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1. Introduction. A global Artin root number is a complex numberW (ρ)
of modulus 1 appearing in the functional equation of an Artin L-series

Λ(s, ρ) = W (ρ) · Λ(1− s, ρ),

in which ρ is a continuous representation

ρ : Gal(K|K)→ Gln(C)

of the absolute Galois group of a global fieldK, where ρ denotes the complex-
conjugate representation, and where Λ(s, ρ) is the extended Artin L-series
with gamma factors at the archimedean places of K.

Work of Deligne ([4], [5]), based partly on unpublished work of Langlands,
shows that the global Artin root number can be written as a product

W (ρ) =
∏

WP (ρ)

of other complex numbers of modulus 1, called local Artin root numbers
(Deligne calls them simply local constants). Given ρ, there is one local
root number WP (ρ) for each non-trivial place P of the base field K, and
WP (ρ) = 1 for almost all P .

When ρ is a real representation, then each local root number is a fourth
root of unity, and, by the theorem of Fröhlich–Queyrut ([6]), the global
root number W (ρ) is +1. This means that the product of the local root
numbers of a real representation is +1, so the theorem of Fröhlich–Queyrut
is a reciprocity law or a product formula for local root numbers.

Here is a key example. Let K be a number field. For each element a ∈ K∗
there is the 1-dimensional real representation ρa of the absolute Galois group
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GK given by

ρa(σ) =
σ(
√
a)√
a

for σ ∈ GK . The global root number is 1. For a place P of K, the local root
number WP (ρa) depends only on the square-class of a in the local square-
class group K∗P /K

∗2
P . Tate’s explicit formula for WP (ρa) will be recalled in

Section 3 below. For P fixed and for a varying over the local square-classes,
we collect these local root numbers WP (ρa) into a function

rP : K∗P /K
∗2
P → C∗,

called the local root number function at P , defined by

rP (a) = WP (ρa).

Tate proved

(1.1) rP (ab) = (a, b)P · rP (a) · rP (b)

This has the following interpretation. The local square-class group K∗P /K
∗2
P

is a multiplicatively written vector space over the finite field F2 of two el-
ements. The Hilbert symbol ( , )P at P is a map from two copies of this
vector space to the multiplicative group {±1}, which we identify with the
(additive group of the) finite field F2. With this identification, the Hilbert
symbol at P defines a non-degenerate symmetric bilinear form, making the
local square-class group into an inner-product space over F2. Recall that for
any inner-product space (V,B) over F2, a classical quadratic refinement is a
map q : V → F2 satisfying

(1.2) q(v + w) = B(v, w) + q(v) + q(w)

for all v, w ∈ V. Comparing (1.1) with (1.2) shows that, for the Hilbert
symbol, the local root number function is a multiplicative counter-part of a
classical refinement.

More precisely, let θ be the unique isomorphism from the additive group
{0, 1} to the multiplicative group {±1} and let β = θ ◦ B. Then a (multi-
plicative) quadratic refinement of an F2-inner-product space (V,B) is a map
q : V → C∗ satisfying

(1.3) q(v + w) = β(v, w) · q(v) · q(w)

for all v, w ∈ V. Note that we speak of a refinement of (V,B), or more simply
of B, rather than referring to β. There are always exactly 2n multiplicative
quadratic refinements of B, where n denotes the dimension of V. These all
arise from classical refinements when (V,B) is totally isotropic (a so-called
type II space); there are no classical refinements when (V,B) contains a
non-zero non-isotropic vector (a type I space). When (V,B) has type II, two
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classical refinements are isometric precisely when their classical Arf invari-
ants agree. There is a notion of Arf invariant for multiplicative refinements
as well, defined in the next section.

Now let (V,B, q) and (V ′, B′, q′) be two inner-product spaces, each with
a chosen multiplicative refinement. Theorem 4 of [10] states that there is an
isometry from q to q′ if and only if V and V ′ have the same dimension, (V,B)
and (V ′, B′) have the same type (I or II), and (V,B, q) and (V ′, B′, q′) have
the same Arf invariant.

