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Effective results for linear equations
in two unknowns from a multiplicative division group

by

Attila Bérczes (Debrecen), Jan-Hendrik Evertse (Leiden)
and Kálmán Győry (Debrecen)

1. Introduction. In the literature there are various effective results on
S-unit equations in two unknowns. In our paper we work out effective results
in a quantitative form for the more general equation

(1.1) a1x1 + a2x2 = 1 in (x1, x2) ∈ Γ,
where a1, a2 ∈ Q∗ and Γ is an arbitrary finitely generated subgroup of
positive rank of the multiplicative group (Q∗)2 = Q∗×Q∗ endowed with co-
ordinatewise multiplication (see Theorems 2.1 and 2.2). Such more general
results can be used to improve upon existing effective bounds on the solu-
tions of discriminant equations and certain decomposable form equations.
These will be worked out in a forthcoming work.

In fact, in the present paper we prove even more general effective results
for equations of the shape (1.1) with solutions (x1, x2) from a larger group,
namely the division group Γ = {(x1, x2) ∈ (Q∗)2 | ∃k ∈ Z>0 : (xk1, x

k
2) ∈ Γ},

and even with solutions (x1, x2) “very close” to Γ . To our knowledge, these
are the first effective results of this kind. Our results give an effective upper
bound for both the height of a solution (x1, x2) and the degree of the field
Q(x1, x2); see Theorems 2.3 and 2.5 and Corollary 2.4.

In the proofs of these theorems we utilize Theorem 2.1 (on (1.1) with
solutions from Γ ), as well as a result of Beukers and Zagier [2], which as-
serts that (1.1) has at most two solutions (x1, x2) ∈ (Q∗)2 with very small
height.

The hard core of the proofs of our results mentioned above is a new
effective lower bound for |1− αξ|v, where α is a fixed element from a given
algebraic number field K, v is a place of K, and the unknown ξ is taken from
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a given finitely generated subgroup of K∗ (see Theorem 4.1). This result is
proved using estimates based on linear forms in logarithms. Our Theorem
4.1 has a consequence (cf. Theorem 4.2) which is of a similar flavour as
earlier results by Bombieri [3], Bombieri and Cohen [4], [5], and Bugeaud [7]
(see also Bombieri and Gubler [6, Section 5.4]) but it gives in many cases a
better estimate. Consequently, Theorem 4.1 leads to an explicit upper bound
for the heights of the solutions of (1.1) which is in many cases sharper than
what is obtainable from the work of Bombieri et al.

In Section 2 we state our results concerning (1.1), in Section 3 we intro-
duce some notation, in Section 4 we state our results concerning |1− αξ|v,
and in Sections 5, 6 we prove our theorems.

2. Results. To state our results we need the following notation. If G
is a finitely generated abelian group, then {ξ1, . . . , ξr} is called a system of
generators of G/Gtors if ξ1, . . . , ξr ∈ G, ξ1, . . . , ξr /∈ Gtors, and the reductions
of ξ1, . . . , ξr modulo Gtors generate G/Gtors. Such a system is called a basis
of G/Gtors if its reduction modulo Gtors is a basis of G/Gtors.

We fix an algebraic closure Q of Q and assume that all algebraic number
fields occurring henceforth are contained in Q. We denote by (Q∗)2 the group
{(x1, x2) |x1, x2 ∈ Q∗} with coordinatewise multiplication: (x1, x2)(y1, y2) =
(x1y1, x2y2). Further, we denote by h(x) the absolute logarithmic height of
x ∈ Q∗ and define the height of x = (x1, x2) ∈ (Q∗)2 by h(x) = h(x1, x2) :=
h(x1)+h(x2). Notice that this definition differs from the usual one for points
in (Q∗)2.

The ring of integers of an algebraic number field K is denoted by OK
and the set of places of K by MK . For v ∈MK we define

(2.1) N(v) :=
{

2 if v is infinite,
N(℘v) if v is finite,

where ℘v is the prime ideal ofOK corresponding to v andN(℘v)=#(OK/℘v)
is the norm of ℘v.

Finally, we define log∗ a := max(1, log a) for a > 0 and log∗ 0 := 1.
We consider again the equation

(1.1) a1x1 + a2x2 = 1 in (x1, x2) ∈ Γ,
where a1, a2 ∈ Q∗ and where Γ is a finitely generated subgroup of (Q∗)2 of
rank > 0. Let w1 = (ξ1, η1), . . . ,wr = (ξr, ηr) be a system of generators of
Γ/Γtors which is not necessarily a basis. Notice that every element of Γ can
be expressed as ζwx1

1 · · ·wxr
r where x1, . . . , xr ∈ Z and ζ ∈ Γtors, i.e., the

coordinates of ζ are roots of unity.
Define K := Q(Γ ), i.e. the field generated by Γ over Q. We do not

require that a1, a2 ∈ K. Let S be the smallest set of places of K containing
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all infinite places and such that w1, . . . ,wr ∈ (O∗S)2, where O∗S denotes the
group of S-units in K. Put

QΓ := h(w1) · · ·h(wr), d := [K : Q], s := #S, N := max
v∈S

N(v).

Denote by t the maximum of the rank of the subgroup of Q∗ generated by
ξ1, . . . , ξr and the rank of the subgroup generated by η1, . . . , ηr. In view of
rankΓ > 0 we have t > 0. We define

(2.2)

c1(r, d, t) := 3(16ed)3(t+2)(d(log 3d)3)r−t(t/e)t,

A := 26c1(r, d, t)s
N

logN
QΓ max{log(c1(r, d, t)sN), log∗QΓ },

H := max(h(a1), h(a2), 1).

