On a theorem of Erdős and Fuchs

by
GÁbor Horváth (Budapest)

Let $k \geq 2$ be a fixed integer, let $A^{(j)}=\left\{a_{1}^{(j)}, a_{2}^{(j)}, \ldots\right\}(j=1, \ldots, k)$ be nondecreasing infinite sequences of nonnegative integers, and let
$r_{k}(n)=\left|\left\{\left(i_{1}, \ldots, i_{k}\right): a_{i_{1}}^{(1)}+a_{i_{2}}^{(2)}+\ldots+a_{i_{k}}^{(k)} \leq n, a_{i_{j}}^{(j)} \in A^{(j)}(j=1, \ldots, k)\right\}\right|$, and $c>0$.

Erdős and Fuchs [1] showed that if $k=2$ and $A^{(1)} \equiv A^{(2)}$, then

$$
\begin{equation*}
r_{2}(n)=c n+o\left(n^{1 / 4}(\log n)^{-1 / 2}\right) \tag{1}
\end{equation*}
$$

cannot hold.
Sárközy [3] extended this theorem to two sequences which are "near" in a certain sense. He proved that if

$$
\begin{equation*}
a_{i}^{(2)}-a_{i}^{(1)}=o\left(\left(a_{i}^{(1)}\right)^{1 / 2}\left(\log a_{i}^{(1)}\right)^{-1}\right) \tag{2}
\end{equation*}
$$

then (1) cannot hold. (A simple example shows that a condition of type (2) is necessary: Let $A^{(j)}=\left\{\sum_{l} \varepsilon_{l} 2^{l k+j}: \varepsilon_{l}=0\right.$ or 1$\}$ for $j=1, \ldots, k$. Then $r_{k}(n)=n+1$, thus $r_{k}(n)-n=O(1)$.)

In [2] I extended this result to the case $k>2$ and, among other things, I showed that if we assume

$$
\begin{equation*}
a_{i}^{(j)}-a_{i}^{(l)}=o\left(\left(\min \left(a_{i}^{(j)}, a_{i}^{(l)}\right)\right)^{1 / 2}\left(\log \min \left(a_{i}^{(j)}, a_{i}^{(l)}\right)\right)^{-1-1 /(k-1)}\right) \tag{3}
\end{equation*}
$$

for all $1 \leq j<l \leq k$, then

$$
\begin{equation*}
r_{k}(n)=c n+o\left(n^{1 / 4}(\log n)^{-1 / 2-3 /(2(k-1))}\right) \tag{4}
\end{equation*}
$$

cannot hold. In this paper I will show that, at the price of replacing the error term in (4) by a slightly weaker one, condition (3) can be replaced by a much weaker assumption. Namely, perhaps somewhat unexpectedly, it suffices to assume that two of the given sequences $A^{(j)}$ are "near":

Theorem. If $k \geq 2, a_{i}^{(1)}-a_{i}^{(2)}=o\left(\left(a_{i}^{(1)}\right)^{1 / 2}\left(\log a_{i}^{(1)}\right)^{-k / 2}\right)$ and

$$
\sum_{a_{i}^{(j)} \leq N} 1 \ll \sum_{a_{i}^{(1)} \leq N} 1 \ll \sum_{a_{i}^{(j)} \leq N} 1 \quad \text { for } j=3, \ldots, k,
$$

then

$$
\begin{equation*}
r_{k}(n)=c n+o\left(n^{1 / 4}(\log n)^{1-3 k / 4}\right) \tag{5}
\end{equation*}
$$

cannot hold.
Proof. Suppose that (5) holds. Let $v(n)=r_{k}(n)-c n$ and $F_{j}(z)=$ $\sum_{i=1}^{\infty} z^{a_{i}^{(j)}}(j=1, \ldots, k)$. Then for $|z|<1$,

$$
\begin{aligned}
\frac{1}{1-z} F_{1}(z) \ldots F_{k}(z) & =\sum_{n=0}^{\infty} r_{k}(n) z^{n}=c \sum_{n=0}^{\infty} n z^{n}+\sum_{n=0}^{\infty} v(n) z^{n} \\
& =c \frac{z}{(1-z)^{2}}+\sum_{n=0}^{\infty} v(n) z^{n}
\end{aligned}
$$

hence

$$
\begin{equation*}
F_{1}(z) \ldots F_{k}(z)=\frac{c z}{1-z}+(1-z) \sum_{n=0}^{\infty} v(n) z^{n} \tag{6}
\end{equation*}
$$