We can now formulate what it means for two number fields K,L to have
“the same” local root numbers. Let ΩK denote the collection of all non-trivial
places of K and let ΩL denote the collection of all non-trivial places of L.
We say that K and L are Arf equivalent if there is a bijection T : ΩK → ΩL
for which

dimK∗P /K
∗2
P = dimL∗TP /L

∗2
TP ,

type( , )P = type( , )TP ,

Arf(rP ) = Arf(rTP )

for every P ∈ ΩK .
It would be more precise to say that these equations define K and L to

be locally local root number equivalent, but it is easier to say Arf equivalent.
The notion of Arf equivalent number fields was introduced in [10], along with
another notion called globally local root number equivalent. It was proved
there (see Theorem 5 in [10]) that when K and L are globally local root
number equivalent then they are also Arf equivalent, which in turn implies
that K and L are Witt equivalent (have isomorphic Witt rings). Carpenter
[1] and Czogała [3] independently proved that quadratic number fields fall
into exactly seven classes up to Witt equivalence. In this paper we show that
quadratic fields fall into infinitely many Arf equivalence classes.

2. Arf equivalence. In this section we collect several relevant defini-
tions and theorems from [10] and from [12]. These will be assembled in the
following section to give our main result.

Throughout this section V denotes a vector space of finite dimension
n over the field with two elements F2, and B denotes a non-degenerate
symmetric bilinear form on V.We refer to the pair (V,B) as an inner-product
space. Finally, let q be a multiplicative quadratic refinement of B as defined
in the introduction.

Definition 2.1. Let (V,B) be an inner-product space. Then B is said
to be type II when B is totally isotropic, and is said to be type I otherwise.

Note that when P is a place of a number field K, then the Hilbert symbol
( , )P has type II if and only if (a, a)P = 1 for all a ∈ K∗P /K

∗2
P . Since
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(a, a)P = (a,−1)P for all a, it follows that the Hilbert symbol has type II if
and only if −1 is a local square in K∗P .

Now fix an inner-product space (V,B) and let β = θ ◦B where

θ(x) = (−1)x

for x ∈ F2.

Definition 2.2 ([10]). A (multiplicative) refinement of (V,B) is a map
q : V → C∗ for which q(v + w) = β(v, w) · q(v) · q(w) for every v, w ∈ V.

Note that a quadratic refinement is not required to take values in {±1}.
The reader can check from the definitions that B has type II if and only if
every quadratic refinement of B takes values in {±1}.

When V is fixed, we say that q is a quadratic refinement of B. Now let
q be a refinement of an inner-product space (V,B) and q′ a refinement of
a second space (V ′, B′). By definition, (V,B, q) is isometric to (V ′, B′, q′)
provided that there is a vector-space isomorphism φ from V to V ′ satisfying
q′(φ(v)) = q(v) for all v ∈ V. When there is no danger of confusion, we say q
is isometric to q′. An isometry of refinements is necessarily also an isometry of
bilinear forms, but not conversely. Since the field of scalars is F2, the bilinear
form invariants are just dimension and type (see Theorems 19 and 20 of [7]).
A third invariant is needed for isometry of quadratic refinements.

Definition 2.3 ([10]). The Arf invariant of (V,B, q) is

Arf(q) = 2−n/2
∑
v∈V

q(v).

With the Arf invariant we can state

Theorem 2.4 ([10, Theorem 4]). (V,B, q) is isometric to (V ′, B′, q′) if
and only if

dimV = dimV ′,

type(V,B) = type(V ′, B′),
Arf(V,B, q) = Arf(V ′, B′, q′).

Let K be a number field with a prime P . Then the commutative multi-
plicative group K∗P /K

∗2
P becomes a finite-dimensional vector space over F2,

with multiplication by scalars defined by a · t = ta. The Hilbert symbol can
be considered to be a multiplicative bilinear form on K∗P /K

∗2
P . The local root

number function is the map rP : K∗P /K
∗2
P assigning to each local square-class

a the value
rP (a) = WP (ρa)

of the local root number of the representation ρa discussed in the introduc-
tion. Tate’s explicit formula for rP (a) is given in the next section. For now
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we wish to point out that Tate [12, p. 126] proved that
rP (ab) = (a, b)P · rP (a) · rP (b)

for all a, b ∈ K∗P /K∗2P . This means that the local root number function rP is
a multiplicative refinement of the Hilbert symbol on K∗P /K

∗2
P .

The next definition captures the notion that two number fields have local
root number functions that are everywhere isometric.