Then our first result reads as follows:

Theorem 2.1. For every solution (x1, x2) ∈ Γ of (1.1) we have

(2.3) h(x1, x2) < AH.

We shall deduce Theorem 2.1 from Theorem 2.2 below. LetG be a finitely
generated multiplicative subgroup of Q∗ of rank t > 0, and ξ1, . . . , ξr a
system of generators of G/Gtors. Let K be a number field containing G, and
S a finite set of places of K containing the infinite places such that G ⊆ O∗S .
We consider the equation

(2.4) a1x1 + a2x2 = 1 in x1 ∈ G, x2 ∈ O∗S ,
where a1, a2 ∈ Q∗. Let d := [K : Q]. Let s be the cardinality of S, let
N := maxv∈S N(v) and put

QG := h(ξ1) · · ·h(ξr).

Theorem 2.2. Under the above assumptions and notation, every solu-
tion of (2.4) satisfies

(2.5) h(x1) < c1(r, d, t)s
N

logN
QGH log∗

(
Nh(x1)
H

)
and

max(h(x1), h(x2)) < 6.5c1(r, d, t)s
N

logN
QGH(2.6)

×max{log(c1(r, d, t)sN), log∗QG},
where as before H := max(h(a1), h(a2), 1) and c1(r, d, t) is the constant de-
fined in (2.2). If in particular r = t and {ξ1, . . . , ξt} is a basis of G/Gtors,
then in (2.5) and (2.6) we can replace c1(r, d, t) by c1(d, t) = 73(16ed)3t+5.

An important special case of equation (2.4) is when G = O∗S . Then (2.4)
is called an S-unit equation. The first explicit upper bound for the height
of the solutions of S-unit equations was given by Győry [12] by means of
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the theory of logarithmic forms. This bound was later improved by several
authors. In this special case we have t = s − 1 and we may choose a basis
{ξ1, . . . , ξs−1} for O∗S/(O∗S)tors such that

(2.7) h(ξ1) · · ·h(ξs−1) ≤ ((s− 1)!)2

2s−2ds−1
RS ,

where RS denotes the S-regulator in K (see e.g. Bugeaud and Győry [8]).
The best known bounds for the solutions of S-unit equations are due to
Bugeaud [7] and Győry and Yu [13]. As an immediate consequence, one can
derive from our Theorem 2.2 and (2.7) an explicit bound for the solutions
of S-unit equations which is comparable with the best known ones.

We now consider equations such as (1.1) but with solutions (x1, x2) from
a larger set. We keep the notation introduced before Theorem 2.1.

The division group of Γ is given by

Γ := {x ∈ (Q∗)2 | ∃k ∈ Z>0 with xk ∈ Γ}.
For any ε > 0 define the “cylinder” and “truncated cone” around Γ by

(2.8) Γ ε := {x ∈ (Q∗)2 | ∃y, z with x = yz, y ∈ Γ , z ∈ (Q∗)2, h(z) < ε}
and

(2.9) C(Γ , ε) := {x ∈ (Q∗)2 | ∃y, z with x = yz, y ∈ Γ ,
z ∈ (Q∗)2, h(z) < ε(1 + h(y))},

respectively. The set Γ ε was introduced by Poonen [15] and the set C(Γ , ε)
by the second author [10] (both in a much more general context).

We emphasize that points from Γ , Γ ε or C(Γ , ε) do not have their coor-
dinates in a prescribed number field. So for effective results on Diophantine
equations with solutions from Γ , Γ ε or C(Γ , ε), we need an effective upper
bound not only for the height of each solution, but also for the degree of the
field which it generates. We fix a1, a2 ∈ Q∗ and define

K := Q(Γ ), K0 := Q(a1, a2, Γ ).

The quantities d, s, N , H and QΓ will have the same meaning as in Theo-
rem 2.1 and A will be the constant defined in (2.2). Further, we put

h0 := max{h(ξ1), . . . , h(ξr), h(η1), . . . , h(ηr)},
where wi = (ξi, ηi) for i = 1, . . . , r is the chosen system of generators for
Γ/Γtors.

Consider now the equation

(2.10) a1x1 + a2x2 = 1 in (x1, x2) ∈ Γ ε.
Theorem 2.3. Suppose that (x1, x2) is a solution of (2.10) and that

(2.11) ε < 0.0225.
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Then

(2.12) h(x1, x2) ≤ Ah(a1, a2) + 3rh0A

and

(2.13) [K0(x1, x2) : K0] ≤ 2.

The following consequence is immediate:

Corollary 2.4. With the notation and assumptions from above, let
(x1, x2) be a solution of

(2.14) a1x1 + a2x2 = 1 in (x1, x2) ∈ Γ .

Then h(x1, x2) ≤ Ah(a1, a2) + 3rh0A and [K0(x1, x2) : K0] ≤ 2.

Finally, we consider the equation

(2.15) a1x1 + a2x2 = 1 in (x1, x2) ∈ C(Γ , ε).

Theorem 2.5. Suppose that (x1, x2) is a solution of (2.15) and that

(2.16) ε <
0.09

8Ah(a1, a2) + 20rh0A
.

Then

(2.17) h(x1, x2) ≤ 3Ah(a1, a2) + 5rh0A

and

(2.18) [K0(x1, x2) : K0] ≤ 2.

