalidating
the bound, and it will be useful to impose the condition that, for any pair
(r, s) in that range of summation, s is not only even but divisible by 6; that
is,

(3.11) NU (B)� B
∑
i

1
S2
i

∑
Si<s≤2Si

6|s

f(s)
∑

Ri<r≤2Ri
gcd(r,s)=1

d(∆r,s)f(∆r,s)2.

We estimate the inner sum on the right-hand side of (3.11). Let s be in
the range of summation. By the Möbius inversion formula, we have

d(n)f(n)2 =
∑
m|n

f ′(m)

for any n ∈ N if, and only if,

f ′(n) =
∑
m|n

µ

(
n

m

)
d(m)f(m)2

for any n ∈ N. Now f ′ is multiplicative, and given a prime power pe with
e ≥ 1, we have

f ′(pe) =
{

2(1− 1/p)2 − 1 if e = 1,
(1− 1/p)2 otherwise;

that is, f ′(pe) > 0 for any e ∈ N provided p ≥ 5. No primes smaller than 5
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divide ∆r,s, since 2 and 3 both divide s; hence

d(∆r,s)f(∆r,s)2 =
∑
m|∆r,s

f ′(m) ≥
∑
m|∆r,s

m≤R1/2
i

f ′(m),

where f ′(m) is nonnegative over the range of summation. (It will shortly
become clear why we impose a bound on m.) Thus∑

Ri<r≤2Ri
gcd(r,s)=1

d(∆r,s)f(∆r,s)2 ≥
∑

Ri<r≤2Ri
gcd(r,s)=1

∑
m|∆r,s

m≤R1/2
i

f ′(m).

We use the Möbius function to pick out the coprimality condition on the
right-hand side. As an intermediate step, we define

Nm,s = #{r : Ri < r ≤ 2Ri, gcd(r, s) = 1, m |∆r,s}.
Then ∑

Ri<r≤2Ri
gcd(r,s)=1

d(∆r,s)f(∆r,s)2 ≥
∑

m≤R1/2
i

gcd(m,s)=1

f ′(m)Nm,s.

We impose the condition that gcd(m, s) = 1 on the range of summation on
the right-hand side to ensure that the Nm,s we sum are nonzero.

Let Nm,s be nonzero; then the congruence r4 ≡ s4 (mod m) is soluble
in r, with F (m) solutions (mod m), where F is a multiplicative function
with

F (2e) =
{

2e−1 if e ≤ 4,
8 if e > 4,

F (pe) =
{

2 if p ≡ 3 (mod 4),
4 if p ≡ 1 (mod 4).

Given a solution r ≡ c (mod m), we define

Nc,m,s = #{r : Ri < r ≤ 2Ri, gcd(r, s) = 1 and r ≡ c (mod m)},
Nc,s(n) = #{r : Ri < r ≤ 2Ri, n | r and r ≡ c (mod m)};

then
Nc,m,s =

∑
n|s

µ(n)Nc,s(n).

Let n | s. Then gcd(n,m) = 1, since gcd(m, s) = 1. Thus

Nc,s(n) =
Ri
nm

+O(1).

The contribution to Nc,m,s of the error term above is of order at most d(s);
that is,

Nc,m,s =
Ri
m

∑
n|s

µ(n)
n

+O(d(s)) =
Rif(s)
m

+O(d(s))� Rif(s)
m

.
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(The above bound follows from the fact that m ≤ R1/2
i .) Thus

Nm,s �
F (m)Rif(s)

m
,

and ∑
Ri<r≤2Ri
gcd(r,s)=1

d(∆r,s)f(∆r,s)2 � Rif(s)
∑

m≤R1/2
i

gcd(m,s)=1

F (m)f ′(m)
m

.

In view of the bound (3.11) and the fact that Ri and Si are of the same
order, we conclude that

(3.12) NU (B)� B
∑
i

1
Si

∑
m≤R1/2

i
gcd(m,6)=1

F (m)f ′(m)
m

∑
Si<s≤2Si

6|s
gcd(m,s)=1

f(s)2,

where we sum over those i such that the sets Pi are nonempty. (We impose
the condition gcd(m, 6) = 1 for convenience.)