Definition 2.5 ([10]). Two number fields K and L are called Arf equiv-
alent if there is a bijection T between the set ΩK of places of K and the set
ΩL of places of L such that

dimK∗P /K
∗2
P = dimL∗TP /L

∗2
TP ,

type( , )P = type( , )TP ,

Arf(rP ) = Arf(rTP ),

for every place P ∈ ΩK .
As a direct consequence of the definition above, if K and L are Arf

equivalent then there is a bijection T of the places of K and of L so that for
every place P of K there is a local square-class isomorphism

tP : K∗P /K
∗2
P → L∗TP /L

∗2
TP

that preserves the Hilbert symbol at P :
(2.1) (a, b)P = (tP (a), tP (b))TP .

It has been proved in [11, p. 370] that (2.1) holds for every P of K and all
non-zero elements a, b ∈ K if and only if the Witt rings W (K) and W (L)
are isomorphic, that is, if and only if the number fields K and L are Witt
equivalent. This proves

Theorem 2.6 ([10]). If two number fields K and L are Arf equivalent,
then they are Witt equivalent.

Returning to the definition of Arf equivalence, it should be pointed out
that the local dimensions are given by

(2.2) dimF2 K
∗
P /K

∗2
P =


0 if P is complex,
1 if P is real,
2 if P is finite and non-dyadic,
2 + [KP :Q 2] if P is dyadic (contains 2).

Thus, if one wishes to construct a bijection of places T leading to an
Arf equivalence from K to L then T must map complex places of K to
complex places of L, real places of K to real places of L, dyadic places of K
to dyadic places of L (and the local dyadic degrees must be preserved), and
finite non-dyadic places of K to finite non-dyadic places of L. Moreover, the
square-character of −1 at P and at TP must agree for every place P.
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Carpenter and Czogała have independently given the following classifi-
cation of quadratic number fields up to Witt equivalence:

Theorem 2.7 ([1] and [3]). There are exactly seven Witt equiva-
lence classes of quadratic number fields, represented by Q(

√
−1), Q(

√
±2),

Q(
√
±7), Q(

√
±17). For a square free integer n 6= 1, the quadratic number

field Q(
√
n) is Witt equivalent to Q(

√
d), where d = −1 if n = −1 and

(2.3) d =


sign(n) · 2 if |n| ≡ 2, 3, 5, 6 (mod 8),
sign(n) · 7 if |n| ≡ 7 (mod 8),
sign(n) · 17 if |n| ≡ 1 (mod 8).

Since Arf equivalent fields are Witt equivalent, a set of pairwise non-Witt
equivalent fields is also a set of pairwise non-Arf equivalent fields. It follows
at once that there are at least seven Arf equivalence classes in quadratic
number fields. In the next section we will see that there are in fact infinitely
many Arf equivalence classes of quadratic fields. For this, it is crucial to find
local root numbers.

3. Computing local root numbers. We begin with Tate’s formula for
the local root numbers rP (a).

Lemma 3.1 (Tate’s formula, [12]). Let P be a place of a number field K.
Then

(a) If KP = C, then rP (a) = 1.
(b) If KP = R, then

(3.1) rP (a) =

{
1 if a is a square in R∗,
−i otherwise.

(c) If P is a non-Archimedian place, then

rP (a) = N (f−1/2a )
∑

x∈O∗KP mod∗ fa

αa(d
−1x)ψKP (d−1x),

where N denotes the absolute norm, fa is the conductor of a, dOKP =
faDKP , and ψKP is the map KP → C∗, called the canonical charac-
ter, which is the composition

KP
α−→ Qp

β−→ Qp/Zp
γ−→ Q/Z δ−→ R/Z ε−→ C∗,

in which α is the trace map, β, γ, δ are the natural maps and
ε(x + Z) = e2πxi. The conductor fa satisfies αa(1 + fa) = 1 and
1 + fa = UKP if and only if fa = OKP .

From now on, m is a positive square free integer and e = ±1. The results
in the following lemma, which we will derive from Tate’s formula, are also
listed in [2].
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Lemma 3.2. Let K := Q(
√
em) be a quadratic field. Suppose an odd

rational prime p is split in K, meaning pOK = PP ′, where P and P ′ are
distinct prime ideals in OK . Then

(a) rP (ε) = 1, where ε is a non-square unit in KP .
(b) rP (p) = 1 if p ≡ 1 (mod 4) and rP (p) = −i if p ≡ 3 (mod 4).

