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1. Introduction. The well-known ABC theorem for polynomials, first
proved by Stothers [31] and often called “Mason’s theorem” [22], says that
if a+ b = c, where a and b are relatively prime univariate polynomials with
at least one of the derivatives a′ or b′ not identically zero, then

max{deg a,deg b,deg c} ≤ degR(abc)− 1.

Here if f is a polynomial, we use R(f) to denote f/gcd(f, f ′). In character-
istic zero, degR(f) is simply the degree of the square free part of f, also
called the degree of the radical of f, and is the number of distinct zeros of f
in an algebraically closed field containing the coefficients of f. We note that
the above theorem immediately extends to polynomials of several variables
by replacing the ordinary derivative with a partial derivative.

The existence of an appropriately analogous inequality for c = a + b
with a, b, and c relatively prime integers is the famous ABC conjecture of
Masser and Oesterlé (see [25]), which states that for each ε > 0, there exists
a constant C(ε) such that

max{|a|, |b|, |c|} ≤ C(ε)S(abc)1+ε,

where we use S(abc) to denote the square free part of abc. The ABC conjec-
ture for integers has spectacular consequences in number theory—see e.g.
[16] and [21]. To date, in the case of integers, the best proven upper bounds
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on max{|a|, |b|, |c|} in terms of S(abc) are super-polynomial in S(abc)—see
e.g. [30].

The ABC theorem for polynomials has been generalized in a variety of di-
rections, including: to sums in one-dimensional function fields by Mason [23],
by Voloch [34] and by Brownawell and Masser [10], to sums of pairwise rel-
atively prime polynomials of several variables by Shapiro and Sparer [29],
to sums in higher-dimensional function fields by Hsia and Wang [18], and to
quantum deformations of polynomials by Vaserstein [32]. Motivated by the
analogy between Diophantine approximation and Nevanlinna theory [33],
the ABC theorem has also been proven for complex entire functions by
Van Frankenhuysen [13], [14] and for p-adic entire functions by Hu and
Yang [19].

In a recent article, An and Manh [3] gave an ABC type theorem for
p-adic entire functions of several variables c = a+ b, but under some rather
restrictive hypotheses, including the assumption that a, b, and c have no
common zeros, which in several variables is a much stronger assumption
than simply supposing that a, b, and c are pairwise relatively prime in the
ring of entire functions. The purpose of this article is to prove general ABC
theorems for sums

fn = f0 + · · ·+ fn−1

of non-Archimedean entire functions on affine m-space Am in arbitrary char-
acteristic analogous to the existing theorems for several-variable polynomi-
als. We do this for two reasons. First, we illustrate that if the existing poly-
nomial proofs for ABC theorems are correctly interpreted, then they provide
immediate proofs for the analogous statements for non-Archimedean entire
functions without the need for any fundamentally new ideas or for additional
technical assumptions as in [3], with the exception of one slight subtlety dis-
cussed just before Corollary 6.5 below. Second, Cherry and Ye [12] developed
a several-variable non-Archimedean Nevanlinna theory in a form that was
intended to be easy to use. However, in applications, it is often convenient
to work with, or at least to think in terms of, truncated counting functions,
which were not discussed in [12]. Thus, our second purpose is to illustrate
how to define and work with truncated counting functions in several vari-
ables and in positive characteristic; this is well-known to the experts, but
we thought it helpful to illustrate here for the novice’s benefit.

The plan of this paper is as follows. In Section 2 we set up some nota-
tion and recall some basic facts we will need. We also prove the most basic
form of the ABC theorem in Section 2, so readers only interested in the
basic idea do not need to read past Section 2. In Section 3, we recall the
notion of Hasse derivative and generalized Wronskians necessary to work in
positive characteristic and in several variables. In Section 4, we discuss how
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to define truncated counting functions in positive characteristic. We recall
some linear algebra from Brownawell and Masser [10] in Section 5. Finally,
in Section 6, we derive our general ABC theorems and indicate how various
ABC theorems in the literature can be derived as corollaries. Our method of
proof is essentially that of Hu and Yang [20], who adapted the argument of
Brownawell and Masser [10] to the context of non-Archimedean entire func-
tions of one variable. Our presentation in Section 6 was also influenced by
the recent work of De Bondt [5], who formulated generalized ABC theorems
for complex polynomials in several variables from which the other various
versions in the literature can be derived.

2. Preliminaries, notation and warm-up. We will find it convenient
to use some Nevanlinna notation. We will use [12] as our basic reference
and mostly follow the notation there, although here we will not assume
characteristic zero, as was done in [12].

Throughout, F will denote an algebraically closed field complete with
respect to a non-Archimedean absolute value | |. We make no assumption
about the characteristic of F. Let F× denote F \ {0}, and let |F×| be the
subset of the positive real numbers defined by

|F×| = {|a| : a ∈ F×}.
Let Fm denote the mth Cartesian product of F, which is the set of F-

points of affine m-space Am. By an entire function on Am or Fm, we mean
a formal power series in m variables with coefficients in F and with infinite
radius of convergence. We will use Em to denote the ring of entire functions
on Am.

If z1, . . . , zm are F-valued variables, we use z to refer collectively to the
m-tuple (z1, . . . , zm). When convenient, we will use multi-index notation. If
γ = (γ1, . . . , γm) is a multi-index, i.e., an m-tuple of non-negative integers,
then by definition

zγ = zγ11 · · · z
γm
m , |γ| = γ1 + · · ·+ γm, ∂γf =

∂|γ|f

∂zγ
.

Similarly, if r = (r1, . . . , rm) is an m-tuple of non-negative real numbers, we
define

rγ = rγ11 · · · r
γm
m .

We can therefore write an entire function f in Em as

f(z) =
∑
γ

aγz
γ

where aγ are in F, and for all m-tuples of non-negative real numbers r,

lim
|γ|→∞

|aγ |rγ = 0.
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We recall that to each m-tuple r = (r1, . . . , rm) of non-negative real num-
bers, we can associate a non-Archimedean absolute value | |r on the ring Em
by defining

|f |r = sup
γ
|aγ |rγ ,

where as above f in Em is given by the power series expansion

f(z) =
∑
γ

aγz
γ .

The non-trivial thing that needs to be checked is that if f and g are two
elements of Em, then |fg|r = |f |r|g|r. When all the rj equal 1 this is worked
out, for instance, in [6, §5.1.2]. In general, by extending the field F if nec-
essary, we may assume the rj are elements of |F×| and then reduce to the
case when all the rj are 1 by an affine rescaling of the variables.

For our purposes, we only need to consider those r for which all the rj
are equal, or in other words m-tuples of the form r = (r, . . . , r). We will
denote the associated absolute value on Em by | |r. Clearly, we have:

Proposition 2.1. If f is in Em, then |f |r is a non-decreasing function
of r.

If f happens to be a polynomial of degree d, then we easily see that as
r →∞,

log |f |r = d log r +O(1).

Thus, in our ABC theorems for entire functions, log |f |r will play the role
played by the degree in the case of polynomials on the left-hand side of the
inequalities.

We will make use of the following observation on several occasions:

Corollary 2.2. If f, g and h are elements of Em such that f = gh and
if r0 > 0, then for all r ≥ r0,

log |g|r ≤ log |f |r +O(1).

Proof. By the multiplicativity of | |r and Proposition 2.1,

log |f |r = log |g|r + log |h|r ≥ log |g|r + log |h|r0 ,

which gives the required inequality.

We recall the elementary

Lemma 2.3 (Logarithmic derivative lemma). Let f be an entire function
in Em and let γ be a multi-index. Then

|∂γf |r ≤
|f |r
r|γ|

.
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Proof. Differentiate the power series defining f and use the fact that
|k| ≤ 1 for any integer k.

We need to make use of some ring-theoretic properties of Em. The reader
can see [11] for a detailed treatment.

As usual, we will call an element P of Em irreducible if whenever we write
P = fg with f and g in Em, then at least one of f or g is a unit in Em. As is
well-known, the only units in Em are the non-zero constant functions—see
e.g. [12, Cor. 2.4].

Proposition 2.4. Let P be an irreducible element of Em and let j be an
integer between 1 and m. If P divides ∂P/∂zj , then ∂P/∂zj ≡ 0.

Proof. Suppose
∂P

∂zj
= Pg

for some g in Em. Then ∣∣∣∣∂P∂zj
∣∣∣∣
r

= |P |r|g|r.

From Lemma 2.3, |g|r ≤ 1/r, and so by Proposition 2.1, |g|r ≡ 0.

