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The Fekete–Szegő theorem
with splitting conditions: Part II

by

Robert Rumely (Athens, GA)

1. Introduction. A classical theorem of Fekete and Szegő ([5]) says
that if E ⊆ C is a compact set with logarithmic capacity γ(E) ≥ 1, stable
under complex conjugation, then every complex neighborhood of E contains
infinitely many conjugate sets of algebraic integers. Raphael Robinson [10]
strengthened this, showing that if E ⊆ R, then every real neighborhood of
E contains infinitely many conjugate sets of totally real algebraic integers.

In [3], Cantor stated a theorem of Fekete–Szegő–Robinson type for adelic
sets in P1 over a number field K. Write Kv for the completion of K at
a place v. Fix algebraic closures K̃ of K, K̃v of Kv, and let Cv be the
completion of K̃v. If v is nonarchimedean, let Ôv be the ring of integers
of Cv. For each v, let a Galois-stable set Ev ⊂ P1(Cv) and a neighbor-
hood Uv of Ev in P1(Cv) be given. Cantor developed a theory of capacity
for adelic sets E =

∏
v Ev ⊂

∏
v P1(Cv), and defined the capacity γ(E,X)

for such a set with respect to a finite set of global points X ⊂ P1(K̃).
Let S be a finite set of places of K such that for each v ∈ S, there is
a finite Galois extension Lw/Kv with Ev ⊂ P1(Lw). Cantor’s “Fekete–
Szegő theorem with splitting conditions” ([3, Theorem 5.1.1, p. 199]) as-
serts that if γ(E,X) ≥ 1, then there are infinitely many points in P1(K̃)
whose conjugates in Cv belong to Uv for all v, and lie in P1(Lw), if v ∈ S.
We call the latter constraints “splitting conditions”. Unfortunately, there
were gaps in Cantor’s proof. An explicit error occurs in his Lemma 4.2.6,
where an adelic polynomial is asserted to have coefficients in a number field.
There are also significant difficulties in both the archimedean and nonar-
chimedean patching processes which his construction did not come to terms
with.
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Recently the author [12] established the theorem in the special case where
X = {∞} and K = Q, with E∞ = [−2r, 2r], and Ep = Zp for finitely
many primes p. In this paper, we prove the theorem for X = {∞} over an
arbitrary number field K, and for general sets Ev. We also strengthen the
result, showing that under appropriate hypotheses on the Ev, the algebraic
numbers produced exist in all sufficiently large degrees.

The author would like to thank Peter Rice for pointing out the lemma
on the “Alabama Paradox” used in Section 8.

2. Statement of the results. Let K be a number field. For each place
v of K, let a set Ev ⊂ Cv, and a Cv-neighborhood Uv of Ev, be given. Assume
that Ev is bounded and stable under the group of continuous automorphisms
Galc(Cv/Kv) for each v, and that Ev = Uv = Ôv for all but finitely many v.
Write log(x) = ln(x). For a compact set Ev, the local capacity γ(Ev) can be
defined by

γ(Ev) = e−V with V = inf
ν

���

Ev×Ev
− log(|z − w|v) dν(z) dν(w),

where the inf is taken over all positive measures ν of total mass 1 supported
on Ev. There are several other formulas for the local capacity; these, and
methods of computing local capacities for certain classes of sets, will be
recalled below. For an arbitrary set Ev, the local capacity is given by

γ(Ev) = sup
Fv⊂Ev

Fv compact

γ(Fv).

Our γ(Ev) is sometimes called the “inner capacity” (see for example [11],
[13]). For archimedean compact Ev, the local capacity γ(Ev) is just the
classical logarithmic capacity, or “transfinite diameter”. For nonarchimedean
compact Ev, it is the v-adic generalization of the transfinite diameter, first
studied by Bertrandias (see [1]).

Cantor’s theory defines the capacity γ(E,X) of an adelic set E =
∏
v Ev

with respect to a finite set of global algebraic points X. When X = {∞},
Cantor’s capacity reduces to a weighted product of local capacities:

γ(E) := γ(E, {∞}) =
∏

v

γ(Ev)Dv .

The weights Dv are the same as the ones in the product formula for K:
they (and the local capacities) depend on the normalization of the absolute
values |x|v.