Let ε be a fixed small positive number, N a large positive integer, $m(n)=$ $\left[\varepsilon n^{1 / 2}(\log n)^{-k / 2}\right], m=m(N), z=r e(\alpha)$, where $r=1-1 / N$ and $e(\alpha)=$ $e^{2 \pi i \alpha}$ (for real α). Let

$$
\begin{align*}
J & =\int_{0}^{1}\left|F_{1}(z) \ldots F_{k}(z)\right|\left|\frac{1-z^{m}}{1-z}\right|^{2} d \alpha \\
J_{1} & =c \int_{0}^{1}|1-z|^{-1}\left|\frac{1-z^{m}}{1-z}\right|^{2} d \alpha \tag{7}\\
J_{2} & =\int_{0}^{1}\left|(1-z) \sum_{n=0}^{\infty} v(n) z^{n}\right|\left|\frac{1-z^{m}}{1-z}\right|^{2} d \alpha
\end{align*}
$$

Then, by (6),

$$
\begin{equation*}
J \leq J_{1}+J_{2} \tag{8}
\end{equation*}
$$

We first estimate J. By (7),

$$
\begin{aligned}
J & \left.\geq\left.\left|\int_{0}^{1} F_{1}(z) \overline{F_{2}(z)} F_{3}(z) \ldots F_{k}(z)\right| \frac{1-z^{m}}{1-z}\right|^{2} d \alpha \right\rvert\, \\
& =\left|\int_{0}^{1}\left(F_{1}(z) \overline{F_{2}(z)} \sum_{t=0}^{m-1} r^{t} e(-t \alpha)\right)\left(F_{3}(z) \ldots F_{k}(z) \sum_{t=0}^{m-1} r^{t} e(t \alpha)\right) d \alpha\right|
\end{aligned}
$$

Let

$$
\begin{aligned}
\sum_{b=-\infty}^{\infty} g_{b} e(b \alpha) & =F_{1}(z) \overline{F_{2}(z)} \sum_{t=0}^{m-1} r^{t} e(-t \alpha) \\
\sum_{i=0}^{\infty} h_{i} e(i \alpha) & =F_{3}(z) \ldots F_{k}(z) \sum_{t=0}^{m-1} r^{t} e(t \alpha)
\end{aligned}
$$

(so that all the coefficients g_{b}, h_{i} are nonnegative). Then

$$
\begin{equation*}
J \geq\left|\int_{0}^{1} \sum_{b=-\infty}^{\infty} g_{b} e(b \alpha) \sum_{i=0}^{\infty} h_{i} e(i \alpha) d \alpha\right|=\sum_{b+i=0} g_{b} h_{i} \geq \sum_{m / 4 \leq i \leq m / 2} g_{-i} h_{i} \tag{9}
\end{equation*}
$$

If $m / 4 \leq i \leq m / 2$, then

$$
\begin{aligned}
h_{i} & =\sum_{\substack{a_{i_{3}}^{(3)}+\ldots+a_{i_{k}}^{(k)}+t=i \\
0 \leq t \leq m-1}} r^{a_{i_{3}}^{(3)}+\ldots+a_{i_{k}}^{(k)}+t} \\
& \geq r^{N} \sum_{\substack{a_{i_{3}}^{(3)}+\ldots+a_{i_{k}}^{(k)}+t=i \\
0 \leq t \leq m / 2}} 1 \gg \sum_{a_{i_{3}}^{(3)}+\ldots+a_{i_{k}}^{(k)} \leq m / 4} 1
\end{aligned}
$$