Proof. Note [KP : Qp] = e(P |p) · f(P |p) = 1. So write K∗P /K
∗2
P =

{1, ε, p, εp}. The local absolute different DKP equals OKP since P is unram-
ified (see p. 62 in [9]).

(a) Define a map αε : KP→{1,−1} by αε(x)=(ε, x)p. Then αε(UKP )=1.
So fε = OKP . This implies N fε = 1. Thus fεDKP = (1). So by Tate’s
formula,

rP (ε) = N f−1/2ε

∑
x∈UKP mod∗ fε

αε(x)ψKP (x)

= 1−1/2
∑
x=1

αε(x)ψKP (x) = (ε, 1)P = 1.

(b) Define αp : K∗P → {1,−1} by αp(x) = (p, x)p. Then fp = P since
αp(1+P ) = 1 by Hensel’s lemma. So N fp equals pf(P |p) = p and fpDKP = P
= (p). Therefore

rP (p) = N f−1/2p

∑
x∈UKP mod∗ fp

αp(p
−1x)ψKP (p−1x)

=
1
√
p

(p, p)p
∑

x∈UKP mod∗ fp

αp(x)ψKP

(
x

p

)

=
1
√
p

(p,−1)p
∑
j∈F∗p

(p, x)p e
2πji/p =

1
√
p

(p,−1)p
∑
j∈F∗p

(
x

p

)
e2πji/p.

So if p ≡ 1 (mod 4), then, by the known value of the Gaussian sum,

rP (p) =
1
√
p
· 1 ·

(
1

p

)
· √p = 1,

while if p ≡ 3 (mod 4), then similarly

rP (p) =
1
√
p
· (−1) ·

(
1

p

)
· i · √p = −i.

Lemma 3.3. Let K := Q(
√
em) be a quadratic field. Suppose an odd

rational prime p is inert in K, meaning pOK = P , where P is a prime ideal
in OK . Then

(a) rP (ε) = 1, where ε is a non-square unit in KP .
(b) rP (p) = −1.

Proof. (a) Reread the proof of Lemma 3.2(a).
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(b) Define αp : K∗P → {1,−1} by αp(x) = (p, x)P . Then αp(1 + P ) = 1

by Hensel’s lemma. So the conductor fp equals P and N fp = pf(P |p) = p2.
The local absolute different DKP equals OKP since P is unramified. Thus

fpDKP = P = (p).

So by Tate’s formula,

rP (p) = N f−1/2p

∑
x∈UKP mod∗ fp

αp(p
−1x)ψKP (p−1x)

=
1

p
(p, p)P

∑
x∈UKP mod∗ fp

αp(x)ψKP

(
x

p

)

=
1

p
(p,−1)P

{ ∑
x∈F∗

p2
,Tr(x)=0

αp(x) +

p−1∑
j=1

( ∑
x∈F∗

p2
,Tr(x)=j

αp(x)
)
e2πji/p

}
.

If p ≡ 1 (mod 4), then

rP (p) =
1

p
· 1 ·

{
−(p− 1) +

p−1∑
j=1

e
2πji
p

}
=

1

p
· {−(p− 1) + (−1)} = −1.

If p ≡ 3 (mod 4), then

rP (p) =
1

p
· (−1) ·

{
(p− 1)−

p−1∑
j=1

e
2πji
p

}
=

1

p
· (−1) · {(p− 1)− (−1)} = −1.

Lemma 3.4. Let K := Q(
√
em) be a quadratic field. Then rP (ε) = −1

for every non-dyadic ramified prime P in K, where ε is a non-square unit
in K∗P .

Proof. Define a map αε(x) := (ε, x)P on K∗P . Then αε(UKP ) = 1. So
fε = OKP . Therefore N fε = 1. The absolute different DKP is clearly ΠOKP ,
where Π =

√
em. So by Tate’s formula,

rP (ε) =
1√
N fε

∑
x∈UKP mod∗ fε

αε(Π
−1x)ψKP (Π−1x)

=
1√
1

∑
x=1

αε(Π
−1x)ψKP (Π−1x)

= αε(Π) · ψKP (1/Π) = (ε,Π)P = −1.