In this paper we normalize absolute values as follows. If v is archimedean,
we take |x|v = |x| to be the usual absolute value on R or C. From an
arithmetic point of view it would be preferable to take |x|v = |x|2 when Kv

∼=
C, but we use the normalization above to avoid confusion concerning the
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literature about capacities of sets in C. If v is nonarchimedean, we take |x|v
to be the canonical absolute value on Kv given by the modulus of additive
Haar measure (if πv is a uniformizing element at v, then |πv|v = 1/qv, where
qv is the order of the residue field of Kv). With this normalization, Dv = 1
unless v is archimedean and Kv

∼= C, in which case Dv = 2.
For nonarchimedean v, let logv(x) denote the logarithm to the base qv =

#(Ov/πvOv). For archimedean v, write logv(x) = log(x) = ln(x).
For each v, the absolute value |x|v on Kv extends uniquely to absolute

values on K̃v and Cv, and we denote these extensions by |x|v as well. The Ga-
lois group Gal(K̃v/Kv) respects |x|v, and its action on K̃v extends to a con-
tinuous action on Cv. Conversely, each continuous automorphism of Cv/Kv

arises from an element of Gal(K̃v/Kv). By Galc(Cv/Kv) ∼= Gal(K̃v/Kv)
we mean the group of continuous automorphisms of Cv, fixing Kv. Given
av ∈ Cv, and rv > 0, let the “open” and “closed” balls be

B(av, rv)− = {z ∈ Cv : |z − av|v < rv},
B(av, rv) = {z ∈ Cv : |z − av|v ≤ rv}.

By an adelic neighborhood U of E, we mean a set U =
∏
v Uv, where each

Uv is an open set in Cv containing Ev.
Our main theorem is as follows:

Theorem 2.1 (Fekete–Szegő theorem with splitting conditions). Let K
be a number field , and let E =

∏
v Ev be an adelic set over K such that each

Ev is bounded and stable under Galc(Cv/Kv), with Ev = Ôv for all but
finitely many v. Suppose that

∏
v γ(Ev)Dv > 1, or that

∏
v γ(Ev)Dv = 1 and

Ev is compact for at least one archimedean v. Let S be a finite set of places
of K, such that for each v ∈ S there is a finite Galois extension Lw/Kv

with Ev ⊂ Lw. Then for each adelic neighborhood U =
∏
v Uv of E, there

are infinitely many numbers α ∈ K̃ with the following properties:

(1) for each v, all the conjugates of α in Cv belong to Uv;
(2) for each v ∈ S, these conjugates belong to Lw ∩ Uv.

Under appropriate hypotheses, we can require that the numbers α pro-
duced by Theorem 2.1 belong to the sets Ev:

Theorem 2.2. Let K be a number field , and let E =
∏
v Ev be an adelic

set over K such that each Ev is bounded and stable under Galc(Cv/Kv), and
Ev = Ôv for all but finitely many v. Assume that

∏
v γ(Ev)Dv > 1 and that

(1) for each archimedean v, either

(A) Ev is the closure of its interior , and ∂Ev is a finite union of
arcs; or

(B) Kv
∼= R, and Ev ⊂ R is a finite union of closed intervals;
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(2) for each nonarchimedean v, either

(A) Ev is a finite union of open and/or closed balls in Cv; or
(B) Ev =

⋃M
i=1(ai + πkiwOw) ⊂ Lw is a finite union of cosets of the

ring of integers of a finite Galois extension Lw/Kv.

Then there are infinitely many α ∈ K̃ such that for each v, all the conjugates
of α in Cv belong to Ev.

Theorem 2.2 follows from Theorem 2.1 by shrinking the archimedean Ev
slightly, and taking the Uv to be the interiors of the original sets.

In a different direction, we can ask whether for sufficiently large n, num-
bers α as in Theorems 2.1 and 2.2 can be found with [K(α) : K] = n. In
general this is not possible; for example if K = Q and the archimedean
set E∞ and neighborhood U∞ are stable under complex conjugation but
do not meet R, then the numbers α produced must be totally complex, so
[Q(α) : Q] must be even. Similar constraints arise at finite places. However,
we can prove:

Theorem 2.3. Let K be a number field , and let E and U satisfy the
hypotheses of Theorem 2.1 (resp. Theorem 2.2). Suppose in addition that
each Ev contains a point of Kv, and that Lw = Kv for each v ∈ S. Then
for all sufficiently large n, there exist algebraic numbers α satisfying the
conclusions of Theorem 2.1 (resp. Theorem 2.2) with [K(α) : K] = n. In
addition, if S′1 and S′2 are finite sets of nonarchimedean places of K where
Ev = Ôv, disjoint from S and from each other , then for each v ∈ S ′1 we can
require that v is inert in K(α)/K, and for each v ∈ S ′2 we can require that
v is totally ramified.