since $r^{N}=(1-1 / N)^{N} \rightarrow 1 / e$.
For $k>2$, since

$$
\sum_{a_{i_{j}}^{(j)} \leq m /(4(k-2))} 1 \gg \sum_{a_{i_{1}}^{(1)} \leq m /(4(k-2))} 1 \quad(j=3, \ldots, k),
$$

it follows that for $m / 4 \leq i \leq m / 2$,

$$
\begin{aligned}
h_{i} & \gg \sum_{a_{i_{3}}^{(3)}+\ldots+a_{i_{k}}^{(k)} \leq m / 4} 1 \geq\left(\sum_{a_{i_{3}}^{(3)} \leq m /(4(k-2))} 1\right) \cdots\left(\sum_{a_{i_{k}}^{(k)} \leq m /(4(k-2))} 1\right) \\
& \gg\left(\sum_{a_{i_{1}}^{(1) \leq m /(4(k-2))}} 1\right)^{k-2}
\end{aligned}
$$

and thus, by (9),

$$
\begin{align*}
J & \gg \sum_{m / 4 \leq i \leq m / 2} g_{-i}\left(\sum_{a_{i_{1}}^{(1)} \leq m /(4(k-2))} 1\right)^{k-2} \tag{10}\\
& =\left(\sum_{a_{i_{1}}^{(1)} \leq m /(4(k-2))} 1\right)^{k-2} \sum_{m / 4 \leq i \leq m / 2} g_{-i}
\end{align*}
$$

Since $m=m(N)=\left[\varepsilon N^{1 / 2}(\log N)^{-k / 2}\right]$ is eventually nondecreasing, and
$a_{i_{1}}^{(1)}-a_{i_{1}}^{(2)}=o\left(\left(a_{i_{1}}^{(1)}\right)^{1 / 2}\left(\log a_{i_{1}}^{(1)}\right)^{-k / 2}\right)$, it follows that if $a_{i_{1}}^{(1)} \leq N$, then $\left|a_{i_{1}}^{(1)}-a_{i_{1}}^{(2)}\right| \leq m\left(a_{i_{1}}^{(1)}\right) / 4 \leq m(N) / 4=m / 4$ for all sufficiently large $a_{i_{1}}^{(1)}$. Hence, for all sufficiently large N, if $a_{i_{1}}^{(1)} \leq N$, then $\left|a_{i_{1}}^{(1)}-a_{i_{1}}^{(2)}\right| \leq m / 4$. If $a_{i_{1}}^{(1)} \leq N-m$, then $a_{i_{1}}^{(2)} \leq a_{i_{1}}^{(1)}+\left|a_{i_{1}}^{(2)}-a_{i_{1}}^{(1)}\right| \leq N-m+m / 4<N$ and

$$
\begin{aligned}
0 & =m / 4-m / 4 \leq i-\left|a_{i_{1}}^{(2)}-a_{i_{1}}^{(1)}\right| \leq i+a_{i_{1}}^{(1)}-a_{i_{1}}^{(2)} \leq i+\left|a_{i_{1}}^{(2)}-a_{i_{1}}^{(1)}\right| \\
& \leq m / 2+m / 4<m-1
\end{aligned}
$$

thus

$$
\begin{align*}
g_{-i} & =\sum_{\substack{a_{i_{1}}^{(1)}-a_{i_{2}}^{(2)}-t=-i \\
0 \leq t \leq m-1}} r^{a_{i_{1}}^{(1)}+a_{i_{2}}^{(2)}+t} \tag{11}\\
& \geq \sum_{\substack{a_{i_{1}}^{(1)}-a_{i_{1}}^{(2)}-t=-i \\
0 \leq t \leq m-1}} r^{a_{i_{1}}^{(1)}+a_{i_{1}}^{(2)}+t} \geq r^{3 N} \sum_{a_{i_{1}}^{(1)} \leq N-m}^{a_{i_{1}}^{(1)}, a_{i_{1}}^{(2)} \leq N}< \\
& \sum_{a_{i_{1}}^{(1)} \leq N-m} 1 .
\end{align*}
$$

