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1. Introduction. The multiple zeta function of depth k is defined by

ζk(s1, . . . , sk) :=
∑

0<n1<···<nk

1
ns11 · · ·n

sk
k

,

where si (i = 1, . . . , k) are complex variables. When si (i = 1, . . . , k) are
positive integers with sk ≥ 2, the multiple zeta function ζk(s1, . . . , sk) is
absolutely convergent and its values are called multiple zeta values. Euler
evaluated several special cases of double zeta values. Further, he showed
a very interesting formula which is the origin of the sum formula in [4].
At present, a number of relations among multiple zeta values are known,
for instance, the sum formula [4], [5], Hoffman’s relation [6] and Ohno’s
relation [11].

On the other hand, Atkinson [3] investigated the analytic properties of
the double zeta function and gave the analytic continuation of ζ2(u, v) to
consider the mean square of the Riemann zeta function on the critical line.
Atkinson’s essential tool is the Euler–Maclaurin summation formula and
the Poisson summation formula. Generally, the meromorphic continuation
of ζk(s1, . . . , sk) was given by Zhao [12] by using distribution theory, and
independently by Akiyama, Egami and Tanigawa [1] by using the Euler–
Maclaurin summation formula. Further, Matsumoto [9] showed the mero-
morphic continuation of more general multiple zeta functions by using the
Mellin–Barnes integral. A functional equation for the multiple zeta function
which holds for any depth, similar to that for the Riemann zeta function,
has not been discovered yet. However, Matsumoto [10] found a functional
equation for the double zeta function.

In this article we deal with multiple zeta values at non-positive integers.
Values of the Riemann zeta function at non-positive integers can be written
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by using Bernoulli numbers. Hence we are interested in similar expressions
for multiple zeta values at non-positive integers. In this case, we must take
care of the singularities of the multiple zeta function. The multiple zeta
function ζk(s1, . . . , sk) has singularities on

sk = 1,(1.1)
sk−1 + sk = 2, 1, 0,−2,−4, . . .(1.2)

and

(1.3)
j∑
i=1

sk−i+1 ∈ Z≤j (j = 3, 4, . . . , k),

where Z≤ξ is the set of integers less than or equal to ξ; Z≥ξ is defined similarly.
As can be seen from (1.3), each point (s1, . . . , sk) = (−r1, . . . ,−rk) ∈ Zk≤0 is
a singularity of the multiple zeta function. It is known that (−r1, . . . ,−rk)
is a point of indeterminacy of ζk(s1, . . . , sk) (see [1]): both the local denom-
inator and the local numerator of ζk(s1, . . . , sk) vanish at (−r1, . . . ,−rk).
Therefore the values of ζk(s1, . . . , sk) at (−r1, . . . ,−rk) depend on the lim-
iting process. In [2], Akiyama and Tanigawa gave some formulas for the
regular and reverse values, which are defined by

ζk(−r1, . . . ,−rk) := lim
s1→−r1

· · · lim
sk→−rk

ζk(s1, . . . , sk),

ζRk (−r1, . . . ,−rk) := lim
sk→−rk

· · · lim
s1→−r1

ζk(s1, . . . , sk),

respectively. These values can be found by using recurrence relations as in
Lemmas 3.1 and 3.2 below. Further, Akiyama and Tanigawa considered the
central values given by

ζCk (−r1, . . . ,−rk) := lim
ε→0

ζk(−r1 + ε, . . . ,−rk + ε).

For the central values, one could also apply Lemma 3.1 or Lemma 3.2. How-
ever, this may be difficult when the depth k is large. Kamano [7] considered
the multiple Hurwitz zeta function

ζk(s1, . . . , sk; a) :=
∑

0≤m1<···<mk
mi∈Z

1
(m1 + a)s1 · · · (mk + a)sk

(a ∈ R>0)

and gave formulas for its regular values and reverse values. Further, he
considered the special case of ζk(s; a) := ζk(s, . . . , s; a) and gave formulas for
the central values ζCk (−r; a) for any depth k and any non-negative integer r.

In this article, we consider all coordinatewise limits for any depth. Ex-
cept regular and reverse values, such limits were not treated in [1, 2]. Some
interesting relations among those values support the existence of a functional
equation for the multiple zeta function, similar to that for the Riemann zeta
function.



Multiple zeta values for coordinatewise limits 301

First we consider all coordinatewise limits for the case of depth 3. This
case is important, since the multiple zeta function of depth k is constructed
from that of depth k − 1 inductively (see Lemmas 3.1 and 3.2). Secondly,
we try to generalize those results. However, it is difficult to give an explicit
formula for multiple zeta values for all coordinatewise limits in the case
of depth k ≥ 4, since already when the depth is 4 there exist 24 kinds of
limiting processes. Hence we give an algorithm to calculate multiple zeta
values for all coordinatewise limits in the last section.

When the depth is 2, there are only two coordinatewise limits, namely
regular and reverse values given by

ζ2(−r1,−r2) =
r2∑

q=−1

(−r2)+q aqζ(−r1 − r2 + q),(1.4)

ζR2 (−r1,−r2) = −
r1∑

q=−1

(−r1)−q aqζ(−r1 − r2 + q) + ζ(−r1)ζ(−r2),(1.5)

respectively (see [1, 2]). Here

(1.6) (s)±q :=


s(s+ 1) · · · (s+ q − 1) if q = 1, 2, . . . ,
±1 if q = 0,
1/(s− 1) if q = −1,

aq := Bq+1/(q + 1)! and Bn is the nth Bernoulli number. Therefore our
starting point is the case of depth 3.