Suppose f and g are non-constant elements of Em such that g divides
f in Em. Then f and g can also be considered as analytic functions on the
closed ball of radius r, i.e.,

Bm(r) = {(z1, . . . , zm) ∈ Fm : max |zj | ≤ r}.
For large r, the function g will have zeros inside the ball (again see [12,
Cor. 2.4]), and hence will not be a unit in the ring of analytic functions
on the ball Bm(r). These rings are Tate algebras when r ∈ |F×|, and hence
factorial [6, §5.2.6, Th. 1]. Thus, Em is a subring of a factorial ring in which g
is not a unit, and hence some power of g will not divide f in Em. Therefore,
one can speak of the multiplicity with which an entire function g divides
another entire function f. Although Em itself is not factorial, the notion of
“greatest common divisor” does make sense in Em; see [11] or the appendix
of [12]. Of course, greatest common divisors are only defined up to units,
hence multiplicative constants. Given two entire functions f1 and f2, when
we write something like g = gcd(f1, f2), we mean picking any function g
which is a greatest common divisor of f1 and f2. Hence g is only well-defined
up to a choice of multiplicative constant.

Since we have greatest common divisors, we can define a good notion
of the “radical” or the “square free part” of an entire function, at least in
characteristic zero. The definition we give here will not be the square free
part in positive characteristic, but will be the suitable thing to put on the
right-hand side in our basic ABC theorem. We will discuss the existence of
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the square-free part of an analytic function in positive characteristic in a
later section.

Proposition 2.5. Let f be an entire function in Em. For each j from 1
to m, define

gj = gcd
(
f,
∂f

∂zj

)
and hj =

f

gj
.

Let R(f) be the least common multiple of the hj . Then:

(i) R(f) divides f ;
(ii) for any non-constant g in Em, g2 does not divide R(f);

(iii) if P is an irreducible element of Em that divides f, then P also
divides R(f) if and only if the multiplicity to which P divides f is
not divisible by the characteristic of F.

We will call R(f) as defined in Proposition 2.5 the radical of f.

Proof. For (i), note that because each of the hj divides f, it is clear that
their least common multiple R(f) also divides f.

To show (ii), suppose g is a non-constant element of Em such that g2

divides R(f). Then g2 must also divide f since R(f) divides f. Let s ≥ 2
be the largest integer such that gs divides f. Then f = gsf̃ , where f̃ is an
element of Em not divisible by g. Because

∂f

∂zj
= f̃ sgs−1 ∂g

∂zj
+ gs

∂f̃

∂zj
,

we see that gs−1 divides gj for all j, and hence g2 does not divide hj for
any j. Thus, g2 cannot divide R(f).

To show (iii), let P be a non-constant irreducible element of Em that
divides f. Let s be the largest integer such that P s divides f. Then f = P sf̃
with f̃ relatively prime to P. If ∂P/∂zj ≡ 0 for all j, then because we have
assumed that P is non-constant, it follows that P is a pth power and F has
positive characteristic p. But then P would not be irreducible, and so there
must exist some j such that ∂P/∂zj 6≡ 0. Because

∂f

∂zj
= sP s−1 ∂P

∂zj
f̃ + P s

∂f̃

∂zj
,

we conclude from Proposition 2.4 that P s divides ∂f/∂zj if and only if s = 0
in F.

We will now state and prove the most basic version of an ABC theorem
for non-Archimedean entire functions of several variables. We feel that dis-
cussing this basic case here will help the reader see the main ideas behind
what we will do.
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Theorem 2.6 (Basic ABC theorem). Let f2 = f0 + f1 be entire func-
tions such that f0 and f1 are relatively prime in Em. If F has characteristic
zero, assume that at least one of f0 or f1 is non-constant. If F has positive
characteristic p, then assume that at least one of f0 or f1 is not a pth power
in Em. Let r0 > 0. Then, for r ≥ r0,

max
0≤i≤2

log |fi|r ≤ log |R(f0f1f2)|r − log r +O(1).

Proof. We follow the standard polynomial proof, as given for instance
in [32], mutatis mutandis. Without loss of generality assume that f0 is non-
constant and if F has positive characteristic p that f0 is not a pth power
in Em. This implies there exists a non-constant irreducible element P0 in
Em that divides f0 to a multiplicity s0 not divisible by the characteristic
of F. Without loss of generality, assume that ∂P0/∂z1 6≡ 0. Consider the
Wronskian determinant,

W = det

 f0 f1

∂f0

∂z1

∂f1

∂z1

 = det

 f0 f2

∂f0

∂z1

∂f2

∂z1

 = det

 f2 f1

∂f2

∂z1

∂f1

∂z1

 ,

where the first equality defines W in Em and the second two equalities follow
from f2 = f0 + f1.

We first claim that W 6≡ 0. Indeed, if W ≡ 0, then

f0
∂f1

∂z1
= f1

∂f0

∂z1
.

Because P s00 divides f0 and does not divide ∂f0/∂z1, this would imply that
P0 divides f1. But f0 and f1 were assumed relatively prime, and hence
W 6≡ 0.

Let F = f0f1f2, G = gcd(F, ∂F/∂z1), and H = F/G. Then by definition
H divides R(f0f1f2), and so

log |H|r ≤ log |R(f0f1f2)|r +O(1)

for r ≥ r0 by Corollary 2.2. We also claim that G divides W. Indeed, suppose
that P is an irreducible element that divides G. Then P divides F and
so it divides one of the fi and hence exactly one of the fi since the fi
are relatively prime. Thus, suppose that P divides fi and hence F with
multiplicity s. Then P s−1 divides ∂fi/∂z1 and hence also W. If P s also
divides G and hence ∂F/∂z1, then either s is divisible by the characteristic
of F or ∂P/∂z1 = 0. But in either of these cases, P s also divides ∂fi/∂z1,
and so P s also divides W. Thus, G divides W as claimed. Again applying
Corollary 2.2, we see that for r ≥ r0,

log |G|r ≤ log |W |r +O(1).
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By Lemma 2.3, ∣∣∣∣fi ∂fj∂z1

∣∣∣∣
r

≤ |fifj |r
r

,

and hence using each of the three determinants defining W,

log |W |r ≤ log min{|f0f1|r, |f0f2|r, |f1f2|r} − log r.

Hence,

log max |fi|r = log |f0|r + log |f1|r + log |f2|r − log min
0≤i<j≤2

|fifj |r

= log |F |r − log min
0≤i<j≤2

|fifj |r

= log |H|r + log |G|r − log min
0≤i<j≤2

|fifj |r

≤ log |R(F )|r + log |W |r − log min
0≤i<j≤2

|fifj |r +O(1)

≤ log |R(F )|r − log r +O(1)

for r ≥ r0.
We conclude this section with a discussion of counting functions. For a

polynomial in one variable, it is a simple matter to count the zeros, with or
without multiplicity, because they are finite in number. For a one-variable
convergent power series, the zeros are discrete, so one can create a counting
function by counting them up to a certain size and then seeing how the
number of zeros grows as the maximum size considered is allowed to grow.
This is in complete analogy to Nevanlinna’s notion of a counting function
to count the number of zeros of a complex entire or meromorphic function.

For several-variable polynomials, one generally does not try to “count”
zeros. Rather, one counts irreducible factors, usually weighted by the degree
of the irreducible factor. For complex holomorphic functions of several vari-
ables, including the case of complex polynomials, one can define counting
functions in a very geometric way by integrating certain differential forms
over the irreducible components of the zero divisor of the function; see e.g.
[24] or [28].

One approach to defining non-Archimedean counting functions in sev-
eral variables is the approach initiated by Hà Huy Khoái [17] and used by
An and Manh [1]–[3]. Although this approach is, in principle, aesthetically
pleasing because of its definition in terms of the geometry of the Newton
polytope associated to a several-variable power series, in practice, work-
ing with counting functions defined in this way seems to be rather difficult
and not to produce particularly aesthetic proofs. For instance, the difficulty
in working with this notion of counting function seems to have something
to do with An and Manh’s need for some of their restrictive hypotheses
in [3]. Moreover, working with this definition seems to obscure connections
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to proofs of similar results for polynomials. In [12], Cherry and Ye preferred
not to give an a priori natural definition of counting function, but rather
first proved [12, Lem. 2.3] that starting with a power series of several vari-
ables, the counting functions of the one-variable power series obtained by
restricting to a sufficiently generic line through the origin do not depend on
the generic line chosen and can be expressed in terms of the power series
coefficients. The pay-back for doing this work first before giving what may
seem like an unnatural definition for the counting function is that one can
then in a relatively straightforward manner connect Cherry and Ye’s notion
of counting function with |f |r through a Poisson–Jensen–Green type formula
[12, Th. 3.1]. Then one can work with |f |r in a relatively straightforward
manner and in close analogy with how one would naturally work with a
several-variable polynomial.

Suppose

f =
∑
γ

aγz
γ

is an entire function on Am. As earlier in this section, let r > 0 and let
r = (r, . . . , r). Cherry and Ye define the unintegrated counting function of
zeros of f by

nf (0, r) = sup{|γ| : |aγ |rγ = |f |r}.