4. Arf invariants and Arf equivalence classes in quadratic
number fields

Theorem 4.1. Suppose K := Q(
√
em) is a quadratic field. Let P be a

non-dyadic split prime or a non-dyadic inert prime in K, where P ∩Z = (p).
Then Arf(rP ) = 1.
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Proof. (1) Suppose P is split in K. Write K∗P /K
∗2
P = {1, ε, p, εp}. Then

rP (εp) = (ε, p)P · rP (ε) · rP (p) = (−1) · 1 · rP (p) = −rP (p),

by Lemma 3.2.
(1a) If p ≡ 1 (mod 4), then by Lemma 3.2,

(4.1) rP (a) =

{
1 if a = 1, ε, p,
−1 if a = εp.

Therefore

Arf(rP ) = 2−2/2
∑

a∈K∗P /K
∗2
P

rP (a) =
1

2
{rp(1) + rp(ε) + rp(p) + rp(εp)}

=
1

2
{1 + 1 + 1 + (−1)} = 1.

(1b) If p ≡ 3 (mod 4), then by Lemma 3.2,

(4.2) rP (a) =


1 if a = 1, ε,
−i if a = p,
i if a = εp.

Therefore

Arf(rP ) = 2−2/2
∑

a∈K∗P /K
∗2
P

rP (a) =
1

2
{rp(1) + rp(ε) + rp(p) + rp(εp)}

=
1

2
{1 + 1 + (−i) + i} = 1.

(2) Suppose P is an inert prime in K. Then P = (p). Write K∗P /K
∗2
P =

{1, ε, p, εp}. Then by Lemma 3.3,

(4.3) rP (a) =

{
1 if a = 1, ε, εp,
−1 if a = p.

Therefore

Arf(rP ) = 2−2/2
∑

a∈K∗P /K
∗2
P

rP (a) =
1

2
{rP (1) + rP (ε) + rP (p) + rP (εp)}

=
1

2
{1 + 1 + (−1) + 1} = 1.

Theorem 4.2. Suppose K := Q(
√
em) is a quadratic field. Let P be a

non-dyadic ramified prime in K with P ∩ Z = (p), where p ≡ 3 (mod 4).
Then Arf(rP ) = i or −i.

Proof. Since p is ramified, p must divide n, and pOK = P 2. Let Π =√
em. Write K∗P /K

∗2
P = {1, ε,Π, εΠ}. Define αΠ : K∗P → {1,−1} by αΠ(x)

= (Π,x)P . Then αΠ(1 + P ) = 1 by Hensel’s lemma. So fΠ = P . Thus
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N fΠ = p. Clearly, DKP = ΠOKP . Therefore

fΠDKP = P 2 = pOKP .

By Tate’s formula,

rP (Π) =
1
√
p

∑
x∈UKP mod∗ fΠ

αΠ(p−1x)ψKP (p−1x)

=
1
√
p

(Π, p)P
∑

x∈UKP mod∗ P

αΠ(px)ψKP (p−1x)

=
1
√
p

(Π, p)P
∑
x∈F∗p

(
x

p

)
e4πxi/p = i · (Π, p)P ·

(
2

p

)
So we get rP (Π) = i or −i. By the way,

rP (εΠ) = (ε,Π)P · rP (ε) · rP (Π) = (−1) · (−1) · rP = rP (Π)

by Lemma 3.4. So

Arf(rP ) =
1

2

∑
a∈K∗P /K

∗2
P

rP (a) =
1

2
{rP (1) + rP (ε) + rP (Π) + rP (εΠ)}

=
1

2
{1 + (−1) + rP (Π) + rP (εΠ)} = rP (Π) = eKP · i,

where eKP = 1 or − 1.

Theorem 4.3. There are infinitely many Arf equivalence classes in
quadratic number fields.

Proof. It is enough to show that two different quadratic number fields
K := Q(

√
p1 · · · pn) and L := Q(

√
q1 · · · pl) are not Arf equivalent, where

n 6= l, pj , qh ≡ 3 (mod 4) for each j and h, p1, . . . , pn [resp. q1, . . . , ql]
are pairwise distinct primes respectively. There are n distinct non-dyadic
ramified primes P1, . . . , Pn in K and l distinct non-dyadic ramified primes
Q1, . . . , Ql in L. Write Pj ∩ Z = (pj) for j = 1, . . . , n and Qh ∩ Z = (qh) for
h = 1, . . . , l. By Theorem 4.2, Arf (rPj ) = eKj · i and Arf (rQh) = eLh · i for
each j and h, where eKj , eLh ∈ {1,−1}. An Arf equivalence from K to L, if
it existed, can not match a non-dyadic prime P in K with a dyadic prime
Q in L or vice versa since |K∗P /K∗2P | 6= |L∗Q/L∗2Q |. And a (hypothetical) Arf
equivalence cannot match an Archimedean place with a non-Archimedean
place by a similar dimension argument. So there should be a one-to-one
correspondence between the sets of non-dyadic non-Archimedean places ofK
and L for the two number fields to be Arf equivalent. On the other hand there
is no non-dyadic unramified prime with Arf invariant i or −i by Theorem
4.1. So we should have a bijection between non-dyadic ramified primes of K
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and non-dyadic ramified primes of L for K and L to be Arf equivalent. But
this is impossible since n 6= l. Therefore K and L are not Arf equivalent.