We introduce the following notation. Let {i1, . . . , ik} = {1, . . . , k} and
define

(1.7) ζk(
i1
−r1, . . . ,

ik
−rk) := lim

sj→−rj
ij=k

· · · lim
sj→−rj
ij=1

ζk(s1, . . . , sk).

For instance, ζ3(
3
−r1,

2
−r2,

1
−r3) and ζ3(

1
−r1,

2
−r2,

3
−r3) are the regular value

and the reverse value, respectively. In Section 6, we shall prove some relations
among multiple zeta values of depth 3 for all coordinatewise limits. For
instance, we show that

ζ3(
1
−1,

2
−2,

3
−3)− ζ3(

1
−1,

3
−2,

2
−3)− ζ3(

2
−1,

1
−2,

3
−3) + ζ3(

2
−1,

3
−2,

1
−3)

+ ζ3(
3
−1,

1
−2,

2
−3)− ζ3(

3
−1,

2
−2,

1
−3) = 0

(see also Example 2.5 below). Further, in Section 7, we show that a gener-
alization of Corollary 2.2 and the second assertion of Proposition 6.4 below
hold for any depth. In the last section, we give an algorithm to calculate
multiple zeta values of depth k for all coordinatewise limits.
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Recently, Komori [8] treated more general multiple zeta functions and
obtained an integral representation for them. He calculated several numer-
ical values of those multiple zeta functions at non-positive integers. In the
next section, we compute some numerical values in Example 2.5. They co-
incide with those obtained by Komori.

2. Formulas for special values when the depth is 3

Theorem 2.1. For any non-negative integers ri (i = 1, 2, 3), we have

ζ3(
2
−r1,

3
−r2,

1
−r3) =

r3∑
q=−1

(−r3)+q aqζ
R
2 (−r1,−r2 − r3 + q),(2.1)

ζ3(
1
−r1,

3
−r2,

2
−r3) = −

r1∑
q=−1

(−r1)−q aqζ2(−r1 − r2 + q,−r3)(2.2)

+ ζ(−r1)ζ2(−r2,−r3),

where ζ2 and ζR2 are regular values (1.4) and reverse values (1.5), respec-
tively.

Corollary 2.2.

ζ3(
2
−r1,

3
−r2,

1
−r3) = ζ3(

1
−r1,

3
−r2,

2
−r3).

Theorem 2.3. For any non-negative integers ri (i = 1, 2, 3), we have

ζ3(
3
−r1,

1
−r2,

2
−r3) = Z3 − (−1)r1r1!

r3∑
q=−1

(−r3)+q aqar1+r2+r3+1−q(r2 + r3 − q)!

+ (−1)r3r2!r3!ζ(−r1)ar2+r3+1,

ζ3(
2
−r1,

1
−r2,

3
−r3) = Z3 − (−1)r3r3!

r1∑
q=−1

(−r1)−q aqar1+r2+r3+1−q(r1 + r2 − q)!,

where

Z3 = −
r3∑

q=−1

(−r3)+q aq
r1∑

p=−1

(−r1)−p apζ(−r1 − r2 − r3 + p+ q)

+ ζ(−r1)
r3∑

q=−1

(−r3)+q aqζ(−r2 − r3 + q).

Remark 2.4. The value of Z3 equals the value given in Corollary 2.2.
This follows from (4.1) and (4.2) below.
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Example 2.5. When s1 = s2 = s3 = 0,

ζ3(
3
0,

2
0,

1
0) = −1

4 , ζ3(
1
0,

2
0,

3
0) = −3

8 ,

ζ3(
2
0,

3
0,

1
0) = ζ3(

1
0,

3
0,

2
0) = − 7

24 ,

ζ3(
3
0,

1
0,

2
0) = − 7

24 , ζ3(
2
0,

1
0,

3
0) = −3

8 .

When s1 = −1, s2 = −2, s3 = −3,

ζ3(
3
−1,

2
−2,

1
−3) = − 101

100800 , ζ3(
1
−1,

2
−2,

3
−3) = − 43

40320 ,

ζ3(
2
−1,

3
−2,

1
−3) = ζ3(

1
−1,

3
−2,

2
−3) = − 53

50400 ,

ζ3(
3
−1,

1
−2,

2
−3) = − 101

100800 , ζ3(
2
−1,

1
−2,

3
−3) = − 43

40320 .

When s1 = −2, s2 = −4, s3 = −6,

ζ3(
3
−2,

2
−4,

1
−6) = 105353

8648640 , ζ3(
1
−2,

2
−4,

3
−6) = 104903

8648640 ,

ζ3(
2
−2,

3
−4,

1
−6) = ζ3(

1
−2,

3
−4,

2
−6) = 104933

8648640 ,

ζ3(
3
−2,

1
−4,

2
−6) = 105353

8648640 , ζ3(
2
−2,

1
−4,

3
−6) = 104903

8648640 .

3. Analytic continuation. In this section and the next two, we prove
the theorems of the preceding section. We follow the method of analytic
continuation applied by Akiyama, Egami and Tanigawa.

Let

φl(m, s) =
(s)±l+1

(l + 1)!

∞�

m

B̃l+1(x)x−s−l−2 dx,

where B̃n(x) = Bn(x− [x]) and Bn(x) is the nth Bernoulli polynomial. It is
easily seen that

φl(m, s) = O(|(s)±l+1|m
−<s−l−1).