It follows from Theorem 2.3 that there is a number Q, depending only
on E and U, such that the numbers α in Theorems 2.1 and 2.2 can be found
with [K(α) : K] = n for all sufficiently large n divisible by Q.

The following concrete example generalizes the main theorem of [12]:

Corollary 2.4. Let E =
∏
v Ev be an adelic set over K such that

(1) for each archimedean v with Kv
∼= C, Ev = B(av, rv) is a closed ball ;

(2) for each archimedean v with Kv
∼=R, Ev=[av, bv] is a closed interval ;

(3) for each nonarchimedean v in a finite set of places S, Ev = Ov, the
ring of integers of Kv;

(4) for the remaining nonarchimedean v, Ev = Ôv.

Assume ∏

Kv∼=C
r2
v ·

∏

Kv∼=R

bv − av
4

·
∏

v∈S
q−1/(qv−1)
v > 1.

Then for all sufficiently large n, there exist numbers α with [K(α) : K] = n
whose conjugates all belong to Ev, for each v.
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Algebraic numbers satisfying a variety of congruence conditions, with
controlled archimedean conjugates, can be constructed by imposing appro-
priate geometric conditions on the sets Ev. As a whimsical example, taking
K = Q in Theorem 2.2, with E∞ = B(0, 2 + ε), E2 = Z2, E3 = Znr

3 (the
ring of integers of the maximal unramified extension of Q3), E5 = B5(1, 1)−,
E7 = B7(0, 1)−, and Ep = Ôp for all remaining p, we have

Corollary 2.5. For any ε > 0, there are infinitely many algebraic in-
tegers α such that

(1) the archimedean conjugates of α satisfy |σ(α)| < 2 + ε;
(2) the prime 2 splits completely in Q(α);
(3) the prime 3 is unramified in Q(α);
(4) at all places v of Q(α) above 5, we have α ≡ 1 (mod℘v);
(5) at all places v of Q(α) above 7, we have α ∈ ℘v.
Here, γ(B(0, 2+ε)) = 2+ε, and γ(Z2) = 2−1/(2−1) = 1/2. The condition

“3 is unramified” is cost-free, since

γ(Znr
3 ) = sup

Lw/Q3
finite, unramified

γ(Ow) = lim
m→∞

3−1/(3m−1) = 1.

Likewise, the “open” conditions at the primes 5 and 7 do not impose any
cost, since the capacities of the sets B5(1, 1)− and B7(0, 1)− are both 1: the
capacity of an open or closed ball is simply its radius, r. For all other primes,
γ(Ôp) = 1. Thus, γ(E) = 1 + ε/2 > 1.

We should also mention a converse to the Fekete–Szegő theorem, which
shows that the hypothesis γ(E) ≥ 1 is sharp. By a PL-domain in Cv (“Poly-
nomial Lemniscate Domain”) we mean a set of the form

Uv = {z ∈ Cv : |fv(x)|v ≤ Rv}
where fv(z) ∈ Cv[z] is a nonconstant polynomial, and Rv belongs to the
value group of C×v . For a set Ev ⊂ Cv, we say that Ev is algebraically
capacitable if

γ(Ev) = inf
Uv⊃Ev

Uv=PL-domain

γ(Uv).

For archimedean v, Hilbert’s Lemniscate Theorem shows that compact sets
are algebraically capacitable (see [11, Proposition 3.3.3]). For nonarchimed-
ean v, it is shown in [11, §4.4] that compact sets, PL-domains, and any finite
combination of unions or intersections of such sets, are algebraically capac-
itable; in addition, finite unions of open balls or closed balls are algebraically
capacitable. The following is a special case of [3, Theorem 5.1.2, p. 199]; see
[11, Theorem 6.3.1] for a generalization to curves:
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Theorem 2.6 (Fekete’s theorem). Let E =
∏
v Ev be an affine adelic

set over K such that each Ev is bounded , stable under Galc(Cv/Kv), and
algebraically capacitable, such that

∏

v

γ(Ev)Dv < 1.

Then there exists an adelic neighborhood U =
∏
v Uv of E, which contains

only finitely many algebraic numbers α whose conjugates in Cv belong to Uv
for all v.

3. Local capacities. In this section we will recall some of the properties
of the capacity, and explain how to compute local capacities for certain types
of sets.

