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1. Introduction. The Fejér–Riesz spectral factorization lemma ([RN,
p. 117]), conjectured by Fejér [F] and proved by Riesz [R], shows that if
F = {0, . . . , n} then every nonnegative trigonometric polynomial of one
variable having frequencies in the difference set F −F = {−n, . . . , n} equals
the squared modulus of a trigonometric polynomial having frequencies in F.
This result, and partial extensions to trigonometric polynomials of several
variables, has an enormous range of applications in analysis and engineering.
It also has significant, though less acknowledged, connections with number
theory. We review one of these. If q is a monic polynomial with all roots
having moduli ≥ 1, then Jensen’s theorem implies that the product of the
moduli of the roots of q equals the geometric mean of |q| over the circle.
This quantity and its extension to several variables, called the Mahler mea-
sure or height of a polynomial, has applications to Lehmer’s problem [LE],
transcendental numbers [W], and algebraic dynamics [EV]. Boyd [BO] and
myself [L1] conjectured that heights of polynomials of several variables were
limits of heights of associated polynomials of one variable and showed that
the validity of the conjecture would provide an alternative proof of a special
case of Lehmer’s problem proved by Dobrowolski, Lawton and Schinzel in
[DO]. In [L2] I derived an upper bound for the measure of the set where
a monic polynomial of one variable can have a small modulus, and used
it to prove this conjecture. In [SC] Schinzel used this bound to derive an
inequality for the Mahler measure of polynomials in many variables.

In this paper we also use the relationships between distributions of val-
ues of polynomials in two variables and associated families of polynomials in
one variable. Consider the set of lattice points F in the open planar region
bounded by lines y = αx ± β, and let U2(F ) be the set of trigonometric
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polynomials of variables x and y that are uniform limits of squared mod-
uli of trigonometric polynomials whose frequencies are contained in F. The
trigonometric polynomials in U2(F ) are nonnegative and their frequencies
are contained in the difference set F − F. We conjecture that the converse
holds. The main results in this paper, derived in Section 3, prove our conjec-
ture for the three cases where α is zero, rational, or can be approximated by
rational numbers with sufficient accuracy. The case α = 0 is solved by apply-
ing Fejér–Riesz spectral factorization to a trigonometric polynomial P (x, y)
regarded as a polynomial in y with coefficients that are functions of x and
then approximating the spectral factors of P by trigonometric polynomials.
The case where α is rational is reduced to the case α = 0 by transforming
P using an element in the modular group SL(2,Z). When α is irrational
we approximate it by rational numbers but our proof only works for values
of α that can be approximated sufficiently rapidly by rationals. We suggest
approaches to strengthen these results.

2. Notation and preliminary results. Z+,Z,Q,R,C denote the non-
negative integer, integer, rational, real, and complex numbers, T = R/Z
and Tc = {z ∈ C : |z| = 1} are the real and complex circle groups.
For j ∈ Z we define ej : T → Tc by ej(x) = e2πijx. For z = x + iy,
x, y ∈ R, let <z = x and =z = y. For z = reiθ with r > 0 and θ ∈ (−π, π],
log(z) = log(r) + iθ and

√
z =
√
r eiθ/2. For p ∈ [1,∞) ∪ {∞}, `p(Z), Lp(T )

are the Banach spaces with norms ‖f‖p. If f ∈ L1(T ) and h ∈ Lp(T )
then their convolution (f ∗ h)(x) =

	
y∈T f(y)h(x − y) dx is in Lp(T ) and

‖f ∗ h‖p ≤ ‖f‖1 ‖h‖p. For f ∈ L1(T ) the Fourier transform f̂ : Z → C is

defined by f̂(j) =
	
x∈T f(x)e−j(x) dx. If f, h ∈ L1(T ) then f̂ ∗ h = f̂ ĥ. The

set freq(f) = support(f̂) satisfies freq(|f |2) ⊆ freq(f)− freq(f).