We note that φl(m, s) = 0 for s = 0,−1, . . . ,−l. The following lemmas hold.

Lemma 3.1 (regular type, Akiyama, Egami and Tanigawa [1]). For <si>1
(i = 1, . . . , k) and any positive integer l, we have

ζk(s1, . . . , sk−1, sk) =
l∑

q=−1

(sk)+q aqζk−1(s1, . . . , sk−2, sk−1 + sk + q)(3.1)

−
∑

0<n1<···<nk−1

φl(nk−1, sk)
ns11 · · ·n

sk−1

k−1

and the last sum on the right-hand side of (3.1) is absolutely convergent
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when
l > −<sk−1 −<sk + k − 2−

∑
1≤i≤k−2
<si≤0

<si.

Lemma 3.2 (reverse type, Akiyama and Tanigawa [2]). For <si > 1
(i = 1, . . . , k) and any positive integer l, we have

ζk(s1, s2, . . . , sk) = −
l∑

q=−1

(s1)−q aqζk−1(s1 + s2 + q, s3, . . . , sk)(3.2)

+ ζ(s1)ζk−1(s2, . . . , sk)

+
k−1∑
j=2

(−1)jζk−j(sj+1, . . . , sk−1, sk)Φlj(s1, . . . , sj)

+ (−1)kΦlk(s1, . . . , sk),

where

Φlm(s1, . . . , sm) :=
∑

nm≤···≤n2

φl(n2, s1)
nsmm · · ·ns22

(2 ≤ m ≤ k)

and Φlm(s1, . . . , sm) is absolutely convergent when

l > −<s1 −<s2 +m− 2−
∑

3≤i≤m
<si<0

<si.

Note that the last sum above is 0 when m = 2.

From Lemmas 3.1 and 3.2, since l can be chosen arbitrarily large, we find
inductively that the multiple zeta function can be continued to the whole
Ck as a meromorphic function in s1, . . . , sk.

4. Proof of Theorem 2.1 and Corollary 2.2. Since (−r)±q = 0 when
q > r and r is a non-negative integer, we get

ζ3(s1, s2,
1
−r3) =

r3∑
q=−1

(−r3)+q aqζ2(s1, s2 − r3 + q)

by Lemma 3.1. The right-hand side of the above formula is a finite sum of
multiple zeta values of depth 2. Hence, from the definition of reverse values,
we see that the first assertion of Theorem 2.1 holds.

Similarly, by using Lemma 3.2, we can get the second assertion of The-
orem 2.1.

To prove Corollary 2.2, we use the recurrence relation (1.5). Substituting
(1.5) into the right-hand side of (2.1), we have
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(4.1) ζ3(
2
−r1,

3
−r2,

1
−r3)

= −
r3∑

q=−1

(−r3)+q aq
r1∑

p=−1

(−r1)−p apζ(−r1 − r2 − r3 + p+ q)

+ ζ(−r1)
r3∑

q=−1

(−r3)+q aqζ(−r2 − r3 + q).

On the other hand, substituting (1.4) into the right-hand side of (2.2),
we have

(4.2) ζ3(
1
−r1,

3
−r2,

2
−r3)

= −
r1∑

q=−1

(−r1)−q aq
r3∑

p=−1

(−r3)+p apζ(−r1 − r2 − r3 + p+ q)

+ ζ(−r1)
r3∑

q=−1

(−r3)+q aqζ(−r2 − r3 + q).

Hence we obtain Corollary 2.2.

5. Proof of Theorem 2.3. From Lemmas 3.1 and 3.2, we have

ζ3(s1,
1
−r2, s3) = −

l∑
q=−1

(s3)+q aq
l′∑

p=−1

(s1)−p apζ(s1 − r2 + s3 + p+ q)

+ ζ(s1)
l∑

q=−1

(s3)+q aqζ(−r2 + s3 + q)

+
l∑

q=−1

(s3)+q aq{ζ(s3)Φl
′
2 (s1,−r2)− Φl′3 (s1,−r2, s3)}

−
∑

0<n1<n2

φl(n2, s3)
ns11 n

−r2
2

,

where l and l′ are arbitrarily large positive integers. Then the series Φl
′
i and

the last sum above are absolutely convergent. Further, these terms vanish
as s3 → −r3 and s1 → −r1. Thus

ζ3(
3
−r1,

1
−r2,

2
−r3) = −

r3∑
q=−1

(−r3)+q aq
r1∑

p=−1

(−r1)−p apζ(−r1 − r2 − r3 + p+ q)

+ ζ(−r1)
r3∑

q=−1

(−r3)+q aqζ(−r2 − r3 + q) + L1 + L2,
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where

L1 = − lim
s1→−r1

r3∑
q=−1

(−r3)+q aq
l′∑

p=r1+1

(s1)−p apζ(s1 − r2 − r3 + p+ q),

L2 = ζ(−r1) lim
s3→−r3

l∑
q=r3+1

(s3)+q aqζ(−r2 + s3 + q).

When p = r1 + r2 + r3 + 1 − q, we note that (s1)−r1+r2+r3+1−q has simple
zeros at s1 = 0,−1, . . . ,−r1 − r2 − r3 + q and ζ(s1 + r1 + 1) has a simple
pole at s1 = −r1 in the sum of L1, since l′ is an arbitrarily large positive
integer. Therefore we obtain

L1 = −(−1)r1r1!
r3∑

q=−1

(−r3)+q aqar1+r2+r3+1−q(r2 + r3 − q)!.