The paper [1] gives an explicit upper bound for the number of solutions
of (2.14), while [11] gives an explicit upper bound for the number of solutions
of a multivariate generalization of (2.14). With the techniques from [11] it is
possible to extend this to higher dimensional generalizations of (2.10). But
estimating the number of solutions of higher dimensional generalizations of
(2.15) is out of reach. The sets Γ ε and C(Γ , ε) have been defined in the
much more general context of semi-abelian varieties (see [15], [18]), and
in [16], [17], Rémond proved quantitative analogues of the work of [11] for
subvarieties of abelian varieties and subvarieties of tori. We mention that the
results of [1], [11] and [15]–[18] are ineffective, in that they do not provide
an algorithm to determine the solutions.

In a forthcoming work, to be written with Pontreau, we extend our
effective results concerning (2.10) and (2.15) to equations f(x1, x2) = 0 in
(x1, x2) from Γ ε or C(Γ , ε), where f ∈ Q[X1, X2] is an arbitrary polynomial.
Further, we apply the results from the present paper to obtain effective
and quantitative results for points in algebraic subvarieties of Gn

m from a
restricted class.
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3. Notation. In this section we collect the notation used in our paper.
Let K be an algebraic number field of degree d. Denote by OK its ring of
integers and by MK its set of places. For v ∈ MK , we define an absolute
value | · |v as follows. If v is infinite and corresponds to σ : K → C, then
we put |x|v = |σ(x)|dv/d for x ∈ K, where dv = 1 or 2 according as σ(K) is
contained in R or not; if v is a finite place corresponding to a prime ideal ℘
of OK , then we put |x|v = N(℘)− ord℘ x/d for x ∈ K \{0}, and |0|v = 0. Here
N(℘) denotes the norm of ℘, and ord℘ x the exponent of ℘ in the prime ideal
factorization of the principal fractional ideal (x). The absolute logarithmic
height h(x) of x ∈ K is defined by

(3.1) h(x) =
∑
v∈MK

max(0, log |x|v).

More generally, if x ∈ Q then choose an algebraic number field K such that
x ∈ K and define h(x) by (3.1). This definition does not depend on the
choice of K. Notice that h(x) = 0 if and only if x ∈ Q∗tors, where Q∗tors is the
group of roots of unity in Q∗.

Let S denote a finite subset of MK containing all infinite places. Then
x ∈ K is called an S-integer if |x|v ≤ 1 for all v ∈ MK \ S. The S-integers
form a ring in K, denoted by OS . Its unit group, denoted by O∗S , is called
the group of S-units. It follows from (3.1) and the product formula that

(3.2) h(x) =
1
2

∑
v∈S
|log |x|v| if x ∈ O∗S .

For x = (x1, x2) ∈ (Q∗)2 define

h(x) := h(x1) + h(x2).

Notice that for x = (x1, x2), y = (y1, y2) ∈ (Q∗)2 we have

h(xy) ≤ h(x) + h(y),

h(x) = 0 ⇔ x ∈ (Q∗tors)
2,

h(xa) = |a|h(x) for a ∈ Q,

where for a ∈ Q we define xa := (xa1, x
a
2). The point xa is determined only

up to multiplication with elements from (Q∗tors)
2, but h(xa) is well defined.

4. Diophantine approximation by elements from a finitely gen-
erated multiplicative group. Let again K be an algebraic number field
of degree d, MK the set of places on K, and G a finitely generated multi-
plicative subgroup of K∗ of rank t > 0. Further, let {ξ1, . . . , ξr} be a system
of (not necessarily multiplicatively independent) generators of G such that
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ξ1, . . . , ξr are not roots of unity. Put

QG := h(ξ1) · · ·h(ξr).

Further, for any v ∈MK let N(v) be as in (2.1).
Theorem 2.2 and then subsequently Theorem 2.1 will be deduced from

the following theorem.

Theorem 4.1. Let α ∈ K∗ with max(h(α), 1) ≤ H and let v ∈ MK .
Then for every ξ ∈ G for which αξ 6= 1, we have

(4.1) log |1− αξ|v > −c2(r, d, t)
N(v)

logN(v)
QGH log∗

(
N(v)h(ξ)

H

)
,

where
c2(r, d, t) = (16ed)3(t+2)(d(log 3d)3)r−t(t/e)t.

If in particular r = t and {ξ1, . . . , ξt} is a basis of G/Gtors, then (4.1) holds
with c2(d, t) = 36(16ed)3t+5(log∗ d)2 instead of c2(r, d, t).

It should be observed that c2(d, t) does not contain a tt factor.
The following theorem is in fact an immediate consequence of Theo-

rem 4.1.

Theorem 4.2. Let α ∈ K∗ with max(h(α), 1) ≤ H, let v ∈MK , and let
0 < κ ≤ 1. Then for every ξ ∈ G with αξ 6= 1 and

(4.2) log |1− αξ|v < −κh(ξ)

we have

(4.3) h(ξ) < (c2(r, d, t)/κ)
N(v)

logN(v)
QGH log∗

(
N(v)h(ξ)

H

)
and

h(ξ) < 6.4(c2(r, d, t)/κ)
N(v)

logN(v)
QGH(4.4)

×max
(
log((c2(r, d, t)/κ)N(v)), log∗QG

)
with the constant c2(r, d, t) specified in Theorem 4.1.

If in particular r = t and {ξ1, . . . , ξt} is a basis of G/Gtors, then (4.3)
and (4.4) hold with c2(d, t) instead of c2(r, d, t).

We note that when applying Theorem 4.2 to equation (2.4), inequality
(4.3) yields better bounds in Theorem 2.2 than (4.4).