We proceed to estimate the inner sum on the right-hand side of (3.12).
Let s = 6t and Si/6 = Ti. Then∑

Si<s≤2Si
6|s

gcd(m,s)=1

f(s)2 �
∑

Ti<t≤2Ti
gcd(m,t)=1

f(t)2.

By the Cauchy–Schwarz inequality, we have∑
Ti<t≤2Ti

gcd(m,t)=1

f(t)2 ≥
( ∑
Ti<t≤2Ti

gcd(m,t)=1

1
)−1( ∑

Ti<t≤2Ti
gcd(m,t)=1

f(t)
)2
.

We estimate the two sums on the right-hand side, using the following two
standard relations: first, given any positive integer constant c, we have

(3.13) #{n : n ≤ N and gcd(n, c) = 1} =
Nφ(c)
c

+O(cε)

for any ε > 0; and second,

(3.14)
∑
n≤N

φ(n) =
3N2

π2
+O(N logN).

For the first sum on the right-hand side of the Cauchy–Schwarz inequality,
we have, by (3.13), ∑

Ti<t≤2Ti
gcd(m,t)=1

1� Tiφ(m)
m

= Tif(m).
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For the second sum, we have∑
Ti<t≤2Ti

gcd(m,t)=1

f(t) =
∑

Ti<t≤2Ti
gcd(m,t)=1

φ(t)
t
� 1

Ti

∑
Ti<t≤2Ti

gcd(m,t)=1

φ(t).

By (3.13), we get∑
Ti<t≤2Ti

gcd(m,t)=1

φ(t) ≥
∑

Ti<t≤2Ti
gcd(ms,t)=1

φ(t)� Ti
∑
s≤Ti

φ(ms)
ms

≥ Tif(m)
∑
s≤Ti

f(s);

that is, ∑
Ti<t≤2Ti

gcd(m,t)=1

f(t)� f(m)
∑
s≤Ti

f(s)� Tif(m),

where the second inequality follows from (3.14). Thus∑
Ti<t≤2Ti

gcd(m,t)=1

f(t)2 � Tif(m)� Sif(m);

and, in view of (3.12),

(3.15) NU (B)� B
∑
i

∑
m≤R1/2

i
gcd(m,6)=1

F (m)f(m)f ′(m)
m

,

where we sum over i such that Pi 6= ∅.
We now estimate the inner sum on the right-hand side of (3.15). Since

F , f and f ′ are all multiplicative, we consider the corresponding Dirichlet
series

D(z) =
∑
m≥1

gcd(m,6)=1

F (m)f(m)f ′(m)
mz

,

which admits an Euler product

D(z) =
∏
p≥5

(
1 +

F (p)f(p)f ′(p)
pz

+
∑
e≥2

F (pe)f(pe)f ′(pe)
pez

)
,

where the product is taken over all primes p ≥ 5. It is straightforward to
rewrite this as D(z) = ζ(z)3L(z, χ)F ′(z), where F ′ is a holomorphic function
bounded on the half-plane Re(z) > 3/4. Hence, by Perron’s formula, the
inner sum on the right-hand side of (3.15) is equal to

1
2πi

ε+iT�

ε−iT
ζ(1 + w)3L(1 + w,χ)F ′(1 + w)

Mw

w
dw +O(1).
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The integrand has a pole of order 4 at w = 0. We apply the residue theorem
to the rectangular contour with corners at ε − iT , ε + iT , −1/8 + iT and
−1/8− iT , and use the bounds

ζ(w), L(w,χ)� |w|1/8,
which hold provided Re(w) ≥ 7/8 and |w − 1| ≥ 1/8. These bounds imply
that the integrand along the horizontal segments is of order at most

(T 1/8)3T 1/8 M
Re(w)

T
,

where −1/8 ≤ Re(w) ≤ ε; that is, the contribution of the integral along
the horizontal segments of our contour is of order at most 1. Similarly, the
integrand along the vertical segment joining −1/8 + iT to −1/8 − iT is of
order at most

(T 1/8)3T 1/8

M1/8
;

that is, the contribution of the integral along that segment is of order at
most

T 3/2

M1/8
= M3ε−1/8 � 1

provided ε < 1/24. Hence∑
m≤M

gcd(m,6)=1

F (m)f(m)f ′(m)
m

� (logM)3 = (logR1/2
i )3.