Similarly,

L2 = (−1)r3ζ(−r1)r2!r3!ar2+r3+1.

Hence the first assertion of Theorem 2.3 holds.
Similarly, we can obtain the second assertion.

6. Relations among multiple zeta values of depth 3. In this sec-
tion, we consider relations among the values given by Theorem 2.1, the val-
ues given by Theorem 2.3, regular values, and reverse values. The starting
point is the following lemma which is an essential tool in this section.

Lemma 6.1. For any non-negative integers ri (i = 1, 2), we have

(6.1) ζR2 (−r1,−r2) = ζ2(−r1,−r2) + (−1)µr1!r2!ar1+r2+1,

where µ = r1 or r2.

Proof. From Lemma 3.1, we obtain

lim
s1→−r1

ζ2(s1, s2) =
l∑

q=−1

(s2)+q aqζ(−r1 + s2 + q)−
∑
n1>0

φl(n1, s2)
n−r11

.

When q = r1 + r2 + 1, we note that (s2)+r1+r2+1 has simple zeros at s2 =
0,−1, . . . ,−r1− r2 and ζ(s2 + r2 + 1) has a simple pole at s2 = −r2, since l
is an arbitrarily large positive integer. Therefore

lim
s2→−r2

(s2)+r1+r2+1ζ(s2 − r2 + 1) = (−1)r2r1!r2!.
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Hence we obtain

(6.2) lim
s2→−r2

ζ2(−r1, s2)

=
r2∑

q=−1

(−r2)+q aqζ(−r1 − r2 + q) + (−1)r2r1!r2!ar1+r2+1

= ζ2(−r1,−r2) + (−1)r2r1!r2!ar1+r2+1,

since φl(n1,−r2) = 0 and by (1.4). On the other hand, from Lemma 3.2,

(6.3) ζ2(−r1,−r2) = ζR2 (−r1,−r2)− (−1)r1r1!r2!ar1+r2+1.

A difference between (6.2) and (6.3) is the oscillating factors (−1)r2 and
(−1)r1 . However, this difference does not cause a problem, since if r1 + r2 is
odd, then ar1+r2+1 = 0 holds by definition.

Proposition 6.2. For any non-negative integers ri (i = 1, 2, 3), we have

ζ3(
2
−r1,

3
−r2,

1
−r3) = ζ3(

3
−r1,

2
−r2,

1
−r3)(6.4)

+ (−1)r1r1!
r3∑

q=−1

(−r3)+q aqar1+r2+r3+1−q(r2 + r3 − q)!,

ζ3(
3
−r1,

1
−r2,

2
−r3) = ζ3(

3
−r1,

2
−r2,

1
−r3) + (−1)r3r2!r3!ζ(−r1)ar2+r3+1.(6.5)

Remark 6.3. Formula (6.5) expresses the difference between ζ3(
3∗, 1∗, 2∗)

and ζ3(
3∗, 2∗, 1∗). In fact, from (6.4), ζ3(

3∗, 1∗, 2∗) can be written by using

ζ3(
2∗, 3∗, 1∗). However, the expression of (6.5) is more concise.

Proof of Proposition 6.2. Applying Lemma 6.1 with µ = r1 to (2.1), we
have

ζ3(
2
−r1,

3
−r2,

1
−r3)

=
r3∑

q=−1

(−r3)+q aq{ζ2(−r1,−r2 − r3 + q)

+ (−1)r1ar1+r2+r3+1−qr1!(r2 + r3 − q)!}

= ζ3(
3
−r1,

2
−r2,

1
−r3) + (−1)r1r1!

r3∑
q=−1

(−r3)+q aqar1+r2+r3+1−q(r2 + r3 − q)!.

Here we have used the representation of regular values of depth 3 given by
Lemma 3.1. This yields the first assertion of Proposition 6.2.
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Next we prove (6.5). By combining (6.4) with (4.1), we have

ζ3(
3
−r1,

2
−r2,

1
−r3) = −

r3∑
q=−1

(−r3)+q aq
r1∑

p=−1

(−r1)−p apζ(−r1 − r2 − r3 + p+ q)

+ ζ(−r1)
r3∑

q=−1

(−r3)+q aqζ(−r2 − r3 + q)

− (−1)r1r1!
r3∑

q=−1

(−r3)+q aqar1+r2+r3+1−q(r2 + r3 − q)!.

By comparing the above formula with Theorem 2.3, we obtain (6.5).

Similarly, we obtain the following proposition.

Proposition 6.4. For any non-negative integers ri (i = 1, 2, 3), we have

ζ3(
1
−r1,

3
−r2,

2
−r3) = ζ3(

1
−r1,

2
−r2,

3
−r3)

+ (−1)r3r3!
r1∑

q=−1

(−r1)−q aqar1+r2+r3+1−q(r1 + r2 − q)!,

ζ3(
2
−r1,

1
−r2,

3
−r3) = ζ3(

1
−r1,

2
−r2,

3
−r3).

Remark 6.5. Propositions 6.2 and 6.4 imply that ζ3(
2∗, 3∗, 1∗) (which co-

incides with ζ3(
1∗, 3∗, 2∗) by Corollary 2.2) is a kind of link between regular

values and reverse values.

Let Sn denote the symmetric group on n symbols. Corollary 2.2 and
Propositions 6.2 and 6.4 yield the following theorem.