Although there are infinitely many Arf equivalence classes in quadratic
fields, there are interesting infinite subsets of the set of all quadratic fields
that fall into finitely many Arf equivalence classes. Here is one example.

Let K be the set of all quadratic fields of the form Q(
√
ep), where p is

a rational positive prime. We will show two quadratic fields Q(
√
ep) and

Q(
√
e′p′) in K are Arf equivalent if and only if e = e′ and p ≡ p′ (mod 8).

Theorem 4.4. Let K := Q(
√
ep) be a quadratic field in K, where p is

an odd rational prime with pOK = P 2 for a prime ideal in OK . Then

(4.4) Arf(rP ) =


1 if p ≡ 1 (mod 8),
−ei if p ≡ 3 (mod 8),
−1 if p ≡ 5 (mod 8),
ei if p ≡ 7 (mod 8).

Proof. We will argue for the case when K := Q(
√
−p), where p ≡ 3

(mod 8). Other cases are very similar. Write K∗P /K
∗2
P = {1, ε,Π, εΠ }, where

Π =
√
−p. First we will find rP (Π). Define αΠ : K∗P → {1,−1} by αΠ(x) =

(
√
−p, x)P . Then αΠ(1 + P ) = 1 by Hensel’s lemma. So fΠ = P . Thus

N fΠ = p. Moreover DKP = ΠOKP . So fΠDKP = (p). On the other hand,
UKP /(1 + P ) ∼= K̄∗P

∼= F∗p,
where K̄P is the residue class field of KP . By Tate’s formula,

rP (Π) = N f−1/2Π

∑
x∈UKP mod∗ fΠ

αΠ(p−1x)ψKP (p−1x)

=
1
√
p

∑
x∈UKP mod∗ fΠ

αΠ(px)ψKP

(
x

p

)

=
1
√
p

(
√
−p, p)P

∑
x∈F∗p

(
√
−p, x)P e

4πxi/p

=
1
√
p

(
√
−p,−(

√
−p)2)P

∑
x∈F∗p

(p, x)pe
4πxi/p

=
1
√
p

(
√
−p,−1)P

p−1∑
x=1

(
x

p

)
e4πxi/p =

1
√
p
· (p,−1)p · i ·

√
p ·
(

2

p

)
=

1
√
p
· (−1) · i · √p · (−1) = i.

So by Lemma 3.4,
rP (εΠ) = (ε,Π)P · rP (ε) · rP (Π) = (−1) · (−1) · i = i.
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Therefore,

Arf(rP ) = 2−2/2
∑

a∈K∗P /K
∗2
P

rP (a) =
1

2
{rP (1) + rP (ε) + rP (Π) + rP (εΠ)}

=
1

2
{1 + (−1) + i+ i} = i.

Recall K is the set of all quadratic fields of the form Q(
√
ep), where p is

a rational positive prime. The following result is taken from [8].

Theorem 4.5. There are exactly ten Arf equivalence classes in K. They
are represented by Q(

√
d) for d = ±2,±3,±5,±7,±17. A quadratic field

Q(
√
n) in K, where |n| is a rational prime, is Arf equivalent to Q(

√
d) with

d determined as follows:

(4.5) d =



sign(n) · 2 if |n| ≡ 2 (mod 8),
sign(n) · 3 if |n| ≡ 3 (mod 8),
sign(n) · 5 if |n| ≡ 5 (mod 8),
sign(n) · 7 if |n| ≡ 7 (mod 8),
sign(n) · 17 if |n| ≡ 1 (mod 8).