Lemma 2.1. For N ≥ 0 the Dirichlet kernel DN =
∑N

j=−N ej , Hilbert

kernel HN =
∑N

j=1(ej−e−j), and analytic kernel A±N = 1
2(DN±HN ) satisfy

‖DN‖1 ≤ 1 + log(2N + 1), ‖A±N‖1 ≤ 3/2 + log(N),

‖1/2 +A±N‖1 ≤ 1 + log(N + 1), ‖HN‖1 ≤ 1 + 2 log(N).

Proof. Follows from the derivations in [PO, Section 16.2].

For a topological space X, C(X) denotes the Banach algebra of bounded
continuous functions f : X → C with norm ‖f‖∞ = sup {|f(x)| : x ∈ X}.
The Wiener algebra A(T ) = {f ∈ C(T ) : f̂ ∈ `1(Z)} and its subalgebras
A±(T ) = {f ∈ A(T ) : freq(f) ⊆ ±Z+} are Banach algebras with norm

‖f‖A(T ) = ‖f̂‖1, so they are closed under exponentiation.
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Lemma 2.2. If f ∈ A±(T ) and 0 ≤ n ≤ N then

(1/2 +A±n ) ∗ exp(f) = (1/2 +A±n ) ∗ exp((1/2 +A±N ) ∗ f).

Proof. We have exp(f − (1/2 + A±N ) ∗ f) = 1 +
∑∞

j=N+1 c(j)e±j with

c ∈ `1(Z), so exp(f) = exp((1/2+A±N )∗f)+
∑∞

j=N+1 d(j)e±j with d ∈ `1(Z)

and hence Lemma 2.2 follows since (1/2 +A±n ) ∗ ej = χ±{0,1,...,N}(j)ej .

If B is a commutative Banach algebra then exp(B) = {exp(b) : b ∈ B}
is an open and closed subgroup of the group Inv(B) of invertible elements.
For f ∈ Inv(C(T )) we define the winding number W (f) ∈ Z by

W (f) = lim
M→∞

M−1∑
j=0

log

[
f((j + 1)/M)

f(j/M)

]
.

Lemma 2.3. For f ∈ Inv(C(T )) with W (f) = 0 define L(f) ∈ C(T ) by

L(f)(x) = c+ lim
M→∞

M−1∑
j=0

log

[
f((j + 1)x/M)

f(jx/M)

]
where exp(c) = f(0). Then L(f) is unique up to addition of an element
in 2πiZ, exp(L(f)) = f, and exp(C(T )) = {f ∈ Inv(C(T )) : W (f) = 0}.
Inv(A(T )) = A(T ) ∩ Inv(C(T )) and exp(A(T )) = A(T ) ∩ exp(C(T )).

Proof. The assertions about C(T ) follow directly. The characterization
of A(T ) follows from Wiener’s Tauberian lemma [WI]. The characterization
of exp(A(T )) follows from the Arens–Royden theorem [AR], [RO].

Define A±∞ : A(T ) → A±(T ) by A±∞(f) = 1
2 f̂(0) +

∑∞
j=1 f̂(±j)e±j , and

define Ψ± : exp(A(T )) → exp(A±(T )) by Ψ±(f) = exp(A±∞(L(f))). The
Ψ±(f) are uniquely defined up to a multiple of ±1, Ψ+(f)Ψ−(f) = f, and
if f > 0 then Ψ−(f) = Ψ+(f). Let T1 be the algebra of trigonometric
polynomials, and for F ⊂ Z, T1(F ) = {f ∈ T1 : freq(f) ⊆ F}. Define
n±, n : T1 → Z ∪ {∞} by n±(0) = n(0) = ∞, and for nonzero t, n±(t) =
max({0}∪±freq(t)), n(t) = max{n+(t), n−(t)}. The following result follows
easily:

Lemma 2.4. If t ∈ T1 and |t| > 0 and W (t) = 0 then there exist nonzero
complex numbers λ−1 , . . . , λ

−
n−(t)

, λ+1 , . . . , λ
+
n+(t)

with moduli < 1 such that

Ψ±(t) = eγ(t)/2
n±(t)∏
j=1

(1− λ±j e±1),

where γ(t) = c−
∑n−(t)

j=1 log(1−λ−j )−
∑n+(t)

j=1 log(1−λ+j ) and exp(c) = t(0).
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Lemma 2.5. If t ∈ T1 ∩ exp(A(T )) and N ≥ n±(t) then

‖Ψ±(t)‖∞ ≤ cn(t) exp

[
1

2
max(DN ∗ log(|t|) +HN ∗ =L(t))

]
where cn = (1 + log(n+ 1)).