Theorem 6.6. If r1 ≡ 0 (mod 2) or r2 + r3 ≡ 1 (mod 2), then

(6.6)
∑
σ∈S3

sgn(σ)ζ3(
σ(1)
−r1,

σ(2)
−r2,

σ(3)
−r3) = 0,

where sgn(σ) is the signature of σ.

Remark 6.7. When r1 + r2 ≡ 1 (mod 2), we see that∑
σ∈S2

sgn(σ)ζ2(
σ(1)
−r1,

σ(2)
−r2) = 0

from Lemma 6.1.

7. Generalization. In this section, we generalize Corollary 2.2 and the
second assertion of Proposition 6.4.
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Recall that when k = 3, Corollary 2.2 asserts that

ζ3(
1
−r1,

3
−r2,

2
−r3) = ζ3(

2
−r1,

3
−r2,

1
−r3) = ζ3(

σ(1)
−r1,

σ(3)
−r2,

σ(2)
−r3),

where σ = (1 2) ∈ S3. Generally, by induction on k, we have

Theorem 7.1. Let k be an odd integer satisfying k ≥ 3. Then for any
non-negative integers ri (i = 1, . . . , k), we have

ζk(
1
−r1,

3
−r2, . . . ,

k
−r(k+1)/2, . . . ,

4
−rk−1,

2
−rk)

= ζk(
σ(1)
−r1,

σ(3)
−r2, . . . ,

σ(k)
−r(k+1)/2, . . . ,

σ(4)
−rk−1,

σ(2)
−rk),

where σ ∈ Sk is a product (l1 l1 + 1) · · · (ln ln + 1) of transpositions, with
each lj being an odd integer satisfying 0 < lj < k and n ≤ (k − 1)/2.

Proof. When k = 3, the assertion has already been shown as Corollary
2.2. Next, we assume that the assertion holds for k ≤ m− 2 (where m > 5
is an odd integer). Then from Lemmas 3.1 and 3.2, we have

ζm(
1
−r1, s2, . . . , s(m+1)/2, . . . , sm−1,

2
−rm)

= −
r1∑

q=−1

(−r1)−q aq
rm∑
p=−1

(−rm)+p ap

× ζm−2(−r1 + s2 + q, . . . , s(m+1)/2, . . . , sm−1 − rm + p)

+ ζ(−r1)
rm∑
p=−1

(−rm)+p apζm−2(s2, . . . , s(m+1)/2, . . . , sm−1 − rm + p)

= ζm(
2
−r1, s2, . . . , s(m+1)/2, . . . , sm−1,

1
−rm).

The second and third lines of the above formula are finite sums of multiple
zeta values of depth m− 2. Hence, by the inductive assumption, we obtain
Theorem 7.1.

Theorem 7.2. Let k be an even integer satisfying k ≥ 4 and each ri
(i = 1, . . . , k) be a non-negative integer. Then

ζk(
1
−r1,

2
−r2,

4
−r3, . . . ,

k
−r(k+2)/2, . . . ,

5
−rk−1,

3
−rk)

= ζk(
σ(1)
−r1,

σ(2)
−r2,

σ(4)
−r3, . . . ,

σ(k)
−r(k+2)/2, . . . ,

σ(5)
−rk−1,

σ(3)
−rk)

and

ζk(
3
−r1,

5
−r2, . . . ,

k
−r(k−2)/2, . . . ,

4
−rk−2,

2
−rk−1,

1
−rk)

= ζk(
σ(3)
−r1,

σ(5)
−r2, . . . ,

σ(k)
−r(k−2)/2, . . . ,

σ(4)
−rk−2,

σ(2)
−rk−1,

σ(1)
−rk),
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where σ ∈ Sk is a product (l1 l1 + 1) · · · (ln ln + 1) of transpositions, with
each lj being an even integer satisfying 0 < lj < k and n ≤ (k − 2)/2.

Proof. From Lemma 3.2, we have

ζk(
1
−r1, s2, . . . , s(k+2)/2, . . . , sk−1, sk)

= −
r1∑

q=−1

(−r1)−q aqζk−1(−r1 + s2 + q, . . . , s(k+2)/2, . . . , sk−1, sk)

+ ζ(−r1)ζk−1(s2, . . . , s(k+2)/2, . . . , sk).

The right-hand side is a finite sum of multiple zeta values of depth k − 1.
Hence the first assertion of Theorem 7.2 follows from Theorem 7.1, since k
is an even integer.

Similarly, we obtain the second assertion by using Lemma 3.1 and The-
orem 7.1.

The second assertion of Proposition 6.4 implies that if we perform s3 →
−r3 last, then all of those values, namely the values ζ3(

∗
−r1,

∗
−r2,

3
−r3), are

equal to each other. The same phenomenon also appears for any depth k ≥ 3.
To see this, we use the well-known formula

(7.1)
n−1∑
m=1

mr =


r∑
j=0

(
r

j

)
Bj

nr+1−j

r + 1− j
if r ≥ 1,

n− 1 if r = 0,

where r and n are any non-negative integers satisfying n ≥ 2.
The multiple zeta function can be represented as

(7.2) ζk(s1, . . . , sk) =
∞∑

nk=1

1
nskk

nk−1∑
nk−1=1

1
n
sk−1

k−1

· · ·
n3−1∑
n2=1

1
ns22

n2−1∑
n1=1

1
ns11

.