The main tool in the proofs of Theorems 4.1 and 4.2 is the theory of
logarithmic forms, more precisely Theorem C in Section 5. Bombieri [3] and
Bombieri and Cohen [4], [5] have developed another effective method in Dio-
phantine approximation, based on an extended version of the Thue–Siegel
principle, the Dyson lemma and some geometry of numbers. Bugeaud [7],
following their approach and combining it with estimates for linear forms in
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two and three logarithms, obtained sharper results than Bombieri and Co-
hen. Bugeaud deduced an explicit upper bound for h(ξ) from the inequality

(4.5) log |1− αξ|v < −κh(αξ).

It is easy to check that apart from the trivial case min(h(ξ), h(αξ)) ≤ h(α)
when h(ξ) ≤ 2H follows, we have

h(ξ)/2 ≤ h(αξ) ≤ 2h(ξ).

Hence, if ξ and αξ are not roots of unity, (4.5) and (4.2) can be deduced
from each other with κ replaced by κ/2. It follows from Bugeaud’s theorem
that if (4.2) holds with 0 < κ ≤ 1, then

(4.6) h(ξ) ≤
{

10T max(H,T ) if v is infinite,
8c3(d, κ)T max(H, 40T ) if v is finite,

where

c3(d, κ) =
{

8 · 1019(d4(log 3d)7/κ) log∗(2d/κ) if v is infinite,
8 · 106(d5/κ)(log∗(2d/κ))2 if v is finite,

and
T = (2rc3(d, κ))rN(v)(logN(v))QG.

It is easily seen that the bound in (4.4) has a better dependence on each
parameter than the bound in (4.6), except possibly QG and H. In fact, the
bound in (4.6) is smaller than that in (4.4) precisely when both QG and
H logQG/QG are large relative to N(v), d, r, t and κ, and in that case, the
bound (4.6) is at most a factor logQG better than (4.4).

Finally, it should be observed that in contrast with (4.6), our bound in
(4.4) contains only the factor tt, but not rr. Furthermore, if in particular
r = t and {ξ1, . . . , ξt} is a basis of G/Gtors, there is no factor tt at all in our
bound in (4.4). We note that in the general case, even the factor tt has been
removed from (4.4) by the second and third authors in a forthcoming work.

We should remark here that we obtained Theorem 4.1 and its conse-
quences by applying lower bounds for linear forms in logarithms in an ar-
bitrary number of variables, whereas Bugeaud used lower bounds for linear
forms in two or three logarithms. We used a lemma from the geometry of
numbers to replace a dependence on the coefficients of the linear form in
logarithms associated with (4.1) by one on the height of ξ.

5. Proofs of Theorems 4.1 and 4.2. We need several auxiliary re-
sults.

Keeping the notation of Section 4, let K be an algebraic number field of
degree d and assume that it is embedded in C. Let

(5.1) Λ = αb11 · · ·α
bn
n − 1,
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where α1, . . . , αn are n (≥ 2) non-zero elements of K, and b1, . . . , bn are
rational integers, not all zero. Put

B∗ = max{|b1|, . . . , |bn|}.
Let A1, . . . , An be reals with

(5.2) Ai ≥ max{dh(αi), π} (i = 1, . . . , n).

Theorem A (Matveev [14]). Let n ≥ 2. Suppose that Λ 6= 0, bn = ±1,
and let B be a real number with

(5.3) B ≥ max{B∗, 2emax(nπ/
√

2, A1, . . . , An−1)An}.
Then

(5.4) log |Λ| > −c1(n, d)A1 · · ·An log(B/(
√

2An)),

where

c1(n, d) = min{1.451(30
√

2)n+4(n+ 1)5.5, π26.5n+27}d2 log(ed).

Proof. This is a consequence of Corollary 2.3 of Matveev [14]; see Propo-
sition 4 in Győry and Yu [13].

Let B and Bn be real numbers satisfying

(5.5) B ≥ max{|b1|, . . . , |bn|}, B ≥ Bn ≥ |bn|.
Denote by ℘ a prime ideal of the ring of integers OK and let e℘ and f℘ be
the ramification index and the residue class degree of ℘, respectively. Thus
N(℘) = pf℘ , where p is the prime number below ℘.

Theorem B (Yu [22]). Let n ≥ 2. Assume that ordp bn ≤ ordp bi for
i = 1, . . . , n, and set

h′i = max{h(αi), 1/(16e2d2)}, i = 1, . . . , n.

If Λ 6= 0, then for any real δ with 0 < δ ≤ 1/2 we have

ord℘ Λ ≤ c2(n, d)en℘
N(℘)

(logN(℘))2
(5.6)

×max
{
h′1 · · ·h′n log(Mδ−1),

δB

Bnc3(n, d)

}
,

where
c2(n, d) = (16ed)2(n+1)n3/2 log(2nd) log(2d),

c3(n, d) = (2d)2n+1 log(2d) log3(3d),

and
M = Bnc4(n, d)N(℘)n+1h′1 · · ·h′n−1

with
c4(n, d) = 2e(n+1)(6n+5)d3n log(2d).
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Proof. This is the second consequence of the Main Theorem in Yu [22].

The following theorem is a consequence of Theorems A and B.

Theorem C. Let n ≥ 2 and v ∈ MK . Suppose that in (5.1) we have
Λ 6= 0, bn = ±1 and that α1, . . . , αn−1 are not roots of unity. Let

Qα := h(α1) · · ·h(αn−1), H := max(h(αn), 1).

If

(5.7) B ≥ max(|b1|, . . . , |bn−1|, 2e(3d)2nQαH),

then

(5.8) log |Λ|v > −c5(n, d)
N(v)

logN(v)
QαH log∗

(
BN(v)
H

)
with

c5(n, d) = λ(16ed)3n+2(log∗ d)2,

where λ = 1 or 12 according as n ≥ 3 or n = 2.