Proof. Lemma 2.4 gives Ψ±(t) = (1/2+A±N )∗exp(A±∞(L(f))). Then since
A±N ∗L(t) = (1/2 +A±N ) ∗A±∞(L(t)), Lemma 2.2 gives Ψ±(t) = (1/2 +A±N ) ∗
exp(A±N ∗L(t)), so Lemma 2.1 gives ‖Ψ±(t)‖∞ ≤ cn exp(max<(A±N ∗L(t))).
Finally substitute <(A±N ∗ L(t)) = (DN ∗ log(|t|) + iHN ∗ =L(t))/2.

Example 2.6. Lemma 2.5 with N = n±(t) shows that ‖Ψ±(t)‖∞ is
bounded by a polynomial in n±(t). The degree may be large. For odd n ∈ Z+

let Pn(z) = (z − 1/n)2n − 1 and tn = e−nPn(e1). Then n±(tn) = n and

Ψ±(tn) =
√
M(tn)

∏̀
k=−`

[
1−

(
1

n
± eπik/n

)∓1
e±1

]
,

where ` = (n− 1)/2 and M(tn) is the Mahler measure of tn. For large n, we
have M(tn) ≈ exp(2/π), ‖tn‖∞ ≈ 1 + e2, ‖=L(tn)‖∞ ≈ 2πn, and

log ‖Ψ±(tn)‖∞ ≈
1

π
+ 2n

1/4�

−1/4

log(|1 + e2πix|) dx ≈ 1

π
+ 0.5831n.

If <t > 0 then L(t) = log(t) = log(|t|) + i=L(t) and ‖=L(t)‖∞ < π/2. We
will use this inequality to derive much smaller upper bounds for ‖Ψ±(tn)‖∞.

For X ⊂ C, Xo is its interior and H(X) is the Banach subalgebra of
C(X) consisting of functions whose restriction to Xo is holomorphic. For
σ > 0, Aσ = {z ∈ C : e−σ ≤ |z| ≤ eσ} is a closed annulus. Cω(T ) is the
algebra of real analytic functions on T. From [RU, Chapter 10, Exercise 24]
we deduce

Lemma 2.7. f ∈ Cω(T ) iff there exist σ > 0 and h ∈ H(Aσ) such that
f = h(e1). Then for every N ≥ 0, ‖f −DN ∗ f‖∞ < 2‖h‖∞σ−1e−Nσ.

For t ∈ T1 with <t > 0 let

ρ(t) = min<t/(2e‖t̂‖1),
σ(t) = ρ(t)/n(t),

τ(t) = max
{

log(‖t‖∞) + 1
2 min<t, π2 +

∣∣log
(
1
2 min<t

)∣∣},
θ(t) = arctan(max ‖=t‖∞/min<t).

We observe that θ(t) < π/2.

Lemma 2.8. If t ∈ T1 and <t > 0 then there exists a unique h ∈
H(Aσ(t)) such that log(t) = h(e1). Furthermore ‖h‖∞ ≤ τ(t), and for every

N > 0, DN ∗ log(|t|) ≤ log(|t|) + 2τ(t)σ(t)−1 exp(−Nσ(t)).
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Proof. Let P be the Laurent polynomial with t = P (e1). If z ∈ Aσ(t)
then z = ese1(x) where s ∈ R, |s| ≤ σ(t), x ∈ T. Therefore |P (z) − t(x)| ≤
min<t/2 so <P (z) ≥ min<t/2, h = log(P ) ∈ H(Aσ(t)), and log(t) = h(e1).
The last assertion follows from Lemma 2.7.