The region in which ζk(s1, . . . , sk) is convergent when <si≤0 (i=1, . . . , k−1)
is calculated from the estimate

(7.3)
∑
n≤x

1
ns
� x1−<s if <s ≤ 0,

where x is a real number satisfying x ≥ 1. By (7.2) and (7.3), if <si ≤ 0
(i = 1, . . . , k − 1), then ζk(s1, . . . , sk) is absolutely convergent for

<sk > −
k−1∑
i=1

<si + k.

Hence ζk(−r1, . . . ,−rk−1, sk) is absolutely convergent for <sk >
∑k−1

j=1 rj+k.
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Then for <sk >
∑k−1

j=1 rj + k we have

(7.4) ζk(−r1, . . . ,−rk−1, sk)

=



r1∑
j=0

(
r1
j

)
Bj

r1 + 1− j
× ζk−1(−r1 − r2 − 1 + j,−r3, . . . ,−rk−1, sk) if r1 > 0,

ζk−1(−r2 − 1,−r3, . . . ,−rk−1, sk)
− ζk−1(−r2,−r3, . . . ,−rk−1, sk) if r1 = 0

from (7.1). In the case k = 2, the above formula implies

ζ2(−r1, s2) =


r1∑
j=0

(
r1
j

)
Bj

r1 + 1− j
ζ(s2 − r1 − 1 + j) if r1 > 0,

ζ(s2 − 1)− ζ(s2) if r1 = 0.

Thus we have the meromorphic continuation of ζ2(−r1, s2) to the whole
s2-plane. Further, the singularities of ζ2(−r1, s2) are in <s2 > 0 for −r1 ∈
Z≤0. By using (7.4) and induction on k, we can obtain the meromorphic
continuation of ζk(−r1, . . . ,−rk−1, sk) and we can see that its singularities
are in the half-plane <sk > 0. Hence we have

Lemma 7.3. The function ζk(−r1, . . . ,−rk−1, sk) can be expressed by
(7.4) for <sk >

∑k−1
j=1 rj + k. Then, inductively , (7.4) gives us the mero-

morphic continuation of ζk(−r1, . . . ,−rk−1, sk) to the whole sk-plane and
the singularities of ζk(−r1, . . . ,−rk−1, sk) are in the half-plane <sk > 0.

From Lemma 7.3, we may let sk → −rk, where rk is a non-negative
integer. Thus we have

Theorem 7.4. Let k be a positive integer satisfying k ≥ 3. Then for any
non-negative integers ri (i = 1, . . . , k), we have

ζk(
1
−r1,

2
−r2, . . . ,

k
−rk) = ζk(

σ(1)
−r1,

σ(2)
−r2, . . . ,

σ(k)
−rk),

where σ ∈ Sk satisfies σ(k) = k.

8. An algorithm to calculate multiple zeta values for all coor-
dinatewise limits. To end this article, we give an algorithm to calculate
multiple zeta values for all coordinatewise limits at non-positive integers,
which is described by induction on depth k. Namely, when calculating mul-
tiple zeta values of depth k, we assume that multiple zeta values for all
coordinatewise limits of depth up to k − 1 have already been obtained.
Hereafter (i1, . . . , ik) indicates the order of the limiting process. Note that
we can obtain multiple zeta values of depth k for i1 = 1 or ik = 1 by using

Lemmas 3.1 and 3.2, since ζk(
1
−r1, s2, . . . , sk) is a finite sum of multiple zeta



312 Y. Sasaki

values of depth k − 1 by Lemma 3.2. Similarly, the case of ik = 1 can be
obtained from Lemma 3.1. Further, we showed that multiple zeta values for
ik = k can be written using reverse values as in Theorem 7.4. Therefore we
may focus only on the case i1 6= 1, ik 6= 1 and ik 6= k.

Recall that Lemmas 3.1 and 3.2 give the analytic continuation of the
multiple zeta function and the location of its singularities (1.1)–(1.3). Since
indeterminacy points are special cases of singularity, we must observe care-
fully the behaviour of the multiple zeta function when one of the conditions
(1.1)–(1.3) is satisfied; the case of (1.2) is particularly important.

8.1. The case ik−1 > ik > 1. From Lemma 3.1, we have

ζk(∗, . . . , ∗, sk−1,
ik
−rk) =

rk∑
q=−1

(−rk)+q aqζk−1(∗, . . . , ∗, sk−1 − rk + q).

Here the symbol ∗ stands for
iλ
−rλ or sλ for 1 ≤ λ ≤ k − 2. We note that in

the above formula condition (1.2), and hence of course (1.3), is not satisfied
in general. Since the right-hand side above is a finite sum of multiple zeta
values of depth k − 1, we can calculate multiple zeta values for this case
inductively. Therefore multiple zeta values for limiting processes of this type
are described by multiple zeta values of depth k−1 at non-positive integers.

8.2. The case ik−1 < ik < k. In this case, we have to consider the
behaviour of ζk(s1, . . . ,−rk−1, sk) at sk = rk ∈ Z. The following lemma is
an essential tool in this case. Hereafter we omit the index (i1, . . . , ik) for
convenience.