We insert the above bound into (3.15), getting

NU (B)� B
∑
i

(logR1/2
i )3,

where we sum over i such that Pi 6= ∅. Now a set Pi is nonempty provided
2i+1 ≤ B1/100, that is, provided we have i ≤ k logB for some fixed constant
k > 0. Thus

NU (B)� B
∑

i≤k logB

(logR1/2
i )3 � B

∑
i≤k logB

(i− 1)3 � B(logB)4.

4. The upper bound

4.1. Preliminaries. We define the following projections from V onto P1:

f (1) : [x1, . . . , x5] 7→
{

[x1, x3] if (x1, x3) 6= (0, 0),
[x4, x2] otherwise,

f (2) : [x1, . . . , x5] 7→
{

[x1, x4] if (x1, x4) 6= (0, 0),
[x3, x2] otherwise.

We have the following lemma:
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Lemma 4.1. ‖f (1)(x)‖ · ‖f (2)(x)‖ ≤ ‖x‖ for all x ∈ V .

Proof. Let gcd(x1, x2, x3, x4) = n, and let mij denote gcd(xi, xj)n−1 for
1 ≤ i, j ≤ 4. Then

x1

n
= m13m14,

x2

n
= m23m24,

x3

n
= m13m23,

x4

n
= m14m24.

Now either ‖f (1)(x)‖ = ‖[x1, x3]‖ or ‖f (1)(x)‖ = ‖[x4, x2]‖; in both cases we
get ‖f (1)(x)‖ = ‖[m14,m23]‖. Similarly, ‖f (2)(x)‖ = ‖[m13,m24]‖.

We define, for i = 1, 2,

N
(i)
U (B) = #{x ∈ U : ‖x‖ ≤ B and ‖f (i)(x)‖ ≤ B1/2}.

By Lemma 4.1, we have

NU (B) ≤ N (1)
U (B) +N

(2)
U (B).

We will bound the N (i)
U (B). In fact, it suffices to bound N (1)

U (B); the bound
for N (2)

U (B) follows by symmetry.
Suppose x contributes to N (1)

U (B); say f (1)(x) = [r, s] with gcd(r, s) = 1.
Then x is of the form [rX1, sX2, sX1, rX2, x5], where X1 = gcd(x1, x3) and
X2 = gcd(x2, x4); and, upon setting x5 = X3, the second quadric of V is a
ternary quadric 0 = Q

(1)
r,s (X), where

Q(1)
r,s (X) = (r2 + s2)X2

1 − (r2 − s2)X2
2 − 2X2

3 .

(Note that the condition x ∈ U ensures that r4 − s4 6= 0.) The condition
‖x‖ ≤ B implies

(4.1) |X1|, |X2| ≤
B

max(r, s)
, |X3| ≤ B.

Thus, defining

Nr,s = #{X : gcd(X1, X2, X3) = 1, 0 = Q(1)
r,s (X) and (4.1) holds},

we have
N

(1)
U (B)�

∑
gcd(r,s)=1

1≤r,s≤B1/2

Nr,s.

We split the set of suitable pairs (r, s) into dyadic ranges, letting Pi,j
denote the set of coprime pairs (r, s) in the range

2i−1 = Ri < r ≤ 2Ri = 2i and 2j−1 = Sj < s ≤ 2Sj = 2j .

The bounds 1 ≤ r, s ≤ B1/2 imply that the indices i and j have an upper
bound i, j ≤ 2 logB. Thus

(4.2) N
(1)
U (B)�

∑
i≤2 logB

∑
j≤i

∑
(r,s)∈Pi,j

Nr,s +
∑

j≤2 logB

∑
i≤j

∑
(r,s)∈Pi,j

Nr,s.
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We bound the first of the terms on the right-hand side; the second term is
dealt with similarly.

4.2. Tools. Our first tool, used to estimate Nr,s, may be found in [3]:

Lemma 4.2. Let f ∈ Z[X] be a ternary quadratic form. Let M denote
its matrix representation M , let ∆ = |detM | 6= 0, and let ∆0 denote the
highest common factor of the 2× 2 minors of M . Let

N = #{X : gcd(X1, X2, X3) = 1, 0 = f(x) and |xi| ≤ Bi for i = 1, 2, 3}.