Theorem 2.9. There exists λ : (0, 1/2e)× (0, π/2)× (π/2,∞)→ (0,∞)
such that if t ∈ T1 and <t > 0 then ‖Ψ±t‖∞ ≤ λ(ρ(t), θ(t), τ(t))n(t)π/2.

Proof. For every N ≥ n(t), Lemmas 2.1, 2.5, and 2.8 give

‖Ψ±(t)‖∞ ≤ cn(t)eθ(t)/2‖t‖1/2∞ N θ(t) exp

[
n(t)τ(t)

ρ(t)
exp

(
−Nρ(t)

n(t)

)]
.

Then choose N = N0(t) = (n(t)/ρ(t)) log(n(t)τ(t)/ρ(t)) to obtain ‖Ψ±(t)‖∞
≤ cn(t)eθ(t)/2‖t‖

1/2
∞ N0(t)

θ(t) and use the relation θ(t) < π/2.

For d ≥ 1, Td is the algebra of trigonometric polynomials on T d, T+
d =

{t ∈ Td : <t > 0}, and Tpd = {t ∈ Td : t > 0}. Let Cω(T )⊗ T1 be the subset
of f ∈ C(T 2) such that f(x, y) is a trigonometric polynomial in y whose
coefficients are analytic functions of x. For such a function and N ≥ 0 we
define fN ∈ T2 by fN (x, y) =

	
u∈T DN (u)f(x− u, y) du.

For t ∈ T+
2 and x ∈ T define tx ∈ T+

1 by tx(y) = t(x, y), y ∈ T and define
spectral factorization operators S± : T+

2 → Cω(T ) ⊗ T1 by S±(t)(x, y) =

Ψ±(tx)(y), (x, y) ∈ T 2. Then t = S−(t)S+(t), if t > 0 then S−(t) = S+(t),
and ‖S±(t)− (S±(t))N‖∞ → 0. The remainder of this section computes the
rate of convergence. For t ∈ T2 let n1(t), n2(t) denote n(t) where t(x, y) is
considered as a polynomial in x, y respectively. Extend the definitions of
ρ(t), θ(t), and τ(t) (given before Lemma 2.8) to the case where t ∈ T+

2 and
define σ1(t) = ρ(t)/n1(t). For (j, k) ∈ Z2 define ej,k(x, y) = ej(x)ek(y) and
for z ∈ C define the algebra homomorphism Γz : T2 → T1 by Γzej,k = zjek,.
If s ∈ [0, σ1(t)] and x ∈ T then ‖Γese1(x)t− Γe1(x)t‖∞ ≤ min t/2, and hence
for z ∈ Aσ1(t),

(2.1) <Γzt ≥ min t/2 and ‖Γzt‖∞ ≤ ‖t‖∞ + min t/2.

If z ∈ Aσ1(t) then ρ(Γzt) ≥ ρ(t)/2e and τ(Γzt) ≤ τ(t) + log(2). Define
ζ(t) = λ(ρ(t)/2e, θ(t), τ(t) + log(2)) where λ is defined as in Theorem 2.9.
Then this theorem and the fact that n(Γzt) = n2(t) give

(2.2) ‖Ψ±(Γzt)‖∞ < ζ(t)n2(t)
π/2.

Inequality (2.2), the identity S±(t)(x, y) = (Ψ±(Γe1(x)t))(y), and the argu-
ment used to prove Lemma 2.7, generalized by considering Ψ±Γzt to be a
function on Aσ1(t) with values in the normed subspace T1 ⊂ C(T ), give

(2.3) ‖S±(t)− S±N (t)‖∞ ≤ 2ζ(t)n2(t)
π/2σ1(t)

−1e−Nσ1(t).
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Theorem 2.10. For t ∈ T+
2 and ε > 0 define

N(ε, t) =
n1(t)

ρ(t)
log

[
2ζ(t)n1(t)n2(t)

π/2

ερ(t)

]
.

Then N ≥ N(ε, t) implies that ‖S±(t)− S±N (t)‖∞ ≤ ε.
Proof. This follows from (2.3).