Lemma 8.1. ζk(s1, . . . , sk) has a simple pole at sk = 1 with residue
ζk−1(s1, . . . , sk−1) for fixed (s1, . . . , sk−1) ∈ Ck−1 which does not satisfy the
conditions (1.2) and (1.3) with sk = 1. Further , let rj (j = v, . . . , k − 1) be
a non-negative integer , and set

Rk,v :=
k∑
j=v

rj

and

(8.1) Zk,v(sk) := ζk(s1, . . . , sv−1,−rv, . . . ,−rk−1, sk)

(2 ≤ v ≤ k − 1 for k ≥ 3), where (s1, . . . , sv−1,−rv, . . . ,−rk−1) ∈ Ck−1

does not satisfy condition (1.3) for k − v + 2 ≤ j ≤ k with sk = rk ∈ Z
and is fixed. Then Zk,v(sk) has a simple pole at each sk = rk ∈ Z≥1 for
1 ≤ rk ≤ (k − v) + Rk−1,v + 1 with residue Ck,v(s1, . . . ,−rk−1; rk) which
satisfies the following inductive relation:
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(8.2) Ck,v(s1, . . . , sv−1,−rv, . . . ,−rk−1; rk)
= δrkζk−1(s1, . . . , sv−1,−rv, . . . ,−rk−1)

+
(k−v)+Rk−1,v−rk∑
q=Mk,(δrk

−1)

(rk)+q aq

× Ck−1,v(s1, . . . , sv−1,−rv, . . . ,−rk−2;−rk−1 + rk + q),

where Mk,ν = Mk,ν(−rk−1; rk) := max{ν, 1− (rk − rk−1)} and

δµ =
{

1 if µ = 1,
0 otherwise.

Remark 8.2. The above lemma still holds if some (not all) of s1, . . . , sv−1

are fixed non-positive integers. Namely, the integer v in the above lemma
implies that v := 1 + max{m ∈ N : im > ik} for a given order of the limiting
process (i1, . . . , ik).

Proof of Lemma 8.1. First, we prove the first assertion of the above
lemma. Hereafter we assume that l is a sufficiently large positive integer.
From Lemma 3.1,

ζk(s1, . . . , sk) =
ζk−1(s1, . . . , sk−1 + sk − 1)

sk − 1

+
l∑

q=0

(sk)+q aqζk−1(s1, . . . , sk−1 + sk + q)−
∑

0<n1<···<nk−1

φl(nk−1, sk)
ns11 · · ·n

sk−1

k−1

.

The possible singularities of ζk(s1, . . . , sk) come from the factor 1/(sk−1) in
the first term and from ζk−1(s1, . . . , sk−1 + sk + q)’s. The former gives (1.1),
while the latter give (1.2) and (1.3). Therefore ζk−1(s1, . . . , sk+sk−1+q)’s
are regular for sk = 1 and (s1, . . . , sk−1, 1) ∈ Ck which do not satisfy condi-
tions (1.2) and (1.3). Hence for fixed such (s1, . . . , sk−1) we have

ζk(s1, . . . , sk) ∼
ζk−1(s1, . . . , sk−1)

sk − 1
as sk → 1.

Here we have used the Taylor expansion of ζk−1(s1, . . . , sk−1 + sk − 1) at
sk = 1.

Secondly, we prove the second assertion of Lemma 8.1. The proof is by
induction on k. When k = 3, we have

ζ3(s1,−r2, s3) =
ζ2(s1, s3 − r2 − 1)

s3 − 1

+
l∑

q=0

(s3)+q aqζ2(s1, s3 − r2 + q)−
∑

0<n1<n2

φl(n2, s3)
ns11 n

−r2
2

.
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From condition (1.2), ζ3(s1,−r2, s3) is regular for s3 = r3 ≥ r2 + 3. Fur-
ther, we can see that ζ3(s1,−r2, s3) is regular at s3 = −r3 ∈ Z≤0. In fact,
ζ2(s1, s3− r2 + q) has a simple pole at s3 = −r3 when q = r2 + r3 + 1. How-
ever, (s3)+r2+r3+1 also has a simple zero at s3 = −r3. Hence those cancel each
other. Therefore we may focus on the case s3 = r3 ∈ Z≥1 and 1 ≤ r3 ≤ r2+2.
First we consider the case r3 ≥ 2. We assume that (s1,−r2, r3) ∈ C3 does
not satisfy condition (1.3) and s1 is fixed. By the first assertion of Lemma
8.1, ζ2(s1, s3− r2 + q) has a simple pole at s3 = r3 when q = r2− r3 + 1, and
its residue is ζ(s1). For r3 = 1, the first term on the right-hand side of the
above formula is also the singular part, and its residue is ζ2(s1,−r2). Hence
we have

(8.3) ζ3(s1,−r2, s3)

∼ 1
s3 − r3

{δr3ζ2(s1,−r2) + (r3)+r2−r3+1ar2−r3+1ζ(s1)} as s3 → r3.

Note that the residue of the above formula equals C3,2(s1,−r2; r3) of Lem-
ma 8.1.

Next we assume that the second assertion of Lemma 8.1 is true up to
k − 1. Similarly, from Lemma 3.1, we have

Zk,v(sk) =
ζk−1(s1, . . . , sv−1,−rv, . . . , sk − rk−1 − 1)

sk − 1
(8.4)

+
l∑

q=0

(sk)+q aqζk−1(s1, . . . , sv−1,−rv, . . . , sk − rk−1 + q)

−
∑

0<n1<···<nk−1

φl(nk−1, sk)

ns11 · · ·n
−rk−1

k−1

.