To deduce Theorem C from Theorems A and B, we need the following.

Lemma 5.1 (Voutier [21]). Suppose that α is a non-zero algebraic num-
ber of degree d which is not a root of unity. Then

(5.9) dh(α) ≥
{

log 2 if d = 1,
2/(log 3d)3 if d ≥ 2.

Proof. For d ≥ 2 this is due to Voutier [21]. He also showed that for
d ≥ 2 this lower bound may be replaced by (1/4)(log log d/log d)3.

Proof of Theorem C. First assume that v is infinite. We apply Theorem A
with Ai = max{dh(αi), π} for i = 1, . . . , n. Then using (5.9), it is easy to
see that

A1 · · ·An ≤ (2.52d)2nQαH.

Further, we have
√

2An > H/N(v) and

2emax{nπ/
√

2, A1, . . . , An−1}An ≤ 2e(3d)2nQαH.

Now (5.7) implies (5.3), and (5.8) follows from the inequality (5.4) of The-
orem A.

Next assume that v is finite. Keeping the notation of Theorem B and
using again (5.9), we infer that

h′i = h(αi) for i = 1, . . . , n− 1, h′n = h(αn).

Hence H = h′n if h(αn) ≥ 1 and H = 1 otherwise. Choosing δ = h′1 · · ·h′n/B
and Bn = 1 in Theorem B, (5.7) implies that δ ≤ 1/2. Using the fact
that |Λ|v = N(℘)− ord℘ Λ, after some computation (5.8) follows from (5.6) of
Theorem B.
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Theorem 4.1 will be proved by combining Theorem C with the following
result from the geometry of numbers. Let t be a positive integer. A convex
distance function on Rt is a function f := Rt → R≥0 such that

f(x + y) ≤ f(x) + f(y) for x,y ∈ Rt,

f(λx) = |λ|f(x) for x ∈ Rt, λ ∈ R,
f(x) = 0 ⇔ x = 0.

Lemma 5.2. Let f be a convex distance function on Rt. Let {a1, . . . ,at}
be any basis of Zt for which the product f(a1) · · · f(at) is minimal. Let
x ∈ Zt and suppose that x = b1a1 + · · ·+ btat with b1, . . . , bt ∈ Z. Then

(5.10) max(|b1|f(a1), . . . , |bt|f(at)) ≤ c6(t)f(x),

where c6(t) = t2t.

Remark. Schlickewei [19] proved that there exists a basis {a1, . . . ,at}
of Zt satisfying (5.10) with 4t instead of c6(t), but it is not clear whether for
this basis, the product f(a1) · · · f(at) is minimal. In our proof of Theorem
4.1, the minimality of f(a1) · · · f(at) is crucial, while an improvement of
c6(t) would only have little influence on the final result.

Proof of Lemma 5.2. Let C = {x ∈ Rt : f(x) ≤ 1}. This is a compact,
convex body which is symmetric around 0. Let λ1, . . . , λt denote the suc-
cessive minima of C with respect to the lattice Zt. Since λ1 ≤ · · · ≤ λt, it
follows from a result of Mahler (see e.g. Cassels [9, pp. 135–136, Lemma 8])
that there exists a basis y1, . . . ,yt of Zt such that f(yi) ≤ max(1, i/2)λi for
i = 1, . . . , t. Together with Minkowski’s theorem on successive minima, this
gives

(5.11) f(a1) · · · f(at) ≤ f(y1) · · · f(yt) ≤ 2t! ·Vol(C)−1,

where Vol(C) denotes the volume of C.
By Jordan’s theorem or John’s lemma (see e.g. Schmidt [20, pp. 87–89],

there is a t-dimensional ellipsoid E in Rt such that E ⊆ C ⊆ (
√
t)E. Further-

more, there is a t × t real non-singular matrix A such that E = {x ∈ Rt :
‖Ax‖ ≤ 1}, where ‖ · ‖ denotes the Euclidean norm. Thus

(5.12)
1√
t
‖Ax‖ ≤ f(x) ≤ ‖Ax‖ for x ∈ Rt.

Consequently,

(5.13) V (t)|det(A)|−1 ≤ Vol(C) ≤ tt/2V (t)|det(A)|−1,

where V (t) denotes the volume of the t-dimensional unit ball.
Now let x = b1a1 + · · · + btat with b1, . . . , bt ∈ Z. Then Ax = b1(Aa1)

+ · · · + bt(Aat). Let B be the matrix with columns Aa1, . . . , Aat. Since
|det(a1, . . . ,at)| = 1, we have |det(B)| = |det(A)|. By this fact, Cramer’s
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rule and Hadamard’s inequality, for i = 1, . . . , t we have

|bi| = |det(Aa1, . . . , Aai−1, Ax, Aai+1, . . . , Aat)|/|det(B)|
≤ ‖Aa1‖ · · · ‖Aai−1‖ · ‖Ax‖ · ‖Aai+1‖ · · · ‖Aat‖/|det(A)|.

Together with (5.12), (5.11) and (5.13), this implies

|bi|f(ai) ≤ t(t−1)/2(f(a1) · · · f(at)/|det(A)|)f(x)

≤ t(t−1)/2 · 2t!V (t)−1f(x) for i = 1, . . . , t.

By inserting V (t) = πt/2/(t/2)! if t is even and V (t) = π(t−1)/2/
(

1
2 ·

3
2 · · ·

t
2

)
if t is odd, we get the bound in (5.10).