3. Derivation of main results. Let Tp2 = {t ∈ T2 : t > 0}. For

F ⊂ Z2, set T2(F ) = {t ∈ T2 : freq(t) ⊆ F}, Tp2(F ) = Tp2 ∩ T2(F ), S2(F ) =
{|t|2 : t ∈ T2(F )}, and U2(F ) = T2 ∩ cl(S2(F )), where cl denotes closure in
C(T 2). Clearly U2(F ) ⊆ Tp2(F − F ).

Definition 3.1. F ⊂ Z2 has property A if Tp2(F − F ) = U2(F ).

For α ∈ R and β > 0 define F (α, β) = {(j, k) ∈ Z2 : |k − jα| < β}.
Theorem 3.2. If α = 0 and β > 0, then F (α, β) has property A.

Proof. F (0, β) = {(j, k) ∈ Z2 : |k| ≤ n} where n is the largest in-
teger < β. If t ∈ Tpd(F (0, β) − F (0, β)) then n2(t) ≤ 2n, so S+(t) ∈
Cω ⊗ T({0, . . . , 2n}) and t = |S+(t)|2. For N ≥ 1, e0,−nS

+
N (t) ∈ T2(F (0, β))

and Theorem 2.10 implies that limN→∞ |e0,−nS+
N (t)|2 = t, so t ∈ Ud(F ).

For F ⊆ Z2 define F r = {(k, j) : (j, k) ∈ F}. Observe that F has
property A iff F r has property A. Furthermore, if α 6= 0 then F r(α, β) =
F (1/α, β/|α|). Therefore, without loss of generality we may assume that
|α| ≤ 1. The modular group SL(2,Z) acts as a group of automorphisms
on the group R2 by g(x, y) = (g11x + g12y, g21x + g22y), g ∈ SL(2,Z), and
also, by restriction, as a group of automorphisms of the subgroup Z2. This
induces an action as a group of automorphisms of the algebra T2 by g(ej,k) =
eg11j+g12k,g21j+g22k and ‖g(t)‖∞ = ‖t‖∞. Weierstrass’s theorem implies that
cl(T2) = C(T 2), so the action extends to C(T 2) and g(f)(x, y) = f(g11x +
g21y, g12x + g22y). Furthermore, for g ∈ SL(2,Z), t ∈ T2, and f ∈ C(T 2),

‖ĝ(t)‖1 = ‖t̂‖1, we have ‖g(f)‖1 = ‖f‖1, and ‖g(f)‖∞ = ‖f‖∞. If f is
real-valued then g(f) is real-valued and its minimum and maximum values
coincide with those of f. A direct computation gives

(3.1) g(F (α, β)) = F

(
g21 + αg22
g11 + αg12

,
β

|g11 + αg12|

)
, g11 + αg12 6= 0.

Theorem 3.3. If α ∈ Q then F (α, β) has property A.

Proof. If α is rational and |α| ≤ 1 then there exists g ∈ SL(2,Z) such
that g21 + αg22 = 0, |g21| ≤ |g22|, and |g11| ≤ |g12| ≤ |g22|/2, so equation
(3.1) gives g(F (α, β)) = F (0, β|g22|). Therefore, if t ∈ Tp2(F (α, β)−F (α, β))
then g(t) ∈ T+

2 (F (0, β|g22|) − F (0, β|g22|)), so Theorem 3.2 implies that
g(t) ∈ U2(F (0, β|g22|)), and hence t ∈ g−1(U2(F (0, β|g22|))). Since the action
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is an algebra automorphism that preserves the maximum norm, it follows
that g−1(U2(F (0, β|g22|))) = U2(g

−1(F (0, β|g22|)) = U2(F (α, β)).

Definition 3.4. α ∈ R \Q is called amply approximable if there exists
a sequence g ∈ SL(2,Z) such that |g21 + αg22| |g22| log |g22| → 0. If |α| < 1
then we can choose g so that max{|g11|, |g12|, |g21|, |g22|} = |g22| and the
sequence g is called α-compatible.