Proof. It is clear that a real quadratic field in K is not Arf equivalent to
an imaginary quadratic field in K. In Q(

√
2) there is no non-dyadic ramified

prime, so there are no non-dyadic non-Archimedean places with Arf invari-
ants ±i or −1. It follows from Theorem 4.4 that Q(

√
2) is not Arf equivalent

to either Q(
√

3) or Q(
√

5). By Theorems 4.1 and 4.4 we see that Q(
√

3) and
Q(
√

5) are not Arf equivalent. Similarly, Q(
√
−2), Q(

√
−3) and Q(

√
−5) are

in pairwise distinct Arf equivalence classes. So the ten representations above
are different Arf equivalence classes in K by Theorem 2.7.

Suppose two quadratic fields K := Q(
√
ep) and L := Q(

√
eq) in K are

given, where p ≡ q (mod 8). It is clear that −1 /∈ K∗2 since ep/(−1) is
not a square in Q. By the Chebotarev density theorem there are infinitely
many primes P and P ′ such that −1 /∈ K∗2P and −1 ∈ K∗2P ′ respectively.
This indicates there are infinitely many type I and type II spaces occurring
among KP . By the same argument there are infinitely many type I and type
II spaces occurring among LQ. So we have a bijection T1 between the sets of
non-dyadic split and non-dyadic inert places ofK and L satisfying Arf(rP ) =
Arf(rT1P ), type[( , )P ] = type[( , )T1P ], and |K∗P /K∗2P | = |L∗T1P /L

∗2
T1P
| for

every non-dyadic unramified prime P of K by Theorem 4.1.
Suppose P andQ are non-dyadic ramified primes inK and L respectively.

Then P ∩Z = (p) and Q∩Z = (q). Now suppose p ≡ 1 (mod 4). Then q ≡ 1
(mod 4) since p ≡ q (mod 8). So −1 ∈ K∗2P and −1 ∈ L∗2Q since −1 is
a square in Qp and Qq respectively. Suppose p ≡ 3 (mod 4). Then q ≡ 3
(mod 4) since p ≡ q (mod 8). So −1 /∈ K∗2P and −1 /∈ L∗2Q since −1 is not
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a square in Qp and Qq respectively. This means ( , )P and ( , )Q have the
same type. It is also clear dim[K∗P /K

∗2
P ] = dim[L∗Q/L

∗2
Q ]. By Theorem 4.4,

Arf(rP ) = Arf(rQ). We denote the correspondence by T2, i.e.,

{P} T2−→ {Q}.
Suppose P is a dyadic place in K and Q is a dyadic place in L. Then the

local degrees [KP : Q2] and [LQ : Q2] are 3 or 4, depending on p and q. In
particular, KP and LQ are exactly the same fields since p ≡ q (mod 8). This
implies that the local square-classes are all the same. So local square-classes
K∗P /K

∗2
P and L∗Q/L

∗2
Q are also exactly the same. Thus there is a bijection T3

between the sets of dyadic places of K and L such that Arf(rP ) = Arf(rT3P ),
dim[K∗P /K

∗2
P ] = dim[L∗T3P /L

∗2
T3P

], and type[( , )P ] = type[( , )T3P ] for every
non-dyadic ramified prime P of K.

It is obvious that there exists a bijection T4 between Archimedean places
of K and L such that Arf(rP )=Arf(rT4P ), dim[K∗P /K

∗2
P ]=dim[L∗T4P /L

∗2
T4P

],
and type[( , )P ] = type[( , )T4P ] for every dyadic prime P of K.

We define a map
T : ΩK → ΩL,

where ΩK and ΩL are sets of places of K and L respectively, by

(4.6) T (P ) =


T1(P ) if P is a non-dyadic split or inert place in K,
T2(P ) if P is a non-dyadic ramified place in K,
T3(P ) if P is a dyadic place in K,
T4(P ) if P is an Archimedean place in K.

Then for every place P of K, we have Arf(rP ) = Arf(rTP ), dim[K∗P /K
∗2
P ] =

dim[L∗TP /L
∗2
TP ], and type[( , )P ] = type[( , )TP ]. Therefore K and L are Arf

equivalent.

Theorem 4.6. Two quadratic number fields K := Q(
√
p1 · · · pm) and

L := Q(
√
q1 · · · qm) are Arf equivalent if pj ≡ qj (mod 8) and

(p′j
pj

)
=
( q′j
qj

)
for each j, where p′j = (

∏m
k=1 pk)/pj and q

′
j = (

∏m
l=1 ql)/qj for j = 1, . . . ,m.