Lemma 5.3. Let G be a finitely generated multiplicative subgroup of K∗

of rank t > 0. Let δ1, . . . , δt ∈ G be multiplicatively independent such that
h(δ1) ≤ · · · ≤ h(δt). Then G/Gtors has a basis {γ1, . . . , γt} such that

(5.14) h(γi) ≤ max(1, i/2)h(δi) for i = 1, . . . , t.

Proof. Let {%1, . . . , %t} be a basis for G/Gtors. Then we can write

δi = ζi%
bi1
1 · · · %

bit
t , i = 1, . . . , t,

where ζi ∈ Gtors, and

b1 = (b11, . . . , b1t), . . . , bt = (bt1, . . . , btt)

are linearly independent vectors in Zt.
Let S ⊂ MK be minimal such that S contains all infinite places and

G ⊆ O∗S . We define

f(x) :=
1
2

∑
v∈S

∣∣x1 log |%1|v + · · ·+ xt log |%t|v
∣∣,

where x = (x1, . . . , xt) ∈ Rt. This is a convex distance function. Further, by
(3.2) we have

(5.15) f(bi) = h(δi) for i = 1, . . . , t.

Using again Mahler’s result mentioned above, we infer that there is a basis
ai = (ai1, . . . , ait) (i = 1, . . . , t) of Zt for which

(5.16) f(ai) ≤ max(1, i/2)f(bi) for i = 1, . . . , t.

Putting γi = %ai1
1 · · · %

ait
t for i = 1, . . . , t, we infer that {γ1, . . . , γt} is a basis

for G/Gtors, which in view of (5.15), (5.16) satisfies (5.14).

We first prove Theorem 4.1 and then Theorem 4.2.

Proof of Theorem 4.1. Since G has rank t > 0, there are t multiplica-
tively independent elements among the generators ξ1, . . . , ξr, say ξ1, . . . , ξt.
Then by Lemma 5.1,

(5.17) h(ξ1) · · ·h(ξt) ≤ c7(d)r−tQG,
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where c7(d) = d(log 3d)3/2 if d ≥ 2 and c7(d) = (log 2)−1 if d = 1. Let
δ1, . . . , δt be multiplicatively independent elements of G such that the quan-
tity h(δ1) · · ·h(δt) is minimal. Then

(5.18) h(δ1) · · ·h(δt) ≤ h(ξ1) · · ·h(ξt).

Further, by Lemma 5.3, G/Gtors has a basis {γ1, . . . , γt} such that

(5.19) h(γ1) · · ·h(γt) ≤ c8(t)h(δ1) · · ·h(δt),

with c8(t) := t!/2t−1. We may assume that {γ1, . . . , γt} is such a basis for
which h(γ1) · · ·h(γt) is minimal.

For ξ ∈ G, we can write

(5.20) ξ = ζγb11 · · · γ
bt
t ,

where ζ ∈ Gtors and b = (b1, . . . , bt) ∈ Zt. As in the proof of Lemma 5.3,
consider the following convex distance function on Rt:

f(x) :=
1
2

∑
v∈S

∣∣x1 log |γ1|v + · · ·+ xt log |γt|v
∣∣,

where x = (x1, . . . , xt) ∈ Rt and S is the same as in the proof of Lemma 5.3.
Then f(b) = h(ξ). Consider the standard basis a1 = (1, 0, . . . , 0), a2 =
(0, 1, 0, . . . , 0), . . . ,at = (0, . . . , 0, 1) in Zt. Then

f(ai) = h(γi) for i = 1, . . . , t,

and f(a1) · · · f(at) is minimal among the bases of Zt.
We can now apply Lemma 5.2 to this basis a1, . . . ,at, and infer that

|bi|h(γi) = |bi|f(ai) ≤ c6(t)f(b) = c6(t)h(ξ), i = 1, . . . , t.

Together with Lemma 5.1 this gives

(5.21) max(|b1|, . . . , |bt|) ≤ c6(t)c7(d)h(ξ).

We now apply Theorem C with v ∈ S and with

Λ = 1− αξ = 1− α′γb11 · · · γ
bt
t ,

where α′ = ζα. Let Qγ := h(γ1) · · ·h(γt). First assume that

(5.22) c6(t)c7(d)h(ξ) ≥ 2e(3d)2(t+1)QγH.

Further suppose that

(5.23) h(ξ) ≥ (c6(t)c7(d))1/2H.

Then putting B = c6(t)c7(d)h(ξ), it follows that

(5.24) log∗
(
BN(v)
H

)
≤ 3 log

(
h(ξ)N(v)

H

)
.

Together with (5.17)–(5.19) and (5.24), Theorem C gives (4.1) after some
computation.
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Consider now the case when at least one of (5.22) and (5.23) does not
hold. We cover this remaining case by assuming that

h(ξ) <
1
2
c2(r, d, t)QGH

with the c2(r, d, t) occurring in Theorem 4.1. By the product formula and
Liouville’s inequality we get

|1− αξ|v =
∏

w∈MK
w 6=v

|1− αξ|−1
w ≥

1
2

∏
w∈MK
w 6=v

max(1, |αξ|w)−1

≥ 1
2

exp(−h(αξ)) ≥ 1
2

exp
(
−
(
H +

1
2
c2(r, d, t)QGH

))
,

whence (4.1) follows again.
Finally, assume that r = t and that {ξ1, . . . , ξt} is a basis of G/Gtors. We

may assume without loss of generality that QG = h(ξ1) · · ·h(ξt) is minimal
among all bases of G/Gtors. Then in our above proof we can choose γi = ξi
for i = 1, . . . , t and we do not need δ1, . . . , δt. This simplification in the proof
gives (4.1) with c2(d, t) in place of c2(r, d, t).