Remark 3.5. Davis [DA] proved that the inequality

|g21 + eg22| < C log(log(|g22|))/(|g22| log(|g22|)),
where g12, g22 are relatively prime integers, has an infinite number of solu-
tions for C > 1/2 and only a finite number of solutions for C < 1/2. There-
fore e is not amply approximable. For α ∈ R\Q the Liouville–Roth constant
µ0(α) is the supremum of the set of µ > 0 for which there exist infinitely
many relatively prime integer pairs (g21, g22) with |g12 + αg22| < |g22|1−µ.
Then α is a Liouville number if µ0(α) =∞. The set of Liouville numbers is
the countable intersection of dense open sets [OX]. Clearly µ(α) > 2 implies
that α is amply approximable but is a much stronger condition. Borwein and
Borwein [BB] proved that µ0(e) = 2. If α is an irrational algebraic number,
then the Thue–Siegel–Roth theorem implies that µ(α) = 2 and Lang [LA]
conjectured that α satisfies the following stronger condition: for any ε > 0
there exist only a finite number of relatively prime integer pairs (g21, g22)
with |g12 + αg22| < 1/(|g22|(log(|g22|))1+ε). Clearly if α ∈ R \Q and α does
not satisfy Lang’s condition, then α is amply approximable.

The proof of our main theorem depends on the following observation
which relates Diophantine approximation to the geometry of the lattice Z2.

Lemma 3.6. If g21, g22 are relatively prime, α̃ = −g21/g22, 0 < |α| < 1,

β̃ ∈ (0, β), (j, k) ∈ F (α̃, β̃), and |j| < (β − β̃)/|α− α̃|, then (j, k) ∈ F (α, β).

Proof. Since |k− α̃j| < β̃, we have |k−αj| ≤ |k− α̃j|+ |j| |α− α̃| < β.

Theorem 3.7. If α is amply approximable then F (α, β) has property A.

Proof. Since α is amply approximable iff 1/α is, we may assume that

|α| < 1. Assume that ε > 0 and t ∈ Tp2(F (α, β)−F (α, β)). Choose β̃ ∈ (0, β)

with t ∈ Tp2(F (α, β̃) − F (α, β̃)) and choose an α-compatible sequence g in
SL(2,Z). Construct sequences α̃(g) = −g21/g22 and n(g) = largest integer

< β̃|g22|. Since α̃(g) → α we may assume t ∈ Tp2(F (α̃(g), β̃) − F (α̃(g), β̃)),

and hence g(t) ∈ Tp2(F (0, β̃|g22|) − F (0, β̃|g22|)). Construct sequences s(g)
in T2 and a(g) in Z+ by

s(g) = g−1
(
e0,−n(g)S

+
N(ε,g(t))(g(t))

)
,(3.2)

a(g) = n1(s(g))/(|g22|2 log |g22|).(3.3)
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Then s(g) ∈ T2(F (α̃(g), β̃)). Since ρ(g(t)) = ρ(t) and ζ(g(t)) = ζ(t), we have
N(ε, g(t)) ≈ O(|g22| log(|g22|)), and (3.2) gives n1(s(g)) ≈ O(|g22|N(ε, g(t))).
Therefore n1(s(g)) ≈ O(|g22|2 log(|g22|)), so a(g) is bounded. Since g is α-

compatible, for sufficiently large |g22|, n1(s(g)) < (β− β̃)/|α− α̃(g)|. There-
fore Lemma 3.6 implies that s(g) ∈ T2(F (α, β)). Theorem 2.10 implies that
‖t − |s(g)|2‖∞ ≤ (2‖t‖∞ + ε)ε. Since ε was arbitrarily small it follows that
t ∈ U2(F (α, β)) so F (α, β) has property A.

Remark 3.8. A result of Erdős and Turan [ER] implies that the roots
of the Laurent polynomials associated to g(t) become more equidistributed
near Tc as |g22| increases. Then results of Amoroso and Mignotte [A] might
be used to sharpen the upper bound for ‖Ψ+(g(t))‖∞. This would show that
S+
N (g(t)) converges faster than shown in this paper and possibly give a proof

that F (α, β) has property A under weaker conditions on α than the amply
approximable condition.
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in Pure Math., Birkhäuser, Basel, 1983, 135–144.
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