This is the number of zeros, counting multiplicity, that f has on a sufficiently
generic line through the origin with max |zj | ≤ r. Also, define

nf (0, 0) = lim
r→0

nf (0, r) = min{|γ| : aγ 6= 0}.

As is typical in Nevanlinna theory, it is more convenient to work with the
integrated counting function of zeros

Nf (0, r) = nf (0, 0) log r +
r�

0

(nf (0, t)− nf (0, 0))
dt

t
.

Immediately from the definition we see that if f is a non-constant entire
function, then for r ≥ 1,

(1) log r ≤ Nf (0, r) +O(1).

Cherry and Ye’s Poisson–Jensen–Green formula [12, Th. 3.1] then says that
there exists a constant Cf depending on f but not on r such that

(2) Nf (0, r) = log |f |r + Cf

for all r. These counting functions count zeros of f with multiplicity.
The following proposition for counting functions corresponds to Corol-

lary 2.2.
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Proposition 2.7. Let f = gh be entire functions. Then:

(i) nf (0, r) = ng(0, r) + nh(0, r) for all r ≥ 0;
(ii) Nf (0, r) = Ng(0, r) +Nh(0, r) for all r ≥ 0;
(iii) Nf (0, r) ≥ Ng(0, r) for all r ≥ 1.

Proof. The equality in (ii) follows immediately from (i) and the definition
of the integrated counting functions. The inequality in (iii) follows from (ii)
and the fact that Nh(0, r) ≥ 0 if r ≥ 1. Thus, we need to show (i). To do so,
let

f(z) =
∑
α

aαz
α, g(z) =

∑
β

bβz
β, h(z) =

∑
γ

cγz
γ .

We leave the case r = 0 for the reader. Let r > 0. Let β0 and γ0 be the
largest multi-indices in the graded lexicographical ordering such that

|bβ0 |r|β0| = |g|r and |cγ0 |r|γ0| = |h|r
respectively. By definition, ng(0, r) = |β0| and nh(0, r) = |γ0|. Therefore for
|α| > |β0|+ |γ0|, we have

|aα|r|α| ≤ max
β+γ=α

|bβ|r|β||cγ |r|γ| < |g|r|h|r = |f |r,

where the second inequality follows from the fact that if

|β|+ |γ| = |α| > |β0|+ |γ0|,
then we must have

|β| > |β0| or |γ| > |γ0|.
On the other hand, if we consider α0 = β0 + γ0, then

α0 =
∑

β+γ=α0

bβcγ .

If β 6= β0 (and so γ 6= γ0), then either β comes after β0 or γ comes after γ0

in the graded lexicographical ordering, which means

|bβ|r|β||cγ |r|γ| < |bβ0 |r|β0||cγ0 |r|γ0|,
and so

|aα0 |r|α0| = |bβ0 |r|β0||cγ0 |r|γ0| = |g|r|h|r = |f |r.
Thus,

nf (0, r) = |α0| = |β0|+ |γ0| = ng(0, r) + nh(0, r).

In [12], Cherry and Ye did not discuss truncated counting functions,
where zeros are counted without multiplicity or with their multiplicities
“truncated” to a certain level. In complex Nevanlinna theory, since one has
a natural geometric definition for counting functions defined as integrals over
irreducible components of an analytic divisor, it is straightforward to define
truncated counting functions. Since Cherry and Ye’s definition of counting
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functions is given in terms of power series coefficients, it is clear that there
will be no obvious definition of truncated counting functions in terms of the
power series coefficients. Instead, we use the nice ring-theoretic properties
of Em discussed above, and in characteristic zero simply define truncated
counting functions by

n
(1)
f (0, r) = nR(f)(0, r) and N

(1)
f (0, r) = NR(f)(0, r),

where, as before, R(f) denotes the radical of f . Note that although R(f) is
only defined up to a multiplicative constant, n(1) and N (1) are well-defined.
In characteristic zero, Proposition 2.5 justifies calling the counting func-
tions of the radical the “truncated” counting function for f because each
irreducible factor of f appears with multiplicity one in R(f). In positive
characteristic, NR(f) might be called “overly truncated” because it com-
pletely ignores all irreducible factors of f which appear with multiplicity
divisible by the characteristic. We will see in Section 4 how to define trun-
cated counting functions in positive characteristic that include all irreducible
factors. However, as we saw in Theorem 2.6, in positive characteristic we can
sometimes give lower bounds on these overly truncated counting functions.

We complete this section by pointing out that Boutabaa and Escassut
[7, 8] were the first to work out one-variable non-Archimedean Nevanlinna
theory in positive characteristic. Their work also highlights that in working
with Nevanlinna theory in positive characteristic, one may often ignore zeros
whose multiplicity is divisible by the characteristic.

3. Hasse derivatives and generalized Wronskians. If F has charac-
teristic zero, then a formal power series f in the variables z = (z1, . . . , zm)
is non-constant if and only if at least one of its formal partial derivatives
∂f/∂zj is not identically zero. By contrast, if F has positive characteristic p,
then any formal power series in zp = (zp1 , . . . , z

p
m) is such that all its partial

derivatives ∂γf are identically zero for all |γ| > 0. Also, if F has positive
characteristic p, then if γ is a multi-index such that γi ≥ p for some i, then
∂γf = 0 for all f. Therefore, we will introduce a modification of the standard
derivative, known as the Hasse derivative, which is more useful in positive
characteristic.

If α = (α1, . . . , αm) and β = (β1, . . . , βm) are multi-indices, we use α+β
to denote the multi-index

α+ β = (α1 + β1, . . . , αm + βm).

We say that α ≥ β if αi ≥ βi for all i from 1 to m. Note that this notion of
≥ is not a total ordering on the set of multi-indices and is not the graded
lexicographical ordering that was used in the proof of Proposition 2.7. If
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α ≥ β, we use α− β to denote the multi-index

α− β = (α1 − β1, . . . , αm − βm).

Also, if α ≥ β, define the multinomial coefficient
(
α
β

)
by(

α

β

)
=
(
α1

β1

)
· · ·
(
αm
βm

)
,

where the
(
αi
βi

)
are the standard binomial coefficients. Given a formal power

series
f =

∑
α

aαz
α

and a multi-index γ, we define the Hasse derivative of multi-index γ of f,
which we will denote Dγf, to be the formal power series defined by

Dγf =
∑
α≥γ

(
α

γ

)
aαz

α−γ .

Note that if γ = (0, . . . , 0), then Dγf = f , and that if |γ| = 1, then
Dγf = ∂γf. Given a j from 1 to m and a positive integer k, we will use
Dk
j as a short-hand notation for Dγf where γ = (γ0, . . . , γm) with γj = k

and γi = 0 for i 6= j.
Because the multinomial coefficients

(
α
γ

)
are integers and hence have

non-Archimedean absolute value at most 1, we see that if r = (r1, . . . , rm)
is an m-tuple of non-negative real numbers such that

lim
|α|→∞

|aα|rα = 0,

then

lim
|α|→∞

∣∣∣∣(αγ
)
aα

∣∣∣∣rα−γ ≤ 1
rγ

lim
|α|→∞

|aα|rα = 0,

and so we see that if f is in Em, then Dγf is also in Em.
Clearly,

∂γf = γ!Dγf, where γ! = γ1! · · · γm!.

Thus, in characteristic zero, the Hasse derivatives are just constant multiples
of the ordinary derivatives, and so one sees immediately that they have
similar properties to those of the ordinary partial derivative. In positive
characteristic, one must check these.

Proposition 3.1. The Hasse derivatives have the following basic prop-
erties:

(i) Dα[f + g] = Dαf +Dαg;
(ii) Dα[fg] =

∑
β+γ=αD

βfDγg;
(iii) DαDβf =

(
α+β
β

)
Dα+βf ;
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(iv) if F has positive characteristic p and s ≥ 0 is an integer , then

Dps

i f
ps = (Dif)p

s
.

Proof. Property (i) is obvious. To check property (ii), write out both
sides and compare like powers of z. What is needed for equality is that for
multi-indices δ and ε with δ ≥ β and ε ≥ γ, one has∑

β+γ=α

(
δ

β

)(
ε

γ

)
=
(
δ + ε

α

)
,

which is nothing other than Vandermonde’s identity. To check property (iii),
one uses the elementary observation that for γ ≥ α+ β,(

α+ β

β

)(
γ

α+ β

)
=
(
γ

α

)(
γ − α
β

)
.

What one needs for (iv) is the fact that for any integer j,(
jps

ps

)
≡ j mod p,

which follows immediately from Lucas’s theorem.