Then

N �
(

1 +
(
B1B2B3∆

2
0

∆

)1/3)
d(∆).

We require some notation for our next result. Given f ∈ Z[x] with no
fixed prime divisors, the multiplicative function %f (m) denotes the number
of solutions n (mod m) of f(n) ≡ 0 (mod m). We collect below some useful
results on this function. The first three are classical, and may be found in [6],
for example. The last is attributed in [1] to unpublished work by Stephan
Daniel; a proof is given in [1, Lemma 2].

Lemma 4.3. Let f ∈ Z[x] be of degree g, have no fixed prime divisors,
and be such that Disc(f) 6= 0. Then:

(a) %f (p) ≤ g;
(b) %f (pe) ≤ gpe−1 for all e ∈ N;
(c) %f (pe) = %f (p) for all e ∈ N, provided p - Disc(f);
(d) %f (pe) ≤ 2g3pe(1−1/g) for all e ∈ N.

We are now ready to prove the following:

Lemma 4.4. Let f ∈ Z[x] be of degree 4, have no fixed prime divisors,
and be such that Disc(f) 6= 0. Let α, β ∈ (0, 1) and N1, N2 ≥ 2 be such that
Nα

2 ≤ N2 −N1 ≤ N2 and ‖f‖β ≤ N2. Then the sum∑
N1<n≤N2

d(|f(n)|)

is of order at most

(N2 −N1)
∏
p≤N2

(
1−

%f (p)
p

)
exp
(∑
p≤N2

d(p)%f (p)
p

+ c
∑

p|Disc(f)

1
p

)
for a constant c > 0, where the implied constant depends only on α and β.

Proof. This is a special case of the main theorem in [7]. Nair’s bound
depends implicitly on the discriminant Disc(f). This dependence arises in
two places in [7]. In both instances we may make it explicit or remove it.
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The first instance is in [7, Lemma 2], in the implied constant of the
bound

(4.3)
∑
n≤N

(
n

φ(n)

)4d(n)%f (n)
n

� exp
(∑
p≤N

(
p

φ(p)

)4d(p)%f (p)
p

)
.

We make this dependence explicit. We begin with the fact that∑
n≤N

(
n

φ(n)

)4d(n)%f (n)
n

≤ exp
(∑
p≤N

(
p

φ(p)

)4∑
e≥1

d(pe)%f (pe)
pe

)
.

We shall make use of the bound

(4.4)
∑
e≥E

e+ 1
ne
� 1

nE

(
n

n− 1

)2

,

which holds for all n ∈ N. (Here the relation � depends only on E.) Now
given p such that p - Disc(f), by Lemma 4.3(a), Lemma 4.3(c) and (4.4), we
have ∑

e≥2

d(pe)%f (pe)
pe

≤ 4
∑
e≥2

e+ 1
pe
� 1

p2
.

Likewise, given p such that p |Disc(f), by Lemma 4.3(d) and (4.4), we have∑
e≥8

d(pe)%f (pe)
pe

≤ 128
∑
e≥8

e+ 1
pe/4

� 1
p2
.

Finally, given p such that p |Disc(f), by Lemma 4.3(b), we have∑
2≤e<8

d(pe)%f (pe)
pe

≤ 4
∑
e<8

e+ 1
p
� 1

p
.

These bounds combine to give∑
n≤N

(
n

φ(n)

)4 d(n)%f (n)
n

� exp
(∑
p≤N

(
p

φ(p)

)4 d(p)%f (p)
p

+ c
∑

p|Disc(f)

1
p

)
for a constant c > 0, where the relation� does not depend on Disc(f). The
difference between this bound and (4.3) accounts for the difference between
Lemma 4.4 and the main result in [7].

The second place in [7] in which a dependence on Disc(f) arises is in the
author’s reduction of the bound [7, (6.3)], where, given a positive integer
n such that N1/2 < n ≤ N , the bound %f (n) � N1/8 is invoked; Disc(f)
figures in the implied constant. We remove the dependence on Disc(f) by
invoking the bound %f (n) � n4/5 for all n ∈ N, where the relation � does
not depend on Disc(f); this proves to be sufficient.