Hence, by (10) and (11),

$$
\begin{equation*}
J \gg m\left(\sum_{a_{i_{1}}^{(1)} \leq m /(4(k-2))} 1\right)^{k-2} \sum_{a_{i_{1}}^{(1)} \leq N-m} 1 . \tag{12}
\end{equation*}
$$

Since $a_{i}^{(2)}-a_{i}^{(1)}=a_{i}^{(1)}\left(a_{i}^{(2)} / a_{i}^{(1)}-1\right)$ and $a_{i}^{(2)}-a_{i}^{(1)}=o\left(m\left(a_{i}^{(1)}\right)\right)$, so that $a_{i}^{(2)} / a_{i}^{(1)}=1+o\left(m\left(a_{i}^{(1)}\right) / a_{i}^{(1)}\right)=1+o(1)$, it follows that

$$
\begin{aligned}
& a_{i}^{(2)}-a_{i}^{(1)} \\
& \quad=o\left(m\left(a_{i}^{(1)}\right)\right)=o\left(\left(a_{i}^{(1)}\right)^{1 / 2}\left(\log a_{i}^{(1)}\right)^{-k / 2}\right) \\
& \quad=o\left(\left(a_{i}^{(2)}\right)^{1 / 2}\left(\log a_{i}^{(2)}\right)^{-k / 2}\right)\left(a_{i}^{(1)}\left(a_{i}^{(2)}\right)^{-1}\right)^{1 / 2}\left(\left(\log a_{i}^{(2)}\right)\left(\log a_{i}^{(1)}\right)^{-1}\right)^{k / 2} \\
& \quad=o\left(\left(a_{i}^{(2)}\right)^{1 / 2}\left(\log a_{i}^{(2)}\right)^{-k / 2}\right)=o\left(m\left(a_{i}^{(2)}\right)\right)
\end{aligned}
$$

As m is eventually nondecreasing, it follows that if $a_{i}^{(2)} \leq N$, then $\left|a_{i}^{(1)}-a_{i}^{(2)}\right|$ $\leq m\left(a_{i}^{(2)}\right) / 4 \leq m(N) / 4=m / 4$ for all sufficiently large $a_{i}^{(2)}$. Hence, for all sufficiently large N, if $a_{i}^{(2)} \leq N$, then $\left|a_{i}^{(1)}-a_{i}^{(2)}\right| \leq m / 4$. Furthermore,

$$
\sum_{a_{i_{j}}^{(j)} \leq N-5 m / 4} 1 \ll \sum_{a_{i_{1}}^{(1)} \leq N-5 m / 4} 1 \quad \text { for } j=3, \ldots, k
$$

and $r_{k}(N) \sim c N$, thus

$$
\begin{aligned}
N & \ll r_{k}(N / 2) \leq r_{k}(N-[N / 2]) \leq r_{k}(N-5 m / 4) \\
& =\sum_{a_{i_{1}}^{(1)}+\ldots+a_{i_{k}}^{(k)} \leq N-5 m / 4} 1 \leq \prod_{j=1}^{k} \sum_{a_{i_{j}}^{(j)} \leq N-5 m / 4} 1 \\
& \ll\left(\prod_{\substack{j=1 \\
j \neq 2}}^{k} \sum_{a_{i_{1}}^{(1)} \leq N-5 m / 4} 1\right)\left(\sum_{a_{i_{2}}^{(1)} \leq N-m} 1\right) \leq\left(\sum_{a_{i_{1}}^{(1)} \leq N-m} 1\right)^{k},
\end{aligned}
$$

hence

$$
\begin{equation*}
\sum_{a_{i_{1}}^{(1)} \leq N-m} 1 \gg N^{1 / k} \tag{13}
\end{equation*}
$$