We also want to point out that as with ordinary partial derivatives, the
same proof as in Lemma 2.3 gives

Lemma 3.2 (Logarithmic derivative lemma). Let f be an entire function
in Em and let γ be a multi-index. Then

|Dγf |r ≤
|f |r
r|γ|

.

Corollary 3.3. Let f be an entire function in Em and let γ be a multi-
index with |γ| > 0. If f divides Dγf, then Dγf ≡ 0.

Proof. This follows from Lemma 3.2 and Corollary 2.2.

We will denote the fraction field of Em by Mm and call it the field
of meromorphic functions on Am. One sees immediately that one can use
Proposition 3.1(ii) to inductively extend the Hasse derivatives to the field
Mm and that the four properties of Proposition 3.1 continue to hold for
functions in Mm.

For each integer k ≥ 2, let

Mm[k] = {Q ∈Mm : Di
jQ ≡ 0 for all 0 < i < k and 1 ≤ j ≤ m}.

If F has positive characteristic p and if s is a positive integer, let

Em[ps] = {gps : g ∈ Em}.
Note that Em[ps] is a subring of Em and that it consists of those elements f
in Em that can be written as convergent power series in

zp
s

= (zp
s

1 , . . . , z
ps

m ).
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Proposition 3.4.

(A) If F has characteristic 0, then for all k ≥ 2, we have Mm[k] = F.
(B) If F has positive characteristic p and if s is an integer ≥ 1, then

(B1) Mm[ps−1 + 1] =Mm[ps];
(B2) Mm[ps] is the fraction field of Em[ps] and Dps

i for i = 1, . . . ,m
are derivations on Mm[ps].

Proof. Clearly, we have (A). Proposition 3.1(iii) implies (B1). We show
(B2) by induction on s. Let Q be an element ofMm[2] =Mm[p], which im-
plies ∂Q/∂zi ≡ 0 for all i = 1, . . . ,m. Write Q = f/g with f and g relatively
prime in Em. Suppose that f is not in Em[p]. Then there is an irreducible
element P of Em such that P divides f to a multiplicity not divisible by
p and such that ∂P/∂zi 6≡ 0 for some i. This implies that P divides f to
a higher power than it divides ∂f/∂zi. Since ∂Q/∂zi ≡ 0, this would then
imply P must divide g, contradicting the fact that f and g are relatively
prime. Hence f must have been in Em[p]. Similarly, g must be in Em[p]. That
Dp
i is a derivation on Mm[p] then follows from Proposition 3.1(ii) or (iv).

By (B1), we have

Mm[ps+1] = {Q ∈Mm[ps] : Dps

i Q = 0 for all i = 1, . . . ,m},
and so the proof is completed by induction. Indeed, writing an element Q
of Mm[ps+1] ⊂ Mm[ps] as f/g with f and g relatively prime elements of
Em[ps] and arguing as before using Dps

i in place of the first partials, we
see that every irreducible element P of Em that divides either f or g must
divide them with multiplicity divisible by ps+1, and hence f and g must be
in Em[ps+1].

Theorem 3.5 (Hsia–Wang [18, Lem. 2]). Let F have characteristic zero
(resp. positive characteristic p), and let s ≥ 1 be an integer. Let f =
(f0, . . . , fn−1) be an n-tuple of entire functions. For a multi-index γ, let

Dγf = (Dγf0, . . . , D
γfn−1).

Let γ0 be the multi-index (0, . . . , 0). If f0, . . . , fn−1 are linearly independent
over F (resp. Mm[ps]), then there exist multi-indices γ1, . . . , γn−1 such that

|γi| ≤ |γi−1|+ 1 (resp. |γi| ≤ |γi−1|+ ps−1)

and such that

det



f0 . . . fn−1

Dγ1
f0 . . . Dγ1

fn−1

Dγ2
f0 . . . Dγ2

fn−1

...
...

...
Dγn−1

f0 . . . Dγn−1
fn−1


6≡ 0.
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Remark. The determinant in Theorem 3.5 is called a generalized Wron-
skian. For polynomials in characteristic zero, this theorem, with a different
proof, appears in [27]. In the case of complex entire functions of several
variables, a similar theorem can be found in [15].

Remark. Often (e.g. [18]), one tends to state this lemma with

|γi| ≤ i (resp. |γi| ≤ ips−1),

but we will want to give a lower bound on
∑
|γi| in terms of |γn−1|, and so

for us the observation that

|γi−1| ≥ |γi| − 1 (resp. |γi−1| ≥ |γi| − ps−1)

is important.

Remark. We also remark here that Theorem 3.5 can be used to de-
rive a positive characteristic Cartan-type second main theorem for linearly
non-degenerate non-Archimedean analytic curves in projective space. For
instance, the proof given in [12, Th. 5.1] goes through once a non-vanishing
generalized Wronskian exists.

Proof of Theorem 3.5. We write the proof in the case of positive charac-
teristic. The same proof works in characteristic zero by Proposition 3.4(A)
if all powers of p are replaced by 1.

We proceed by induction on n. When n = 1, the theorem is trivial. Now
assume that the theorem is true for n−1. By the induction hypothesis, there
exist multi-indices γ0, γ1, . . . , γn−2 with

|γi| ≤ |γi−1|+ ps−1

and such that the Dγif for i = 0, . . . , n− 2 span an n− 1-dimensionalMm-
vector subspace of Mn

m. Let k = |γn−2| + ps−1. Let V be the Mm-vector
subspace of Mn

m spanned by Dγf for all |γ| ≤ k. If the theorem were not
true, then V could not have dimension n, and so there exist Q0, . . . , Qn−1

not all zero in Mm such that

(3) Q0D
γf0 + · · ·+Qn−1D

γfn−1 ≡ 0

for every γ with |γ| ≤ k. Because the vectors

(Dγ0
fj , . . . , D

γn−2
fj) for j = 0, . . . , n− 2

are linearly independent over Mm by the induction hypothesis, we can as-
sume Qn−1 ≡ 1, and hence we have

Q0D
γf0 + · · ·+Qn−2D

γfn−2 + fn−1 ≡ 0 for all |γ| ≤ k.
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Our goal is to show that the Qj are in Mm[ps]. Note that

0 = D1
l

[n−2∑
j=0

QjD
γifj +Dγifn−1

]
=

n−2∑
j=0

D1
lQjD

γifj +
n−1∑
j=0

QjD
1
lD

γifj

=
n−2∑
j=0

D1
lQjD

γifj

for i = 0, . . . , n − 2 and l = 1, . . . ,m, where the last line follows from
Proposition 3.1(iii) and equation (3). By the linear independence of the
vectors (Dγ0

fj , . . . , D
γn−2

fj), we conclude that D1
lQj ≡ 0 for all l and all

j = 1, . . . , n− 2. Thus, the Qj belong to Mm[2] =Mm[p]. Now assume the
Qj belong to Mm[pt] for some t ≥ 1. By Proposition 3.4(B), we can apply
Dpt+1

l as if it were a derivation to get

0 = Dpt+1

l

[n−2∑
j=0

QjD
γifj +Dγifn−1

]
(4)

=
n−2∑
j=0

Dpt+1

l QjD
γifj +

n−1∑
j=0

QjD
pt+1

l Dγifj .

If t < s, we can use Proposition 3.1(iii), the fact that

|γi| ≤ |γn−2| ≤ (k − 1)ps−1

and equation (3) to conclude that the right-hand sum in (4) vanishes, and
thus,

0 =
n−2∑
j=0

Dpt+1

l QjD
γifj .

Again, by linear independence, we conclude Dpt+1

l Qj ≡ 0 and so the Qj
belong to Mm[pt+1]. Continuing in this manner, we find that the Qj are in
Mm[ps], contradicting the assumption that the fj are linearly independent
over Mm[ps].

Proposition 3.6. Let f be an entire function in Em. Let γ=(γ1, . . . , γm)
be a multi-index. Let P be an irreducible element of Em that divides f
with exact multiplicity e. If e > |γ|, then P e−|γ| divides Dγf. Moreover ,
if char F = p > 0 and if e is divisible by ps > max{γ1, . . . , γm}, then P e

divides Dγf.

Proof. Because the Di commute, it suffices to show the proposition for
Dγ = Dk

i .
In the special case that char F = p > 0 and e is divisible by

ps > max{γ1, . . . , γm},
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the fact that P e divides Dk
i f follows easily from Proposition 3.1(ii) since for

any non-negative integer l,

Dj
iP

lps = 0 for all 0 < j < ps

and since ps > k by assumption.
We show the general case by induction on e and k. The case e = k is

trivial. We now suppose that the proposition holds for all Dj
i with j ≤ k and

for e and then show that it also holds for k and e + 1. Suppose f = P e+1g
with g relatively prime to P. By Proposition 3.1(ii),

Dk
i f = Dk

i (P · P eg) = PDk
i (P eg) +

k∑
j=1

Dj
iPD

k−j
i (P eg).