We use Lemma 4.4 to prove our version of a result due to Browning and
de la Bretèche, which we use to sum our estimates for Nr,s over the pairs
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(r, s) ∈ Pi,j . We require a generalization of the function %f to binary forms.
Let f ∈ Z[x1, x2] have no fixed prime divisors. Then %f(1,x)(m) denotes the
number of solutions n (mod m) of f(1, n) ≡ 0 (mod m), and we define for
any prime p the function

%∗f (p) =
{
%f(1,x)(p) + 1 if p | f(0, 1),
%f(1,x)(p) otherwise.

Theorem 4.5. Let f ∈ Z[x1, x2] be of degree 4, have no fixed prime
divisors, and be such that Disc(f) 6= 0 and f(1, 0)f(0, 1) 6= 0. Let α, β ∈
(0, 1) and N,N1, N2 ≥ 2 be such that Nα

2 ≤ N2−N1 ≤ N2 and min(N,N2) ≥
amax(N,N2)4β‖f‖β for a constant a > 0 dependent only on β. Then∑

1≤n1≤N

∑
N1<n2≤N2

d(|f(n1, n2)|)� N(N2 −N1)T,

where

T =
∏

p|Disc(f)

(
1 +

1
p

)b
exp
(
c
∑

p|Disc(f)

1
p

)
exp
( ∑
p≤max(N,N2)

%∗f (p)
p

)
for constants b, c > 0, and the relation � depends only on α and β.

Proof. This theorem is an adaptation of [1, Theorem 1]. There, the au-
thors take n2 ≤ N2; we take a shorter range of summation and appeal to
Lemma 4.4. The condition that f have no fixed prime divisors is required
in the proof of the main theorem in [7], and implicit in the proof of Lemma
4.4. As in [1, §3], we fix n1 and consider the sum∑

N1<n2≤N2

d(|f(n2)|).

By Lemma 4.4, the above sum has an upper bound of order at most

(N2 −N1)
∏
p≤N2

(
1−

%f (p)
p

)
exp
(∑
p≤N2

d(p)%f (p)
p

+ c
∑

p|n1Disc(f)

1
p

)
for a constant c > 0. In comparison, in [1, §3], the authors conclude that∑

n2≤N2

d(|f(n2)|)� N2

∏
p≤N2

(
1−

%f (p)
p

) ∑
n2≤N2

d(n2)%f (n2)
n2

.

This difference accounts for the discrepancy between Theorem 4.5 and [1,
Theorem 1]. Proceeding according to the argument of [1, §3], we have∑

1≤n1≤N

∑
N1<n2≤N2

d(|f(n1, n2)|)� N(N2 −N1)t1t2,



194 F.-S. Leung

where

t1 =
∏

4<p≤N2

(
1−

%f(1,x)(p)
p

)
exp
(∑
p≤N2
p-n1

d(p)%f (p)
p

)
,

t2 =
∏

p|Disc(f)

(
1 +

1
p

)b
exp
(
c
∑

p|Disc(f)

1
p

)
for constants b, c > 0. It is straightforward to show that t1 is of order at
most∏
4<p≤N2

(
1−

%f(1,x)(p)
p

)
exp
( ∑

4<p≤N2

2%f(1,x)(p)
p

)
� exp

(∑
p≤N2

%f(1,x)(p)
p

)
,

which, combined with t2, yields the theorem.

Our third main tool is a classical result due to Dedekind and Landau:

Lemma 4.6. Let f ∈ Z[x] be irreducible and of degree g ≥ 1. Then∑
p≤B

%f (p) = Li(B) +
(

B

exp(c(logB)1/2)

)
for a constant c > 0 dependent only on the splitting field of f over Q.

Proof. Let L be the splitting field of f over Q. For all but finitely many p,
f (mod p) has factorization F1 · · ·Fn (mod p), where each Fi ∈ Zp[x] is irre-
ducible and of degree gi, if and only if the principal ideal (p) has factorization
P1 · · ·Pn, where each Pi is a prime ideal over L with norm pgi . Now

%f (p) = #{i : Fi is linear} = #{i : norm(Pi) = p},
and by Landau’s Prime Ideal Theorem,

#{prime ideals P : norm(P ) = p ≤ B} = Li(B) +O

(
B

exp(c(logB)1/2)

)
for a constant c > 0 dependent only on L.