By a similar argument for $k>2$ and for all sufficiently large N, if $a_{i}^{(2)} \leq N$, then $\left|a_{i}^{(1)}-a_{i}^{(2)}\right| \leq m /(8(k-2))$. Thus

$$
\begin{aligned}
m & \ll r_{k}\left(\frac{m}{8(k-2)}\right) \leq \prod_{j=1}^{k} \sum_{a_{i_{j}}^{(j)} \leq m /(8(k-2))} 1 \\
& \ll\left(\prod_{\substack{j=1 \\
j \neq 2}}^{k} \sum_{a_{i_{1}}^{(1)} \leq m /(8(k-2))} 1\right)\left(\sum_{\substack{a_{i_{2}}^{(1)} \leq m /(4(k-2))}} 1\right) \leq\left(\sum_{a_{i_{1}}^{(1)} \leq m /(4(k-2))} 1\right)^{k},
\end{aligned}
$$

hence

$$
\begin{equation*}
\sum_{a_{i_{1}}^{(1)} \leq m /(4(k-2))} 1 \gg m^{1 / k} \tag{14}
\end{equation*}
$$

By (12)-(14),

$$
\begin{equation*}
J \gg m m^{(k-2) / k} N^{1 / k}=m^{2-2 / k} N^{1 / k} \tag{15}
\end{equation*}
$$

We now estimate J_{1} and J_{2}. Since

$$
\begin{aligned}
|1-z|^{2} & =(1-r \cos 2 \pi \alpha)^{2}+(r \sin 2 \pi \alpha)^{2}=(1-r)^{2}+2 r(1-\cos 2 \pi \alpha) \\
& =\frac{1}{N^{2}}+4 r \sin ^{2} \pi \alpha
\end{aligned}
$$

and

$$
|(2 / \pi) \pi \alpha| \leq|\sin \pi \alpha| \quad \text { for }|\alpha| \leq 1 / 2
$$

it follows that $\max \left(1 / N^{2}, \alpha^{2}\right) \ll|1-z|^{2}$, thus $\max (1 / N, \alpha) \ll|1-z|$. Hence

$$
\begin{align*}
J_{1} & =c \int_{0}^{1}|1-z|^{-1}\left|\frac{1-z^{m}}{1-z}\right|^{2} d \alpha \ll m^{2} \int_{0}^{1}|1-z|^{-1} d \alpha \tag{16}\\
& \ll m^{2}\left(\int_{0}^{1 / N}|1-z|^{-1} d \alpha+\int_{1 / N}^{1 / 2}|1-z|^{-1} d \alpha\right) \\
& \ll m^{2}\left(\frac{1}{N} N+\int_{1 / N}^{1 / 2} \frac{1}{\alpha} d \alpha\right) \leq m^{2}(1+\log N) \\
& \ll m^{2} \log N .
\end{align*}
$$

By Cauchy's inequality and Parseval's formula,

$$
\begin{align*}
J_{2} & =\int_{0}^{1}\left|(1-z) \sum_{n=0}^{\infty} v(n) z^{n}\right|\left|\frac{1-z^{m}}{1-z}\right|^{2} d \alpha \tag{17}\\
& \leq 2 \int_{0}^{1}\left|\sum_{n=0}^{\infty} v(n) z^{n}\right|\left|\frac{1-z^{m}}{1-z}\right| d \alpha \\
& \ll\left(\int_{0}^{1}\left|\sum_{n=0}^{\infty} v(n) z^{n}\right|^{2} d \alpha\right)^{1 / 2}\left(\int_{0}^{1}\left|\frac{1-z^{m}}{1-z}\right|^{2} d \alpha\right)^{1 / 2} \\
& \leq\left(\sum_{n=0}^{\infty}|v(n)|^{2} r^{2 n}\right)^{1 / 2} m^{1 / 2}
\end{align*}
$$

By our assumption, $v(n)=o\left(n^{1 / 4}(\log n)^{1-3 k / 4}\right)$, therefore for every $\eta>0$, there exists a natural number $K(\geq 2)$ such that for all $n \geq K$, $|v(n)| \leq \eta n^{1 / 4}(\log n)^{1-3 k / 4}$ and $n^{1 / 4}(\log n)^{1-3 k / 4}$ is nondecreasing. Then for all $N \geq K$,

$$
\begin{aligned}
\sum_{n=0}^{\infty}|v(n)|^{2} r^{2 n} \leq & \sum_{n=0}^{K-1}|v(n)|^{2}+\eta^{2} \sum_{n=K}^{\infty} n^{1 / 2}(\log n)^{2-3 k / 2} r^{2 n} \\
\leq & \sum_{n=0}^{K-1}|v(n)|^{2}+\eta^{2} N N^{1 / 2}(\log N)^{2-3 k / 2} \\
& +\eta^{2} \sum_{j=0}^{\infty} \sum_{n=2^{j} N+1}^{2^{j+1} N} n^{1 / 2}(\log n)^{2-3 k / 2} r^{n}
\end{aligned}
$$