If e > k ≥ k − j, then by induction, P e−(k−j) divides Dk−j
i (P eg) and hence

P e−k divides Dk−j
i (P eg) for all j = 0, . . . , k and P e+1−k divides Dk−j

i (P eg)
for all j > 0.

4. Higher radicals and truncated counting functions. If F has
characteristic zero, if f is in Em, and if l ≥ 1 is an integer, then clearly if
P is an irreducible element of Em that divides f with multiplicity e, then
P divides gcd(f,R(f)l) with multiplicity min{l, e}. Thus, in characteristic
zero, we can define the lth truncated counting function by

N
(l)
f (0, r) = Ngcd(f,R(f)l)(0, r).

We saw at the end of Section 2 that in positive characteristic p, the
radicalR(f) does not contain those irreducible factors of f that divide f with
multiplicity divisible by p. Although that was exactly what was appropriate
in Theorem 2.6, when we consider

fn = f0 + · · ·+ fn−1

with n > 2, we will not be able to ignore all irreducible factors with multi-
plicity divisible by p. Thus, we want to define truncated counting functions
in positive characteristic that include all irreducible factors.

For the rest of this section, let F have positive characteristic p. We will
use the following proposition to inductively define higher ps-radicals for
integers s ≥ 1.

Proposition 4.1. Let f be an entire function in Em and let s ≥ 1 be an
integer. Assume that we have defined a ps−1-radical Rps−1(f) that has the
property that Rps−1(f) is square-free and has the property that an irreducible
element P of Em divides Rps−1(f) if and only if P divides f with multiplicity
not divisible by ps. Let

f =
f

gcd(f,Rps−1(f)ps)
.
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For i = 1, . . . ,m, let gi = gcd(f,Dps

i f), let hi = f/gi, and let H be the least
common multiple of the hi. Let

G =
H

gcd(H,Rps−1(H)ps−1)
.

Then:

(i) if P is an irreducible element of Em that divides G, then it divides
G with multiplicity exactly ps;

(ii) if P is an irreducible element of Em, then P divides G if and only
if P divides f with multiplicity a multiple of ps but not a multiple
of ps+1.

It follows that G is a psth power , so we can let R be a psth root of G and
let Rps(f) be the least common multiple of Rps−1(f) and R.

Proof. Our induction begins with the radical as defined in Section 2, so
we let Rp0(f) = R(f). To show the inductive step, let P be an irreducible
element of Em that divides f. Note that if P divides f, then it divides it
with multiplicity at least ps. Write

f = P jp
s+ef̃ ,

where j ≥ 1 and 0 ≤ e < ps are integers and f̃ is relatively prime to P. Then,
by Proposition 3.1(ii) and (iv) and Proposition 3.4(B), for i = 1, . . . ,m,

(5) Dps

i f = Dps

i [P jp
s
P ef̃ ] = P ef̃(Di[P j ])p

s
+ P jp

s
Dps

i [P ef̃ ].

We first consider the case that j is not divisible by p. Because P is
irreducible and hence not a pth power, there exists an i such that DiP 6≡ 0.
Because

Di(P j) = jP j−1DiP,

we see from the assumption that j is not divisible by p, that P divides Dps

i f
with exact multiplicity (j − 1)ps + e, and so by Proposition 3.6, P divides
H with exact multiplicity ps.

In case j is divisible by p, we see from equation (5) that P divides H
with multiplicity at most e < ps. Thus, P does not divide R.

We now show the existence of the square-free part of an entire function,
which is square-free and contains all the irreducible factors dividing the
function.

Theorem 4.2. Let f be an entire function in Em. There exists an en-
tire function S(f) in Em such that S(f) is square-free and such that an
irreducible element P in Em divides S(f) if and only if it divides f.
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We will call S(f) the square-free part of f. We define the lth truncated
counting function by

N
(l)
f (0, r) = Ngcd(f,S(f)l)(0, r).

As in characteristic zero, the lth truncated counting function truncates to l
all multiplicities higher than l.

Proof of Theorem 4.2. The proof is similar to the proof of the existence
of greatest common divisors given in [11]. The case that f is identically zero
is trivial, so assume that f is not identically zero. For i = 1, 2, . . . , let ri be
an increasing sequence of elements of |F×| such that ri →∞. Consider f as
an element of the ring Am(ri) of analytic functions on Bm(ri), the closed
ball of radius ri. Let z0 be a point in Bm(r1) such that f(z0) 6= 0. Let Rps(f)
be the higher radicals of f defined as in Proposition 4.1 normalized so that
for each s, we have Rps(f)(z0) = 1. Because the ring Am(ri) is factorial
[6, §5.2.6, Th. 1], only finitely many of the irreducible elements in Em that
divide f are non-units in Am(ri). Each of these divides f to some finite
multiplicity, and so there exists some si such that every irreducible element
in Em that divides f and is not a unit in Am(ri) also divides Rps(f) for all
s ≥ si. This means that for s, t ≥ si, Rps(f) and Rpt(f) differ by a unit
in Am(rn).

Let ui,i+1 be the unit in Am(ri) such that

Rpsi (f) = ui,i+1Rpsi+1 (f),

and note that ui,i+1(z0) = 1. Then, writing ui,i+1 as a power series about z0,
we have

ui,i+1(z) = 1 +
∑
|γ|≥1

aγ(z − z0)γ with |aγ |r|γ|i < 1 for all |γ| ≥ 1.

Thus, for j > i,

|uj,j+1 − 1|ri <
ri
rj
.

Since ri/rj → 0 as j →∞ with i fixed, we can define units vi in Am(ri) by

vi =
∞∏
j=i

uj,j+1.

For j > i, we have

Rpsj (f)vi = Rpsj (f)
∞∏
k=i

uk,k+1 = Rpsj (f)
(j−1∏
k=i

uk,k+1

)( ∞∏
k=j

uk,k+1

)
= Rpsi (f)vj .
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This precisely means that R
psi

(f)v−1
i converges to an entire function F

as i → ∞ because the difference between R
psi

(f)v−1
i and R

ps
j (f)v−1

j is
identically zero on Bm(ri). Note also that viF = Rpsi (f) in Am(ri).

We claim that F is square free and that an irreducible element P of Em
divides F if and only if it divides f.

To show that F is square free, suppose that P is an irreducible element of
Em such that P 2 divides F. This means P 2 divides Rpsi (f) in Am(ri). For i
sufficiently large, P is not a unit in Am(ri), and so it would be the case that
Rpsi (f) is not square free in Am(ri). However, the proof of Proposition 4.1
works equally well in the ring Am(ri), and thus Rpsi (f) is also square free
in Am(ri).

Finally, let P be an irreducible element of Em. Suppose P divides f.
Then P divides Rpsi (f) for all i sufficiently large. In other words, there
exist analytic functions hi in Am(ri) such that

Phi = Rpsi (f).

Because Phiv−1
i converges to F as i→∞, for j > i, we have

P (hiv−1
i − hjv

−1
j ) = 0 in Am(ri).

Thus hiv−1
i converges to an entire function H such that PH = F, and so P

divides F. For the other direction, suppose that P divides F. Then P divides
Rpsi (f) in Am(ri), and so again noticing that the proof of Proposition 4.1
also works for Am(ri), we deduce that P divides f in Am(ri). In other words,
there exist analytic functions gi in Am(ri) such that Pgi = f. This implies
that the gi converge to an analytic function G such that PG = f, and hence
P divides f in Em.

5. Linear algebra. Let V be a vector space over a field E. Let v0, . . . , vn
be n + 1 linearly dependent vectors in V. Call an index set I ⊂ {0, . . . , n}
minimal if the set of vectors {vi : i ∈ I} is linearly dependent, but such that
for every proper subset I ′ ( I, the sets of vectors {vi : i ∈ I ′} are linearly
independent.

Lemma 5.1 (Brownawell–Masser). Let v0, . . . , vn be n + 1 vectors in a
vector space V over a field E such that

∑
vi = 0. Assume that no proper

subsum vanishes, i.e.,∑
i∈I

vi 6= 0 for all I ( {1, . . . , n}.

Then there exists an integer u ≥ 1, a partition

{0, . . . , n} = I0 ∪ · · · ∪ Iu−1,
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and non-empty subsets

Jl ⊂
l⋃

j=1

Ij , l = 0, . . . , u− 2,

such that I0 and Ij ∪ Jj−1 for j = 1, . . . , u− 1 are minimal.

Proof. If {0, . . . , n} is minimal, set I0 = {0, . . . , n}. If {0, . . . , n} is not
minimal, see [10, Lem. 6].

