On the diophantine equation $a x^{2}+b^{m}=4 y^{n}$

by

S. Akhtar Arif and Amal S. Al-Ali (Al-Riyadh)

Let a, b, x, y, m, n be positive integers. Many special cases of the diophantine equation

$$
a x^{2}+b^{m}=4 y^{n}
$$

where $(a x, b y)=1, a, b$ are square-free integers, $y>1, m$ is odd and n is an odd prime, have been considered in the last few years (see [1, 3, 7-11]). Le Maohua [4-6] studied this equation in full generality and proved that it has only a finite number of solutions (a, b, x, y, m, n) with $n>5$.

Following almost the same method as Le Maohua but using a recent result of Bilu, Hanrot and Voutier [2], we are able to prove:

Theorem. The diophantine equation

$$
\begin{equation*}
a x^{2}+b^{2 k+1}=4 y^{n} \tag{1}
\end{equation*}
$$

where a, b, x, y, k, n are positive integers such that $(a x, b)=1, a, b$ are squarefree integers, $k \geq 0, n$ is an odd prime, $(n, h)=1$ where h is the class number of the field $\mathbb{Q}(\sqrt{-a b})$ and $y>1$, has no solutions in (a, b, x, y, k, n) when $n>13$ and has exactly six solutions for $7 \leq n \leq 13$, given by

$$
\begin{aligned}
(a, b, k, n, y)= & (1,7,0,13,2),(1,7,1,7,2),(1,19,0,7,5) \\
& (3,5,0,7,2),(5,7,1,7,3),(13,3,0,7,4)
\end{aligned}
$$

Further if $a=1, n=5$, then (1) has exactly 2 solutions given by $k=0$ and $(b, y)=(7,2),(11,3)$.

We are grateful to Professor Bilu for his valuable suggestions and also for providing us with a copy of [1]. He also informed us that similar results using similar approach have been obtained by Bugeaud [3]. Our paper was submitted independently although later than that of Bugeaud.

We start by giving some important definitions.

[^0]Definitions. A Lehmer pair is a pair (α, β) of algebraic integers such that $(\alpha+\beta)^{2}$ and $\alpha \beta$ are non-zero co-prime rational integers and α / β is not a root of unity. For a Lehmer pair (α, β) one defines the corresponding sequence of Lehmer numbers by

$$
\widetilde{u}_{n}=\widetilde{u}_{n}(\alpha, \beta)= \begin{cases}\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} & \text { if } n \text { is odd } \\ \frac{\alpha^{n}-\beta^{n}}{\alpha^{2}-\beta^{2}} & \text { if } n \text { is even. }\end{cases}
$$

A prime number p is a primitive divisor of $\widetilde{u}_{n}(\alpha, \beta)$ if p divides \widetilde{u}_{n} but does not divide $\left(\alpha^{2}-\beta^{2}\right)^{2} \widetilde{u}_{1} \widetilde{u}_{2} \ldots \widetilde{u}_{n-1}$.

In [2] it has been shown that
Lemma 1. For every integer $n>30, \widetilde{u}_{n}(\alpha, \beta)$ has a primitive divisor.
Also in [12], for $6<n \leq 30$, all Lehmer pairs (α, β) such that $\widetilde{u}_{n}(\alpha, \beta)$ has no primitive divisors have been listed.

We also need the following classical lemma, going back to the work of Ljunggren $[8,9]$ (and perhaps earlier), and in the present form proved in [1].

Lemma 2. Let a, b, x, y be positive integers, with a and b square-free and $\operatorname{gcd}(a x, b y)=1$. Assume that $a x^{2}+b y^{2}=4 c^{n}$, where c and n are positive integers such that $\operatorname{gcd}(n, 6 h(-a b))=1$. Then there exist integers x_{1} and y_{1} such that

$$
\frac{x \sqrt{a}+y \sqrt{-b}}{2}=\left(\frac{x_{1} \sqrt{a}+y_{1} \sqrt{-b}}{2}\right)^{n} .
$$

Proof of the Theorem. Let (a, b, x, y, k, n) be a solution of (1). Then applying Lemma 2 with $c=y, y=b^{m}$, we can find integers c, d such that

$$
\begin{equation*}
\frac{x \sqrt{a}+b^{k} \sqrt{-b}}{2}=\left(\frac{c \sqrt{a}+d \sqrt{-b}}{2}\right)^{n} \tag{2}
\end{equation*}
$$

where c, d are rational integers such that $4 y=a c^{2}+b d^{2}$ and $(a c, b d)=1$. Let

$$
\alpha=\frac{c \sqrt{a}+d \sqrt{-b}}{2}, \quad \beta=\frac{c \sqrt{a}-d \sqrt{-b}}{2} .
$$

Then from equation (2), we get

$$
\begin{equation*}
\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}= \pm \frac{b^{k}}{d} . \tag{3}
\end{equation*}
$$

It is easy to verify that (α, β) is a Lehmer pair and so from (3) it follows that all the prime divisors of the corresponding nth Lehmer number $\widetilde{u}_{n}=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta)$ must divide b. Since $\left(\alpha^{2}-\beta^{2}\right)^{2}=-a b c^{2} d^{2}$, these prime divisors also divide $\left(\alpha^{2}-\beta^{2}\right)^{2}$. Hence the nth Lehmer number $\widetilde{u}_{n}=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta)$ has no primitive divisors. Since n is a prime,
by Lemma 1 and Table 2 in [2] when $n>13$ there is no Lehmer number $\widetilde{u}_{n}(\alpha, \beta)$ which has no primitive divisors and so no solution of equation (1) when $n>13$. For $7 \leq n \leq 13$, in [2] all Lehmer pairs (α, β) for which $\widetilde{u}_{n}(\alpha, \beta)$ have no primitive divisors have been listed; we consider each value of n separately.