Since

$$
\begin{aligned}
& \sum_{j=0}^{\infty} \sum_{n=2^{j} N+1}^{2^{j+1} N} n^{1 / 2}(\log n)^{2-3 k / 2} r^{n} \\
& \quad \leq \sum_{j=0}^{\infty} 2^{j} N\left(2^{j+1} N\right)^{1 / 2}\left(\log \left(2^{j+1} N\right)\right)^{2-3 k / 2} r^{2^{j} N} \\
& \quad \leq N^{3 / 2}(\log N)^{2-3 k / 2} \sum_{j=0}^{\infty} 2^{j+j / 2+1 / 2} e^{-2^{j}}=C_{0} N^{3 / 2}(\log N)^{2-3 k / 2}
\end{aligned}
$$

it follows that

$$
\begin{aligned}
\sum_{n=0}^{\infty}|v(n)|^{2} r^{2 n} & \leq \sum_{n=0}^{K-1}|v(n)|^{2}+\eta^{2} N^{3 / 2}(\log N)^{2-3 k / 2}\left(1+C_{0}\right) \\
& <\eta N^{3 / 2}(\log N)^{2-3 k / 2}
\end{aligned}
$$

for $\eta<\left(2\left(1+C_{0}\right)\right)^{-1}$ and for $N>N_{0}(\eta)$. Thus

$$
\begin{equation*}
\sum_{n=0}^{\infty}|v(n)|^{2} r^{2 n}=o\left(N^{3 / 2}(\log N)^{2-3 k / 2}\right) \tag{18}
\end{equation*}
$$

By (17) and (18),

$$
\begin{equation*}
J_{2}=o\left(N^{3 / 4}(\log N)^{1-3 k / 4} m^{1 / 2}\right) \tag{19}
\end{equation*}
$$

By (8), (15), (16), and (19),

$$
\begin{equation*}
m^{2-2 / k} N^{1 / k} \ll m^{2} \log N+o\left(m^{1 / 2} N^{3 / 4}(\log N)^{1-3 k / 4}\right) \tag{20}
\end{equation*}
$$

Since $m=\left[\varepsilon N^{1 / 2}(\log N)^{-k / 2}\right],(20)$ yields

$$
\begin{aligned}
& \left(\frac{\varepsilon}{2} N^{1 / 2}(\log N)^{-k / 2}\right)^{2-2 / k} N^{1 / k} \\
& \quad \ll \varepsilon^{2} N(\log N)^{-k} \log N+o\left(\varepsilon^{1 / 2} N^{1 / 4}(\log N)^{-k / 4} N^{3 / 4}(\log N)^{1-3 k / 4}\right)
\end{aligned}
$$

for all sufficiently large N, hence $\varepsilon^{3 / 2-2 / k} \ll \varepsilon^{3 / 2}+o(1)$. Thus $\varepsilon^{-2 / k} \ll 1$; but this cannot hold for sufficiently small ε. This completes the proof of the theorem.

Acknowledgements. The author would like to thank Professors Imre Z. Ruzsa and András Sárközy for helpful suggestions.

References

[1] P. Erdős and W. H. J. Fuchs, On a problem of additive number theory, J. London Math. Soc. 31 (1956), 67-73.
[2] G. Horváth, On a generalization of theorem of Erdös and Fuchs, to appear.
[3] A. Sárközy, On a theorem of Erdős and Fuchs, Acta Arith. 37 (1980), 333-338.

Department of Algebra and Number Theory
Eötvös Loránd University
Pázmány Péter sétány $1 / \mathrm{c}$
H-1117, Budapest, Hungary
E-mail: horvathg@cs.elte.hu