In positive characteristic p, we want to apply Theorem 3.5 to entire
functions linearly independent over F, so we complete this section by proving
that if a collection of functions are linearly independent over F, then they
are also linearly independent over Mm[ps] for some integer s ≥ 1.

Lemma 5.2. Let f1, . . . , fn be meromorphic functions in Mm linearly
independent over F, with char F = p > 0. Then there exists an integer s ≥ 1
such that f1, . . . , fn are linearly independent over Mm[ps].

Proof. Suppose the lemma is not true. Then, f1, . . . , fn are linearly de-
pendent overMm[ps] for every s ≥ 1. For each s ≥ 1, let Is ⊂ {1, . . . , n} be
minimal. Note that each Is contains at least two indices, otherwise one of the
functions fj would be identically zero, and hence the fj could not be linearly
independent over F. Because there are only finitely many possible subsets Is,
we may assume without loss of generality that Is = {1, . . . , t} for infinitely
many s. Thus, for infinitely many s, the functions f2, . . . , ft are linearly in-
dependent overMm[ps] and f1 is in theMm[ps]-linear span of f2, . . . , ft. In
other words, for infinitely many s there exist unique Qs,2, . . . , Qs,t inMm[ps]
such that

f1 = Qs,2f2 + · · ·+Qs,tft.

On the other hand, Mm[ps
′
] ⊂ Mm[ps] if s′ ≥ s, so by the linear indepen-

dence of f2, . . . , ft, the Qs,j do not depend on s. Hence, Qs,j is in Mm[ps]
for infinitely many s, and must therefore be in F. This contradicts the linear
independence of the fj over F.

If F has positive characteristic p, then we define the index of independence
of a collection F of entire or meromorphic functions to be the smallest
integer s such that any subset of functions in F linearly independent over F
remains linearly independent over Mm[ps], provided such an integer exists.
Lemma 5.2 shows that such an integer always exists if F is finite.

6. ABC theorems. In the three-function ABC theorem, one begins
with f2 =f0+f1 with the fi relatively prime. Note that here gcd(f0, f1, f2)=1
implies that the fj are also pairwise relatively prime because, by the linear
dependence, if two of the functions have a common factor, it divides the third
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as well. To generalize to n+ 1 functions, one obviously wants to consider

fn = f0 + · · ·+ fn−1,

or more symmetrically,
0 = f0 + · · ·+ fn.

Some work on such generalizations, e.g. [29], assumes the rather strong hy-
pothesis that the fj are pairwise relatively prime. Other work, e.g. [10],
assumes gcd(f0, . . . , fn) = 1 and that∑

i∈I
fi 6= 0 for each proper index subset I ( {0, . . . , n}.

This hypothesis is referred to as “no vanishing subsums”. The recent work
of De Bondt [5] generalizes these two hypotheses to the following: Suppose
0 = f0 + · · ·+ fn and assume that for each index set I ⊆ {0, . . . , n},

if
∑
i∈I

fi = 0, then gcd({fi : i ∈ I}) = 1.

In the three-function ABC theorem, the right-hand side of the ABC
inequality involves the radical R(f0f1f2) of the product. But because the
functions are pairwise relatively prime, this is the same as the product of
the radicals: R(f0)R(f1)R(f2). When one begins with n + 1 functions that
are not necessarily pairwise relatively prime, then the square free part of
the product, S(f0 · · · fn), will not in general be the same as the product of
the square free parts, S(f0) · · ·S(fn). Again, we follow De Bondt’s lead by
presenting generalized ABC inequalities of both types.

The following two theorems are our generalized ABC theorems for non-
Archimedean entire functions of several variables.

Theorem 6.1 (Generalized ABC theorem (first version)). Let f0, . . . , fn
be n+ 1 ≥ 3 entire functions in Em, not all of which are constant and none
of which is identically zero. Assume

(6) 0 = f0 + · · ·+ fn

and assume that for each index set I ⊆ {0, . . . , n},

(7) if
∑
i∈I

fi = 0 then gcd({fi : i ∈ I}) = 1.

Let 2 ≤ d ≤ n be the dimension of the F-vector space spanned by the fi. If F
has characteristic zero, let c = 1, and if F has positive characteristic p, let
c = ps−1, where s is the index of independence for the fi. Then there exist
integers a and b with

1 ≤ a ≤ c(d− 1) and b ≥ a
⌈
a

c

⌉
−

⌈
a

c

⌉(⌈
a

c

⌉
− 1
)

2
c ≥ a
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such that for r ≥ 1,

(8) max
0≤j≤n

log |fj |r ≤
n∑
j=0

N
(a)
fj

(0, r)− b log r +O(1).

Moreover , if char F = p > 0 then there further exists a non-negative integer
σ with pσ ≤ a such that for r ≥ 1,

(9) max
0≤j≤n

log |fj |r ≤
n∑
j=0

NGj (0, r)− b log r +O(1),

where Gj = gcd(fj , Rpσ(fj)a).

Theorem 6.2 (Generalized ABC theorem (second version)). Let f0, . . .
. . . , fn be n + 1 ≥ 3 entire functions in Em, not all of which are constant
and none of which is identically zero. Assume

0 = f0 + · · ·+ fn.

Let 2 ≤ d ≤ n be the dimension of the F-vector space spanned by the fi. Let
2 ≤ k ≤ n and assume that

(10) gcd(fi1 , . . . , fik) = 1 for any 0 ≤ i1 < · · · < ik ≤ n.
Let k = min{k, d}. If k > 2, further assume

(11)
∑
i∈I

fi 6= 0 for each I ( {0, . . . , n}.

If F has characteristic zero, let c = 1, and if F has positive characteristic p,
let c = ps−1, where s is the index of independence for the fi. Then there
exist integers a and b with

1 ≤ a ≤ c
k−1∑
i=1

(d− i) and a ≤ b

such that for r ≥ 1,

(12) max
0≤j≤n

log |fj |r ≤ N (a)
F (0, r)− b log r +O(1),

where F = f0 · · · fn.
We remark that given explicit fi, the constants a, b, σ, and a in The-

orems 6.1 and 6.2 can be determined explicitly in terms of non-vanishing
generalized Wronskians of subsets of the fi, as will be evident from the proof;
see (16), (17), (18), and (20).

Trivial examples in positive characteristic show that the dependence on
the index of independence s cannot be removed.

In characteristic zero and one variable, Theorems 6.1 and 6.2 are due
to Hu and Yang [20]. Below, we will give their proof, which in turn closely
follows Brownawell and Masser [10], and simply observe that it works, given
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the proper set-up, just as well for several variables and in positive charac-
teristic. That it is natural to express the upper bounds on a and a in terms
of d is an observation of Zannier [35]. For polynomials of several variables,
De Bondt [5] gave an alternative Wronskian-based proof that first reduces
to the case of one-variable polynomials by generic specialization but then
proves the one-variable case by introducing extra variables to force linear
independence, thereby avoiding Lemma 5.1.

Before giving the proof of Theorems 6.1 and 6.2, we discuss how to derive
from it various other existing results in the literature. First observe that in
characteristic zero, b ≥ a(a+ 1)/2 and so (8) implies

max
0≤j≤n

log |fj |r ≤
n∑
j=0

N
(a)
fj

(0, r)− a(a+ 1)
2

log r +O(1),

which specializing to complex polynomials gives us

Corollary 6.3 ([5, Th. 2.1(4)]). Let f0, . . . , fn be polynomials of several
complex variables satisfying the hypothesis of the theorem. Then

max deg fj ≤
n∑
j=0

ra(fj)−
a(a+ 1)

2
,

where ra(fj) = deg gcd(fj , R(fj)a) and a is as in the theorem.

Incorporating an idea of Bayat and Teimoori [4] as in De Bondt [5], we
get

Corollary 6.4. Assume F has characteristic zero, let f0 + · · ·+fn = 0
be as in Theorem 6.1 and let d be the dimension of the F-vector space spanned
by the fj . Let C be the number of fj which are constant functions. For any
A with d ≤ A ≤ n− C,

max
0≤j≤n

log |fj |r ≤ A
( n∑
j=0

N
(1)
fj

(0, r)− A+ 1
2

log r
)

+O(1)

for r ≥ 1.

De Bondt gives examples that show that A cannot be made smaller
than d in Corollary 6.4.

In the case of polynomials, Corollary 6.4 gives [5, Th. 2.1(5)], which
implies [4, Th. 5] as explained in [5]. As remarked by De Bondt, the proof of
[4, Th. 5] given by Bayat and Teimoori in [4] is not correct for polynomials
of several variables because their Lemma 4 is easily seen to be false for
several-variable polynomials. However, arguing as in [5], their Theorem 5 is
correct, even for several variables. Of course, this also recovers the result of
Shapiro and Sparer [29].
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Proof of Corollary 6.4. Clearly (by Proposition 2.7),

N
(a)
fj

(0, r) ≤ aN (1)
fj

(0, r),

so from (8), we get

max
0≤j≤n

log |fj |r ≤ a
( n∑
j=0

N
(1)
fj

(0, r)− a+ 1
2

log r
)

+O(1)

for r ≥ 1. The observation of Bayat and Teimoori is that the expression on
the right is quadratic in a and hence increasing in a provided

a+
1
2
≤ 1

log r

n∑
j=0

N
(1)
fj

(0, r).