Proof of Theorem 4.2. Together with the estimate (4.1) of Theorem 4.1,
(4.2) gives (4.3), and then (4.4) easily follows.

6. Proofs of Theorems 2.1, 2.2, 2.3 and 2.5. Taking as a starting
point Theorem 4.2, we first deduce Theorem 2.2, then Theorem 2.1, and
from the latter Theorems 2.3 and 2.5.

Proof of Theorem 2.2. First suppose that a1, a2 ∈ K. Let (x1, x2) be a
solution of (2.4). Then (2.4) gives

(6.1) h(x1) ≤ 3H + h(x2) + log 2.

First assume that h(x2) < 4 · 102sH. Then (6.1) gives h(x1) ≤ 404sH,
whence h(x1)N/H ≤ 404sN . Using now the fact that the function X/logX
is monotone increasing for X > e, (2.5) and (2.6) easily follow.

Now assume that

(6.2) h(x2) ≥ 4 · 102sH.

Choose v ∈ S for which |x2|v is minimal. Then we infer from (2.4) that

(6.3) log |1− a1x1|v = log |a2x2|v ≤ −
1
s
h(x2) +H.

Further, it follows from (6.1) and (6.2) that h(x1) ≤ 1.01h(x2). Hence from
(6.2) and (6.3) we get

log |1− a1x1|v < −κh(x1)
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with the choice κ = 1/(2.02s). By applying the estimate (4.3) of Theorem
4.2 we deduce (2.5) and subsequently we get for h(x1) the upper bound in
(2.6) with 6.5 replaced by 6.4. Finally, it follows from (2.4) that h(x2) ≤
3H + h(x1) + log 2, so we obtain (2.6) for h(x2) as well.

Now suppose that (a1, a2) 6∈ (K∗)2. Then we choose a non-trivial embed-
ding σ of the extension K0/K into C, where K0 = K(a1, a2). Then equation
(2.4) leads to

(6.4) σ(a1)x1 + σ(a2)x2 = 1.

Now expressing x1 and x2 by Cramer’s rule from the system consisting of
(2.4) and (6.4) we get an estimate for h(x1) and h(x2) which is much sharper
than (2.5) and (2.6).

Proof of Theorem 2.1. Suppose that ξ1, . . . , ξr generate a multiplicative
subgroup, say G, of Q∗ of rank t > 0. Clearly, G is contained in K∗. We may
assume that ξ1, . . . , ξr′ are not roots of unity. Then t ≤ r′ ≤ r and ξ1, . . . , ξr′
is a system of generators of G/Gtors. By the assumption on w1, . . . ,wr we
see that ηr′+1, . . . , ηr are not roots of unity. Put

QG := h(ξ1) · · ·h(ξr′).

Using Lemma 5.1 we infer that

(6.5) QG ≤ c7(d)r−r
′
QΓ ,

where c7(d) = (1/2)d(log 3d)3 if d ≥ 2 and c7(d) = (log 2)−1 if d = 1.
Let (x1, x2) be a solution of (1.1). Then x1 ∈ G and x2 ∈ O∗S . We can

now apply Theorem 2.2 to this solution and we obtain (2.6) with r replaced
by r′. Using r′ ≤ r, (6.5) and

h(x1, x2) ≤ h(x1) + h(x2),

we easily deduce (2.3) from (2.6).

In the proofs of Theorems 2.3 and 2.5 we need the following lemma.

Lemma 6.1 (Beukers and Zagier). Let (b1, b2) ∈ (Q∗)2, and let (xi1, xi2)
(i = 1, 2, 3) be points in (Q∗)2 with b1xi1 + b2xi2 = 1 for i = 1, 2, 3. Then we
have

(6.6)
3∑
i=1

h(xi1, xi2) ≥ 0.09.

Proof. By Corollary 2.4 in [2] we have
∑3

i=1 h(xi1, xi2) ≥ log %, where %
denotes the real root of %−6 + 1

2%
−2 = 1 which is larger than 1. We have

log % ≥ 0.09.

The proofs of Theorems 2.3 and 2.5 are very similar. We work out the
proof of Theorem 2.5 in detail, and then indicate what changes have to be
made to obtain Theorem 2.3.
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Proof of Theorem 2.5. Fix a solution (x1, x2) of equation (2.15). Since
(x1, x2) ∈ C(Γ , ε) we can write

(x1, x2) = (y1, y2)(z1, z2) with(6.7)
(y1, y2) ∈ Γ , h(z1, z2) < ε(1 + h(y1, y2)).

Further, we can write

(y1, y2) = (y′1, y
′
2)(w1, w2) with(6.8)

(y′1, y
′
2) ∈ Γ,

(w1, w2) =
r∏
i=1

(ξi, ηi)ci with ci ∈ Q, |ci| ≤
1
2

(i = 1, . . . , r).

(Note that w1, w2 are defined up to roots of unity.) Thus we have

(6.9) h(w1, w2) ≤
r∑
i=1

|ci|h(ξi, ηi) ≤ rh0.

Write

(6.10) (a′1, a
′
2) := (a1, a2)(w1, w2)(z1, z2).

Then by (6.9) and (6.7),

h(a′1, a
′
2) ≤ h(a1, a2) + rh0 + ε(1 + h(y1, y2)),

which leads to

(6.11) h(a′1, a
′
2) ≤ h(a1, a2) + rh0 + ε(1 + h(y′1, y

′
2) + rh0).