It is easily seen that Zk,v(sk) is regular at sk = −rk ∈ Z≤0 for the same
reason as in the case of depth 3. Further, from (1.3) for j = k−v+1, Zk,v(sk)
is regular at sk = rk ∈ Z>1 for rk ≥ (k − v) + Rk−1,v + 2. Hence we may
consider only the case sk = rk ∈ Z≥1 and 1 ≤ rk ≤ (k−v)+Rk−1,v+1. First,
we consider the case rk ≥ 2. Then from the inductive assumption and (8.4),
each ζk−1(s1, . . . ,−rk−2, sk−rk−1 +q) for Mk,−1 ≤ q ≤ (k−v)+Rk−1,v−rk
has a simple pole at sk = rk with residue Ck−1,v(s1, . . . ,−rk−2; rk−rk−1+q).
Thus we obtain

Zk,v(sk) ∼
1

sk − rk

{ (k−v)+Rk−1,v−rk∑
q=Mk,−1

(rk)+q aq

× Ck−1,v(s1, . . . ,−rv, . . . ,−rk−2; rk − rk−1 + q)
}

as sk → rk.
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On the other hand, when rk = 1, the first term on the right-hand side of
(8.4) is also the singular part with residue ζk−1(s1, . . . ,−rv, . . . ,−rk). Hence
we have the second assertion of Lemma 8.1.

We return to the case ik−1 < ik < k. From Lemma 3.1, we have

ζk(s1, . . . ,−rv, . . . ,−rk−1, sk)

=
l∑

q=−1

(sk)+q aqζk−1(s1, . . . ,−rv, . . . , sk − rk−1 + q)

−
∑

0<n1<···<nk−1

φl(nk−1, sk)

ns11 · · ·n
−rk−1

k−1

.

If we let sk → −rk, then Lemma 8.1 suggests that there exist singular terms
in the range 1 +Rk,k−1 ≤ q ≤ (k− v) +Rk,v. However, the factor (sk)+q also
has a simple zero at zk = −rk. Hence

lim
sk→−rk

(k−v)+Rk,v∑
q=1+Rk,k−1

(sk)+q aqζk−1(s1, . . . ,−rv, . . . ,−rk−2, sk − rk−1 + q)

= lim
sk→−rk

(k−v)+Rk−2,v∑
l=1

(sk)+l+Rk,k−1
al+Rk,k−1

× ζk−1(s1, . . . ,−rv, . . . ,−rk−2, sk + rk + l)

=
(k−v)+Rk−2,v∑

l=1

(−1)rkrk!(rk−1 + l − 1)!al+Rk,k−1

× Ck−1,v(s1, . . . ,−rv, . . . ,−rk−2; l).

Thus we obtain

(8.5) ζk(s1, . . . ,−rv, . . . ,−rk−1,−rk)

=
rk∑

q=−1

(−rk)+q aqζk−1(s1, . . . ,−rv, . . . ,−rk − rk−1 + q)

+
(k−v)+Rk−2,v∑

l=1

(−1)rkrk!(rk−1 + l − 1)!al+Rk,k−1

× Ck−1,v(s1, . . . ,−rv, . . . ,−rk−2; l).
Hence the multiple zeta function of depth k can also be expressed by those
of depth ≤ k − 1 in this case. Therefore, when ik−1 < ik < k, we can
obtain multiple zeta values for coordinatewise limits at non-positive integers
inductively by using (8.5).
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Remark 8.3. Note that the residue Ck,v involves the multiple zeta val-
ues of depth ≤ k − 1 (for instance see (8.3)). Therefore the assumption on
variables in Lemma 8.1 is required to avoid singularities of multiple zeta
functions. However, in the case of the limiting process with order, this as-
sumption may be removed once we apply Lemma 8.1.

Example 8.4. When k = 4 and (i1, i2, i3, i4) = (4, 2, 1, 3), we put v = 2
in Lemma 8.1. Then

ζ4(
4
−r1,

2
−r2,

1
−r3,

3
−r4) =

r4∑
q=−1

(−r4)+q aqζ3(
3
−r1,

1
−r2,

2
−r3 − r4 + q)

+ (−1)r4r4!r3!a1+r3+r4ζ2(
2
−r1,

1
−r2)

+ (−1)r4r4!
∑

1≤l≤r2+1

(r3 + l)!ar3+r4+1+l(l + 1)+r2−lar2−lζ(−r1).

Further, we can see that ζ4(
4∗, 2∗, 1∗, 3∗) = ζ4(

4∗, 1∗, 2∗, 3∗).
When (i1, i2, i3, i4) = (2, 4, 1, 3), we have

ζ4(
2
−r1,

4
−r2,

1
−r3,

3
−r4) =

r4∑
q=−1

(−r4)+q aqζ3(
1
−r1,

3
−r2,

2
−r3 − r4 + q)

+ (−1)r4r4!r3!ar4+r3+1ζ2(
1
−r1,

2
−r2).

Further, we can see that ζ4(
2∗, 4∗, 1∗, 3∗) = ζ4(

1∗, 4∗, 2∗, 3∗).
When (i1, i2, i3, i4) = (4, 3, 1, 2), we have

ζ4(
4
−r1,

3
−r2,

1
−r3,

2
−r4) =

r4∑
q=−1

(−r4)+q aqζ3(
3
−r1,

2
−r2,

1
−r3 − r4 + q)

+ (−1)r4r4!r3!ar4+r3+1ζ2(
2
−r1,

1
−r2).

When (i1, i2, i3, i4) = (3, 4, 1, 2), we have

ζ4(
3
−r1,

4
−r2,

1
−r3,

2
−r4) =

r4∑
q=−1

(−r4)+q aqζ3(
2
−r1,

3
−r2,

1
−r3 − r4 + q)

+ (−1)r4r4!r3!ar4+r3+1ζ2(
1
−r1,

2
−r2).
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