Because
N

(1)
fj

(0, r) ≥ log r +O(1)

for any non-constant fj and because there are n + 1 − C non-constant fj ,
we have

n∑
j=0

N
(1)
fj

(0, r) ≥ (n+ 1− C) log r +O(1) ≥ (n− C) log r

for r sufficiently large, and so we can increase a up to n−C and the inequality
will hold for all sufficiently large r. We can then adjust the O(1) term to
make the inequality hold for r ≥ 1.

We now digress a little bit to discuss one slightly subtle difference be-
tween entire functions and polynomials. The astute reader will notice that we
assumed no vanishing subsums, i.e. (11), in Theorem 6.2, whereas De Bondt
assumed the weaker hypothesis (7) in both versions of his ABC theorems.
In the case of complex polynomials, the inequality in De Bondt’s work that
corresponds to our inequality (12) is

max deg fj ≤ deg gcd(F,R(F )a)− b ≤ deg gcd(F,R(F )a)− a,
and this holds even if the hypothesis (11) of no vanishing subsums is weak-
ened to (7). The reason for this is that in the case of polynomials, one of
the polynomials fj0 has maximal degree. Thus, one need only consider a
minimal index set I such that j0 is contained in I and such that∑

j∈I
fj = 0.

However, in the case of entire functions, it need not be the case that there
is a fixed index j0 such that for all r sufficiently large

|fj0 |r = max
0≤j≤n

|fj |r.
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Thus, if one replaces the hypothesis (11) in Theorem 6.2 with the weaker
hypothesis (7), it follows from (12) and the fact that for a positive integer l,
for r ≥ 1 and F and G entire functions we have

max{N (l)
F (0, r), N (l)

G (0, r)} ≤ N (l)
FG(0, r),

that for each index j in {0, . . . , n}, there exist integers aj and bj with

1 ≤ aj ≤ c
k∑
i=1

(d− i) and aj ≤ bj

such that for r ≥ 1,

log |fj |r ≤ N
(aj)
F (0, r)− bj log r +O(1),

from which it follows that

max
0≤j≤n

log |fj |r ≤ N
(max aj)
F (0, r)− (min bj) log r +O(1).

Of course, it need not be that min bj ≥ max aj , and thus when subsums of
the fj may vanish, it is not clear for entire functions whether one can choose
the same constant at which multiplicities are truncated when counting the
zeros of F as the coefficient in front of − log r. Whether that can be done is
a somewhat interesting question, because if it can be done, then the proof
cannot be a straightforward generalization of the existing polynomial proof.
If it cannot be done, then this would be an example where a polynomial
inequality does not completely generalize to an analogous inequality for
entire functions.

Corollary 6.5. With hypotheses and notation as in Theorem 6.2, we
have, for r ≥ 1 and any

A ≥ c
k−1∑
i=1

(d− i),

the inequality

max
0≤j≤n

log |fj |r ≤ A(N (1)
F (0, r)− log r) +O(1).

Moreover , the above inequality remains valid if the hypothesis (11) is weak-
ened to hypothesis (7).

Remark. The O(1) term may depend on A.

Proof of Corollary 6.5. Under the hypothesis (11), we have

max
0≤j≤n

log |fj |r ≤ N (a)
F (0, r)− a log r +O(1),

which follows immediately from (12) because a ≤ b. Because

N
(a)
F (0, r) ≤ aN (1)

F (0, r)
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and because
N

(1)
F (0, r)− log r

is bounded below for r ≥ 1 since F is non-constant, we have

N
(a)
F (0, r)− a log r ≤ a(N (1)

F (0, r)− log r) ≤ A(N (1)
F (0, r)− log r) +O(1),

which gives the corollary when there are no vanishing subsums. However,
even if there are vanishing subsums, the functions can be grouped into van-
ishing subsums ∑

i∈I
fi = 0

with no vanishing sub-subsums. Any vanishing subsum consisting of all con-
stants can be thrown out. Letting

FI =
∏
i∈I

fi,

we have
max
j∈I

log |fj |r ≤ A(N (1)
FI

(0, r)− log r) +O(1).

Because A was chosen independent of I and because

max
I
N

(1)
FI

(0, r) ≤ N (1)
F (0, r) for r ≥ 1,

the corollary follows in general.

If F has characteristic zero and in the case of polynomials when k = n,
Corollary 6.5 is [5, Th. 2.2(7)]. When k = 3, then we can take A = 2n − 3
and so we recover the main result of Quang and Tuan in [26]:

(13) max
0≤j≤n

deg fj ≤ (2n− 3)[degR(F )− 1]

if gcd(fi1 , fi2 , fi3) = 1 for all triples of indices i1 < i2 < i3. Note that
Quang and Tuan neglected the necessary hypothesis that the functions in
any vanishing subsum be relatively prime, i.e., hypothesis (7). We also re-
mark that Browkin and Brzeziński [9] conjectured that (13) remains true
for one-variable polynomials in characteristic zero if the gcd hypothesis is
relaxed to gcd(f0, . . . , fn) = 1 and no vanishing subsums. This conjecture
seems to be out of reach of the current Wronskian-based proofs.

Fundamental to the proof of Theorems 6.1 and 6.2 are the following
lemmas about generalized Wronskians.

Lemma 6.6. Let f0, . . . , fn−1 be entire functions in Em. Let

γ1 = (γ1
1 , . . . , γ

1
m), . . . , γn−1 = (γn−1

1 , . . . , γn−1
m )

be multi-indices with |γ1| ≤ · · · ≤ |γn−1| such that the associated generalized
Wronskian W does not vanish identically. Let γ0 = (0, . . . , 0). If P is an
irreducible element which divides fi with multiplicity e > |γn−1|, then P
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divides W with multiplicity at least e− |γn−1|. Moreover , if char F = p > 0
and if pt divides e and

pt > max{γji : 1 ≤ j ≤ n− 1 and 1 ≤ i ≤ m},
then P e divides W.

Remark. Note that max{γji : 1 ≤ j ≤ n− 1 and 1 ≤ i ≤ m} ≤ |γn−1|.
Proof of Lemma 6.6. This follows immediately from Proposition 3.6.

Lemma 6.7. Let f0, . . . , fn−1 be entire functions in Em. Let γ1, . . . , γn−1

be multi-indices with |γ1| ≤ · · · ≤ |γn−1| such that the associated general-
ized Wronskian W does not vanish identically. Let γ0 = (0, . . . , 0) and let
F = f0 · · · fn−1. Let k ≥ 2 be the smallest integer such that for any k dis-
tinct indices i1, . . . , ik in {0, . . . , n − 1} one has gcd(fi1 , . . . , fik) = 1, or if
no such k exists, let k = n+ 1. Let

` =
k−1∑
i=1

|γn−i|.

If P is an irreducible element which divides F with multiplicity e > `, then
P divides W with multiplicity at least e− `.

Remark. Note that in positive characteristic p, even if P divides F
with multiplicity a large multiple of p, this does not necessarily mean that
P divides W with multiplicity divisible by p. This is because the powers
of P may be split among the different fi, so P need not divide any of the fi
with multiplicity divisible by p.

Proof of Lemma 6.7. By the hypothesis of the lemma, we may assume
without loss of generality, by re-ordering the indices if necessary, that P
does not divide fj for j ≥ k − 1. Let ei ≥ 0 for i = 0, . . . , k − 2 be the
multiplicities with which P divides the fi, and assume e0 ≥ · · · ≥ ek−2.
Then, by Proposition 3.6, P divides W with multiplicity at least

k−2∑
i=0

max{0, ei − |γn−i−1|} ≥
k−2∑
i=0

(ei − |γn−i−1|) = e− `.

Proof of Theorems 6.1 and 6.2. If F has positive characteristic, let Gi
be as in the statement of Theorem 6.1. If F has characteristic zero, let

Gi = gcd(fi, S(fi)a).

Then Gi divides gcd(fi, S(fi)a), and thus

NGi(0, r) ≤ N
(a)
fi

(0, r)

for r ≥ 1 by Proposition 2.7 and the definition of truncated counting func-
tions. Therefore, inequality (8) follows from inequality (9). Hence, to prove
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Theorem 6.1, it suffices to prove (9), where in characteristic zero we inter-
pret (9) with Gi as defined here in the proof.