Further, equation (2.15) can be written in the form

(6.12) a′1y
′
1 + a′2y

′
2 = 1 in (y′1, y

′
2) ∈ Γ.

Using Theorem 2.1 we get

(6.13) h(y′1, y
′
2) ≤ Amax{h(a′1, a

′
2), 1}

where A is the constant defined in (2.2). Notice that this constant does not
depend on the field generated by a′1, a

′
2. Further, using (6.11) we get

h(y′1, y
′
2) ≤ Ah(a1, a2) + rh0A+ εA+ εAh(y′1, y

′
2) + rh0εA.

Since in view of (2.16) we have ε < 1/(2A) we obtain

(6.14) h(y′1, y
′
2) ≤ 2Ah(a1, a2) + (1 + 2Arh0 + rh0).

Now by

(6.15) h(y1, y2) ≤ h(y′1, y
′
2)+h(w1, w2) ≤ 2Ah(a1, a2)+(1+2Arh0+2rh0)

and

h(x1, x2) ≤ h(y1, y2) + ε(1 + h(y1, y2)) ≤ (ε+ 1)h(y1, y2) + ε

we get
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(6.16) h(x1, x2) ≤ 3Ah(a1, a2) + 5Arh0,

which proves assertion (2.17) of our Theorem 2.5.
Now we have to prove the explicit upper bound on [K0(x1, x2) : K0],

where (x1, x2) is any solution of (2.15) and K0 is the field generated by Γ ,
a1, a2. Let us fix such a solution. Choose (y1, y2), (z1, z2) as in (6.7) and
then (y′1, y

′
2), (w1, w2) as in (6.8). Finally, define (a′1, a

′
2) by (6.10). Define

the field L := K0(a′1, a
′
2). We first prove that [L : K0] ≤ 2.

Assume that this is false, that is, [L : K0] ≥ 3. Then there are at least
3 distinct embeddings of L to C which leave fixed the field K0; call them
σ1, σ2, σ3. We consider again equation (6.12). Since (y′1, y

′
2) ∈ Γ ⊂ (K∗0 )2 we

have
σi(a′1)y′1 + σi(a′2)y′2 = 1 for i = 1, 2, 3.

This means that the equation

(a′1y
′
1)X + (a′2y

′
2)Y = 1 in (X,Y ) ∈ (Q∗)2

has at least 3 distinct solutions, namely (σi(a′1)/a′1, σi(a
′
2)/a′2) (i = 1, 2, 3).

Now using Lemma 6.1 we know that

(6.17)
3∑
i=1

h

(
σi(a′1)
a′1

,
σi(a′2)
a′2

)
≥ 0.09.

On the other hand, by (6.10) we have, for any embedding σ : L→ C,(
σ(a′1)
a′1

,
σ(a′2)
a′2

)
=
(
σ(a1)
a1

,
σ(a2)
a2

)(
σ(w1)
w1

,
σ(w2)
w2

)(
σ(z1)
z1

,
σ(z2)
z2

)
.

However, a1, a2 ∈ K0. Further, (w1, w2) ∈ Γ , hence there exists a positive
integer m such that (w1, w2)m ∈ Γ . This means that (σ(w1)/w1)m = 1 and
(σ(w2)/w2)m = 1. Thus we see that there exist roots of unity ζ1, ζ2 such
that σ(w1) = ζ1w1 and σ(w2) = ζ2w2. So(

σ(a′1)
a′1

,
σ(a′2)
a′2

)
= (ζ1, ζ2)

(
σ(z1)
z1

,
σ(z2)
z2

)
and together with (x1, x2) ∈ C(Γ , ε) and (6.15),

h

(
σ(a′1)
a′1

,
σ(a′2)
a′2

)
≤ 2h(z1, z2) ≤ 2ε(1 + h(y1, y2))(6.18)

≤ 2ε(2Ah(a1, a2) + (1 + 2Arh0 + 2rh0))
≤ 2ε(2Ah(a1, a2) + 5Arh0).

This shows that

(6.19)
3∑
i=1

h

(
σi(a′1)
a′1

,
σi(a′2)
a′2

)
< 4ε(2Ah(a1, a2) + 5Arh0) < 0.09,

which contradicts (6.17). Thus, we have proved that [L : K0] ≤ 2.
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In view of y′1, y
′
2 ∈ K0 this shows that [K0(a′1y

′
1, a
′
2y
′
2) : K0] ≤ 2; conse-

quently, [K0(a1x1, a2x2) : K0] ≤ 2 and finally, because a1, a2 ∈ K0, we get
[K0(x1, x2) : K0] ≤ 2.

Proof of Theorem 2.3. The proof is completely similar to that of Theo-
rem 2.5. The only difference is that the estimate (6.7) for h(z1, z2) has to be
replaced by h(z1, z2) < ε. This slightly modifies the estimates in the proof
of Theorem 2.5 and instead of (6.14) we get

h(y′1, y
′
2) ≤ Ah(a1, a2) +A(ε+ rh0).

This in turn (instead of (6.16)) leads to the estimate

h(x1, x2) ≤ Ah(a1, a2) + 3Arh0,

and this proves assertion (2.12). In order to prove (2.13) we proceed in
precisely the same way as we did for proving (2.18) in Theorem 2.5. The
only difference is that instead of (6.18) we have

h

(
σ(a′1)
a′1

,
σ(a′2)
a′2

)
≤ 2h(z1, z2) ≤ 2ε,

which using now (2.11) leads to the same contradiction (6.19). Thus, (2.13)
follows.
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