Proof. Note that pj and p′j are in the same square-class of KPj since
pjp
′
j = (

√
p1 · · · pm)2 in KPj . It is also true that qj and q′j are in the same

square-class of LQj . It was proved that there is a one to one correspondence
among non-dyadic split or non-dyadic inert places in K and L having the
same dimensions, same types, and same Arf invariants in the proof of Theo-
rem 4.5. It is also clear there is a bijection among the dyadic places in K and
L having the same dimensions, same types, and same Arf invariants since
the corresponding completions are exactly the same for dyadic split, inert,
ramified primes since p1 · · · pm ≡ q1 · · · qm (mod 8). The same is clear for the
Archimedean places. So all we have to show is to find a bijection between the
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set of non-dyadic ramified primes in K and the set of non-dyadic ramified
primes in L having the same types and same Arf invariants.

Let Pj be a non-dyadic ramified prime in K and let Qj be a non-dyadic
ramified prime in L with Pj ∩Z = (pj) and Qj ∩Z = (qj). Write K∗Pj/K

∗2
Pj

=

{1, εKj , ΠK , εKjΠK}, L∗Qj/L
∗2
Qj

= {1, εLj , ΠL, εLjΠL}, where εKj and εLj
are non-square units in KPj and LQj respectively and ΠK =

√
p1 · · · pm and

ΠL =
√
q1 · · · qm. As we have seen in Lemma 3.4, rPj (εKj ) = rQj (εLj ) = −1.

Therefore Arf(rPj ) = rPj (ΠK) and Arf(rQj ) = rQj (ΠK). So we will show
that Arf(rPj ) = Arf(rQj ) and type[( , )Pj ]=type[( , )Qj ] for each j. Define
a map αΠK (x) = (ΠK , x)Pj for x ∈ K∗Pj . Then α(1 + Pj) = 1 by Hensel’s
lemma. So fΠK = Pj . Hence N fΠK = p

f(Pj |pj)
j = pj . The local absolute

different DKPj
equals ΠKOKPj . So fΠKDKPj

= pjOKPj . By Tate’s formula,

rPj (ΠK) =
1
√
pj

∑
x∈ O∗KPj

mod∗ Pj

αΠj (p
−1
j x) · ψKPj (p

−1
j x)

=
1
√
pj

(ΠK , pj)Pj
∑

x∈ K∗Pj mod∗ Pj

αΠj (x) · ψKPj (p
−1
j x)

=
1
√
pj

(ΠK , p
′
j)Pj

∑
x∈ F∗pj

(
x

pj

)
· e4πxi/pj

=
1
√
pj

(
p′j
pj

) ∑
x∈ F∗pj

(
x

pj

)
· e4πxi/pj

since (ΠK , pj)Pj = (ΠK , p
′
j)Pj = (pj , p

′
j)pj =

(p′j
pj

)
. By a similar argument

we get

rQj (ΠL) =
1
√
qj

(
q′j
qj

) ∑
x∈ F∗qj

(
x

qj

)
· e4πxi/qj .

(1) Suppose pj ≡ 1 (mod 8) or pj ≡ 5 (mod 8). Then qj ≡ 1 (mod 8) or
qj ≡ 5 (mod 8) respectively by the assumption. Then using the known value
of the Gaussian sum we obtain

Arf(rPj ) = rPj (ΠK) =
1
√
pj
·
(
p′j
pj

)
· √pj ·

(
2

pj

)
=

(
p′j
pj

)
·
(

2

pj

)
=

(
q′j
qj

)
·
(

2

qj

)
= rQj (ΠL) = Arf(rQj ).

Observe that type[( , )Pj ] = type[( , )Qj ] = type II since −1 is a square
in Qpj and Qqj .
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(2) The reasoning is similar for the cases pj ≡ 3 (mod 8) or pj ≡ 7 (mod 8).
In these cases we also have the same Arf invariants and type I spaces.

So by (1) and (2) we get a bijection among non-dyadic ramified places
of K and L with the same types and same Arf invariants. Therefore K and
L are Arf equivalent.

The following table summarizes the discussion above about Arf invariants
of quadratic fields at non-dyadic primes P :

non-dyadic
place P complex real

split or inert ramified

dimF2 K
∗
P /K

∗2
P 0 1 2 2

type[( , )P ] II I I or II I or II
Arf(rP ) 1 (1− i)/

√
2 1 ±1 or ±i
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