We next observe that it suffices to prove Theorem 6.1 assuming there are
no vanishing subsums. Indeed, if there are vanishing subsums, simply group
the fi into vanishing subsums with no vanishing sub-subsums, and note that
these subsums still satisfy all the hypotheses of the theorem. Summing (9)
over each minimal vanishing subsum clearly results in (9) for the general
case.

Note also that if k = 2 in Theorem 6.2, then the fj are pairwise relatively
prime, in which case

N
(`)
F (0, r) =

n∑
j=0

N
(`)
fj

(0, r),

and so Theorem 6.2 follows from Theorem 6.1. Thus, we henceforth as-
sume (11) as we prove both theorems.

Consider the F-linear span of f0, . . . , fn as an F-vector space, and parti-
tion

{0, . . . , n} = I0 ∪ · · · ∪ Iu−1 with Jj ∈ Ij for j = 0, . . . , u− 2

as in Lemma 5.1. Let J−1 = ∅. Also, without loss of generality, assume 0 ∈ I0.
Let nj be the cardinality of Ij for j = 0, . . . , u − 1. Note that n0 ≤ d + 1
by the minimality of I0 and that nj ≤ d for j ≥ 1 by the minimality of
Ij ∪ Jj−1. Set

γ0,0 = γ1,0 = · · · = γu−1,0 = γ0 = γ1 = · · · = γu−1 = (0, . . . , 0).

The fi for i in I0 \ {0} are linearly independent over F. Therefore by
Lemma 5.2 and Theorem 3.5, there exist multi-indices γ0,1, . . . , γ0,n0−2 such
that the generalized Wronskian W0 formed by the fi with respect to these
multi-indices for i in I0 \ {0} is not identically zero, and moreover,

|γ0,i| ≤ |γ0,i−1|+ c ≤ ci.
Note that if n0 = 2, we simply let W0 be the fi for the unique index i in I0
different from 0. Similarly, for j = 1, . . . , u − 1, there exist multi-indices
γj,1, . . . , γj,nj−1 such that the generalized Wronskian Wj formed by the fi
with respect to these multi-indices for i in Ij is not identically zero, and

|γj,i| ≤ |γj,i−1|+ c ≤ ci.
The total number of multi-indices we get this way is

n0 − 2 + n1 − 1 + · · ·+ nu−1 − 1 = n− u.
Write these multi-indices as γu, . . . , γn−1 with

|γu| ≤ · · · ≤ |γn−1| ≤ c(d− 1),
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and note that

(14) |γi| ≤ |γi−1|+ c.

For each minimal index set I0, J0 ∪ I1, . . . , Ju−2 ∪ Iu−1, there is a linear
dependence relation

n∑
i=0

cj,ifi = 0

with cj,i non-zero elements of F when i is in Jj−1 ∪ Ij and 0 otherwise. Of
course, this also gives rise to the linear equations

n∑
i=0

c0,iD
γ0,q

fi = 0, q = 0, . . . , n0 − 2,

and
n∑
i=0

cj,iD
γj,qfi = 0, q = 0, . . . , nj − 1, j = 1, . . . , u− 1.

Let M be the n × (n + 1)-matrix whose entries are cj,iDγj,qfi, where the
columns are indexed by i and the rows are indexed by j and q. Note that the
sum of each row of M is zero. Let ∆i denote the determinant of the matrix
M with the ith column deleted. Because the ith column is the negative of
the sum of the other columns, ∆i = ±∆j . From the block nature of M,

(15) ∆0 = C0W0 · · ·Wu−1,

where C0 is a constant obtained by multiplying the appropriate cj,i’s, and
hence is non-zero. Thus, ∆i is non-zero for all i, and up to a constant is the
product of the generalized Wronskians Wj .

Define

a = |γn−1| ≤ c(d− 1),(16)

b =
n−1∑
i=u

|γi| ≥
n−2∑
i=u

max{1, |γn−1| − ci}(17)

≥ a
⌈
a

c

⌉
−

⌈
a

c

⌉(⌈
a

c

⌉
− 1
)

2
c ≥ a

and

(18) a =
k−1∑
i=1

|γn−i| ≤ c
k−1∑
i=1

(d− i),

where the first inequality in (17) follows from (14). Note also that

(19) b ≥ a ≥ a ≥ 1,
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where a ≥ 1 follows from the fact that not all the WronskiansWj can be 1×1,
for if they were, we would have either all the fi constant or gcd(f0, . . . , fn)
6= 1.

If F has characteristic p > 0, let σ be the largest integer such that

(20) pσ ≤ max{γij : u ≤ i ≤ n− 1 and 1 ≤ j ≤ m} ≤ a,

where γi = (γi1, . . . , γ
i
m).

We claim that F divides

∆0

n∏
i=0

Gi.

Indeed, suppose that P is an irreducible element of Em which divides fi with
exact multiplicity e. If F has characteristic zero, then Pmin{e,a} divides Gi
by Proposition 2.5, and if e > a, then P e−a divides Wj , where i ∈ Ij , by
Lemma 6.6 and (16). Now suppose char F = p and pv is the largest power
of p dividing e. If pv ≤ pσ ≤ a, then Pmin{e,a} divides Gi by Propositon 4.1
and in the case e > a, we find that P e−a divides Wj , where i ∈ Ij , again by
Lemma 6.6 and (16). If pv > pσ, then P e divides ∆0 by Lemma 6.6 and (20).
Thus in all cases, P e divides WjGi, which divides ∆0Gi by (15). Therefore,

(21) log |F |r ≤ log |∆0|r +
n∑
i=0

log |Gi|r +O(1)

by Corollary 2.2.
Let

F0 =
∏

i∈I0\{0}

fi, Fj =
∏
i∈Ij

fi, j = 1, . . . , u− 1.

For each j = 0, . . . , u−1, the quotient Wj/Fj is the determinant of a matrix
consisting of logarithmic derivatives, and so by Lemma 3.2,∣∣∣∣W0

F0

∣∣∣∣
r

≤ −
(n0−2∑
q=0

|γ0,q|
)

log r,

∣∣∣∣Wj

Fj

∣∣∣∣
r

≤ −
(nj−1∑
q=0

|γ0,q|
)

log r for j = 1, . . . , u− 1.

Then
f0∆0

F
= C0 ·

W0

F0
· · ·Wu−1

Fu−1

and hence

log |f0|r + log |∆0|r − log |F |r ≤ −b log r +O(1)

by Lemma 3.2 and (17). Similarly, if i is any index in I0, then we can write
W0 as a determinant involving Dγ0,q

fl for l 6= i, and so fiW0/f0F0 is also a
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sum of products of logarithmic derivatives, and hence

log
∣∣∣∣fiW0

f0F0

∣∣∣∣
r

≤ −
(n0−2∑
q=0

|γ0,q|
)

log r

as well. Thus
log |fi|r + log |∆0|r − log |F |r ≤ −b log r +O(1)

for all i in I0. Now let i be in I1 and let j be in J0. Then, by a similar
argument,

fi∆0

F
= C0 ·

fjW0

f0F0
· fiW1

fjF1
· W2

F2
· · ·Wu−1

Fu−1
,

and fjW0/f0F0 and fiW1/fjF1 are both sums of products of logarithmic
derivatives. Hence

log |fi|r + log |∆0|r − log |F |r ≤ −b log r +O(1).

Continuing, we find that for all i,
log |fi|r + log |∆0|r − log |F |r ≤ −b log r +O(1),

whence

(22) max
0≤i≤n

log |fi|r ≤ log |F |r − log |∆0|r − b log r +O(1).

Combining this with (21), we get

max
0≤i≤n

log |fi|r ≤
n∑
i=0

log |Gi|r − b log r +O(1).

If we use the Poisson–Jensen–Green type formula (2) and the definition of
counting functions, this can also be written, for r ≥ 1, as

max
0≤i≤n

log |fi|r ≤
n∑
i=0

NGi(0, r)− b log r +O(1),

which is precisely (9).
We now show (12). Let P be an irreducible element of Em that divides F.

By the hypotheses of the theorem, there is at least one fi such that P does
not divide fi. Because, as above, we can write ∆0 as a product of Wronskians
not involving fi, we can use Lemma 6.7 to conclude by (18) that P divides∆0

with multiplicity at least e− a. Thus, F/gcd(F,∆0) divides gcd(F, S(F )a).
Hence, by Proposition 2.2, the Poisson–Jensen–Green type formula (2), and
the definition of truncated counting functions, for r ≥ 1,

log |F |r − log |∆0|r ≤ |gcd(F, S(F )a)|r +O(1) = N
(a)
F (0, r) +O(1).

Combining this with (22), we get for r ≥ 1

max
0≤i≤n

log |fi|r ≤ N (a)
F (0, r)− b log r +O(1),

which is (12).
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