If $n=13$, then $\alpha=(1+\sqrt{-7}) / 2$, which correspondingly gives $k=0$, $a=1, b=7, c=1, d=1$ and consequently $y=\left(a c^{2}+b d^{2}\right) / 4=2, x=181$ is the only solution of the equation $a x^{2}+b^{2 k+1}=4 y^{13}$.

If $n=11$, then there is no Lehmer number which has no primitive divisors and so no solution of equation (1).

If $n=7$, then

$$
\begin{aligned}
\alpha= & (1+\sqrt{-7}) / 2,(1+\sqrt{-19}) / 2,(\sqrt{3}+\sqrt{-5}) / 2,(\sqrt{5}+\sqrt{-7}) / 2 \\
& (\sqrt{13}+\sqrt{-3}) / 2,(\sqrt{14}+\sqrt{-22}) / 2
\end{aligned}
$$

The first five values of α give us:

- $y=2$ as a solution of $x^{2}+7^{3}=4 y^{7}(x=13)$,
- $y=5$ as a solution of $x^{2}+19=4 y^{7}(x=559)$,
- $y=2$ as a solution of $3 x^{2}+5=4 y^{7}(x=13)$,
- $y=3$ as a solution of $5 x^{2}+7^{3}=4 y^{7}(x=41)$,
- $y=4$ as a solution of $13 x^{2}+3=4 y^{7}(x=71)$.

If $n=5$ and $a=1$, then the values of α for which $\widetilde{u}_{5}(\alpha, \beta)$ has no primitive divisors as given in [2] are:

$$
\alpha=(1+\sqrt{-5}) / 2,(1+\sqrt{-7}) / 2,(1+\sqrt{-11}) / 2,(1+\sqrt{-15}) / 2
$$

which gives us:

- $y=2$ as a solution of $x^{2}+7=4 y^{5}(x=11)$,
- $y=3$ as a solution of $x^{2}+11=4 y^{5}(x=31)$.

No solutions are found when $\alpha=(1+\sqrt{-5}) / 2,(1+\sqrt{-15}) / 2$.

References

[1] Y. Bilu, On Le's and Bugeaud's papers about the equation $a x^{2}+b^{2 m-1}=4 c^{p}$, preprint.
[2] Y. Bilu, G. Hanrot and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte), J. Reine Angew. Math. 539 (2001), 75-122.
[3] Y. Bugeaud, On some exponential diophantine equations, Monatsh. Math. 132 (2001), 93-97.
[4] M. H. Le, On the diophantine equations $d_{1} x^{2}+2^{2 m} d_{2}=y^{n}$ and $d_{1} x^{2}+d_{2}=4 y^{n}$, Proc. Amer. Math. Soc. 118 (1993), 67-70.
[5] -, On the diophantine equation $D_{1} x^{2}+D_{2}^{m}=4 y^{n}$, Monatsh. Math. 120 (1995), 121-125.
[6] M. H. Le, A note on the number of solutions of the generalized Ramanujan-Nagell equation $D_{1} x^{2}+D_{2}=4 p^{n}$, J. Number Theory 62 (1997), 100-106.
[7] -, On the diophantine equation $x^{2}+D=4 p^{n}$, ibid. 41 (1992), 87-97.
[8] W. Ljunggren, On the diophantine equation $x^{2}+D=4 y^{q}$, Monatsh. Math. 75 (1971), 136-143.
[9] -, New theorems concerning the diophantine equation $x^{2}+D=4 y^{q}$, Acta Arith. 21 (1972), 183-191.
[10] B. Persson, On a diophantine equation in two unknowns, Ark. Mat. 1 (1949), 45-57.
[11] B. Stolt, Die Anzahl von Lösungen gewisser diophantischer Gleichungen, Arch. Math. (Basel) 8 (1957), 393-400.
[12] P. M. Voutier, Primitive divisors of Lucas and Lehmer sequences, Math. Comp. 64 (1995), 869-888.
S. Akhtar Arif

Amal S. Al-Ali
P.O. Box 22171

Al-Riyadh 11495
Saudi Arabia
E-mail: sarif5@hotmail.com
P.O. Box 56778

Al-Riyadh 11564
Saudi Arabia

[^0]: 2000 Mathematics Subject Classification: 11D61, 11D41.
 Key words and phrases: diophantine equations, Lucas sequences, Lehmer sequences, primitive divisors, non-defective.