Now the Prime Ideal Theorem is simply the generalization to number
fields of the Prime Number Theorem; given n ∈ N, we have

π(n) = Li(n) +O

(
n

exp(c′(log n)1/2)

)
for a constant c′ > 0. This symmetry between π(t) and the average order of
%f (p) will be useful. We also record the following bound, due to Rosser and
Schoenfeld [8]:

Lemma 4.7. Let n ≥ 67. Then
n

log n− 1/2
< π(n) <

n

log n− 3/2
.
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4.3. The proof of the upper bound. As in §3, we let ∆r,s denote |r4−s4|.
We shall also write P , R and S for Pi,j , Ri and Sj , respectively.

We begin by applying Lemma 4.2 to get

(4.5)
∑

(r,s)∈P

Nr,s � B

(
1

R2/3

∑
(r,s)∈P

d(∆r,s)

∆
1/3
r,s

)
.

We evaluate the sum on the right-hand side according to the size of ∆r,s. Let
the linear factors of ∆r,s be denoted |s− αir| for i = 1, 2, 3, 4. We consider
three cases:

Case I: R and S are not of the same order;
Case II: R and S are of the same order, and |s− αir| > R/4

for i = 1, 2, 3, 4; and
Case III: R and S are of the same order, and |s− αir| ≤ R/4

for some i ∈ {1, 2, 3, 4}. (We may assume moreover that
αi = 1 or −1, for otherwise we have |s− αir| > R/4.)

Note that, since we are in search of an upper bound, we may apply selectively
the coprimality condition on P .

In Case I, ∆r,s is dominated by the r4 term, and we have∑
(r,s)∈P

Nr,s � B

(
1
R2

∑
(r,s)∈P

d(∆r,s)
)
.

Now ∑
(r,s)∈P

d(∆r,s) ≤
∑

s≤2max(S,R1/2)

∑
r≤2R

d(∆r,s).

We apply Theorem 4.5 to the right-hand side, getting∑
(r,s)∈P

d(∆r,s)� max(S,R1/2)RT,

where

T =
∏

p|Disc(∆r,s)

(
1 +

1
p

)b
exp
(
c

∑
p|Disc(∆r,s)

1
p

)
exp
(∑
p≤2R

%∗∆r,s
(p)

p

)
for some constants b, c > 0. The fact that Disc(∆r,s) = 128i implies that the
first two terms are � 1, whence

T � exp
(∑
p≤2R

%∗∆r,s
(p)

p

)
� exp

(∑
p≤2R

%∆1,x(p)
p

)
.

We appeal to Lemmas 4.6 and 4.7. The sum on the far right-hand side is
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equal to

1
2R

∑
p≤2R

%∆1,x(p) +
2R�

1

∑
p≤t

%∆1,x(p)
dt

t2
+O

(2R�

1

∑
p≤t

%∆1,x(p)
dt

t3

)
.

The first term is small. Indeed, let f1(x) = 1 + x2, f2(x) = 1 + x and
f3(x) = 1− x. Then, by Lemma 4.6, the first term is equal to

1
2R

(∑
p≤2R

%f1(x)(p) +
∑
p≤2R

%f2(x)(p) +
∑
p≤2R

%f3(x)(p)
)

= O(1).

The error term is also small: by Lemma 4.3(a) we have %∆1,x(p) ≤ 4 for all
primes p; that is,

O

(2R�

1

∑
p≤t

%∆1,x(p)
dt

t3

)
= O

(2R�

1

dt

t2

)
= O(1).

Thus

T � exp
(2R�

67

∑
p≤t

%∆1,x(p)
dt

t2
+O(1)

)
.

By Lemma 4.7, we have

(4.6)
2R�

67

∑
p≤t

%∆1,x(p)
dt

t2
<

2R�

67

1
π(t)

∑
p≤t

%∆1,x(p)
dt

t(log t− 3/2)
.

Lemma 4.6 gives∑
p≤t

%∆1,x(p) =
∑
p≤t

%f1(x)(p) +
∑
p≤t

%f2(x)(p) +
∑
p≤t

%f3(x)(p)

= 3
(

Li(t) +O

(
t

exp(c(log t)1/2)

))
for a constant c > 0. We also have

π(t) = Li(t) +O

(
t

exp(c′(log t)1/2)

)
for a constant c′ > 0. Let C = min(c, c′). Then

1
π(t)

∑
p≤t

%∆x,1(p) = 3 +O

(
1

log t− 3/2

)
.

Substituting back into (4.6), we get
2R�

67

∑
p≤t

%∆1,x(p)
dt

t2
<

2R�

67

3 dt
t(log t− 3/2)

+O

(2R�

67

dt

t(log t− 3/2)2

)
= log(log(2R)− 2/3)3 +O(1) < log(logB)3 +O(1).
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Thus T � (logB)3, and∑
(r,s)∈P

d(∆r,s)� max(S,R1/2)R(logB)3;

that is,

(4.7)
∑

(r,s)∈P

Nr,s � max
(
S

R
,

1
R1/2

)
B(logB)3

for Case I.
Case II is handled identically: as in Case I, we have ∆r,s � R4, and the

same bound (4.7) results.
In Case III, suppose α1 ∈ R and |s− α1r| ≤ R/4. Then the bounds

r|α1 − αi| − |s− α1r| ≤ |s− αir| ≤ r|α1 − αi|+ |s− α1r|

for i = 2, 3, 4 imply that ∆r,s is of order |s − α1r|R3. We split the set of
values for |s− α1r| into dyadic ranges

2i−1 = Bi < |s− α1r| ≤ 2Bi = 2i,

where the index i has an upper bound

I =
⌈

log(R/4)
log 2

⌉
=

logR
log 2

+O(1).

In view of (4.5), we have∑
(r,s)∈P

Nr,s � B

(
1

R5/3

∑
i≤I

1

B
1/3
i

∑
(r,s)∈P

Bi<|s−α1r|≤2Bi

d(∆r,s)
)
.

Now

(4.8)
∑

(r,s)∈P
Bi<|s−α1r|≤2Bi

d(∆r,s) ≤
∑

1≤s≤2S

∑
Ki≤r≤Li

d(∆r,s),

where

Ki = max(1, s− 2 max(Bi, S1/3)), Li = min(2R, s+ 2 max(Bi, S1/3)).

We apply Theorem 4.5 to the right-hand side of (4.8), getting∑
(r,s)∈P

Bi<|s−α1r|≤2Bi

d(∆r,s)� max(Bi, S1/3)S(logB)3,

hence ∑
(r,s)∈P

Nr,s �
(

S

R5/3

∑
i≤I

max(Bi, S1/3)

B
1/3
i

)
B(logB)3.
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If max(Bi, S1/3) = Bi, then∑
i≤I

max(Bi, S1/3)

B
1/3
i

� 22I/3 = exp
(

2I
3

log 2
)
� R2/3,

and if max(Bi, S1/3) = S1/3, then∑
i�logR

max(Bi, S1/3)

B
1/3
i

� S1/3.

Thus we have, for Case III, the bound

(4.9)
∑

(r,s)∈P

Nr,s � max
(
S

R
,
S4/3

R5/3

)
B(logB)3 =

S

R
B(logB)3.

Comparing the bounds (4.7) and (4.9), we conclude that

(4.10)
∑

(r,s)∈P

Nr,s � max
(
S

R
,

1
R1/2

)
B(logB)3.

5. The cardinality NU (B). By the bounds (4.2) and (4.10), we have∑
i≤2 logB

∑
j≤i

∑
(r,s)∈Pi,j

Nr,s � B(logB)3
∑

i≤2 logB

∑
j≤i

max
(
Sj
Ri
,

1

R
1/2
i

)
.

If Sj ≥ R1/2
i , the sum on the right-hand side is equal to∑

i≤2 logB

∑
j≤i

1
2i−j

≤
∑

i≤2 logB

∑
j≥0

1
2j
� logB;

otherwise, it is equal to ∑
i≤2 logB

∑
j≤i

1
2(i−1)/2

� 1.

Thus we have ∑
i≤2 logB

∑
j≤i

∑
(r,s)∈Pi,j

Nr,s � B(logB)4

as required.
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