3.1. The archimedean case. If v is archimedean, fix an isomorphism of
K̃v with C, and regard Ev as a subset of C. Assume Ev is compact; then
γ (Ev) is the classical logarithmic capacity. Three well-known formulas for
the logarithmic capacity are as follows (see for example [13, pp. 71–75]):

γ(Ev) = lim
n→∞

sup
{x1,...,xn}⊆Ev

(∏

i6=j
|xi − xj |

)1/(n2−n)

= lim
n→∞

inf
f(x)∈C[x]

monic, deg(f)=n

(‖f(x)‖Ev)1/n

= e−V (Ev)

where ‖f(x)‖Ev is the sup norm of f(x) on Ev under |x|v, and

V (Ev) = inf
ν

� �

Ev×Ev
− log(|z − w|) dν(z) dν(w)

where ν runs over probability measures (positive measures of total mass 1)
supported on Ev.

The first formula, γ(Ev) as the “transfinite diameter”, was the definition
originally used by Fekete. It shows that γ(Ev) is translation-invariant and
homogeneous under scaling. The second formula, γ(Ev) as the “Chebyshev
constant”, provides a connection with polynomials. Let ∂Eout

v be the outer
boundary of Ev, the part of ∂Ev meeting the closure of the unbounded com-
ponent of C \Ev. By the maximum principle, γ(Ev) = γ(∂Ev) = γ(∂Eout

v ).
In the third formula, the number V (Ev) is called the “Robin constant” of

Ev. If γ(Ev) > 0 (equivalently, if V (Ev) <∞), there is a unique probability
measure µ, called the equilibrium distribution of Ev, for which the inf is
achieved. This holds, for example, if Ev contains an arc. When γ(Ev) > 0,
we define the “Green function of Ev relative to the point ∞” by
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G(z,∞;Ev) = V (Ev) +
�

Ev

log(|z − w|) dµ(w).

The Green function is characterized by the following properties: it is contin-
uous in the complement of Ev and upper semicontinuous everywhere; it is 0
on Ev except possibly on a set of capacity 0 contained in ∂Eout

v , and it is har-
monic in C\Ev with a logarithmic pole at∞ (that is, G(z,∞;Ev)− log(|z|)
remains bounded as z → ∞). The restriction of G(z,∞;Ev) to the un-
bounded component of C\Ev is the classical Green function g(z,∞) of that
domain. Clearly

V (Ev) = lim
z→∞

(G(z,∞;Ev)− log(|z|)) .(3.1)

If ∂Ev is a union of arcs, then G(z,∞;Ev) is continuous everywhere, and
G(z,∞;Ev) = 0 on Ev: the exceptional set in ∂Ev is empty.

Formula (3.1) and the characterization of the Green function make it
possible to compute the capacities of many sets: if G(z,∞;Ev) can be found,
then the capacity can be read off. In particular, for a closed ball B(a, r),

G(z,∞;B(a, r)) =

{
log(|(z − a)/r|) if z 6∈ B(a, r),

0 if z ∈ B(a, r),

γ(B(a, r)) = r.

If an explicit conformal mapping f(z) can be found which takes C \ Ev to
C\B(0, 1), then G(z,∞;Ev) = log(|f(z)|) for z 6∈ Ev. In this way, capacities
can be computed for straight line segments, ellipses, triangles, rectangles,
regular n-gons, bent segments, arcs of circles, and so on; a fairly extensive
table of capacities for archimedean sets is given in [11, pp. 348–351]. For a
segment,

γ([a, b]) = (b− a)/4.

For an ellipse Ev = {x+ iy ∈ C : x2/a2 + y2/b2 ≤ 1},
γ(Ev) = (a+ b)/2.(3.2)

More generally, if h(z) is a monic polynomial of degree n, and Fv =
h−1(Ev), then G(z,∞;Fv) = (1/n)G(h(z),∞;Ev), giving the pullback for-
mula

γ(h−1(Ev)) = γ(Ev)1/n.(3.3)

Two consequences of the pullback formula we will need are:

Corollary 3.1. Let h(z) ∈ C[z] be monic of degree n.

(A) If Ev = {z ∈ C : |h(z)| ≤ Rnv} ⊂ C, then γ(Ev) = Rv.
(B) If Ev =

⋃M
i=1[ai, bi] ⊂ R is a finite union of segments, and if h(z) ∈

R[z] “oscillates n times between ±2Rnv on Ev” (so that Ev = {z ∈ C :
|h(z)| ≤ 2Rnv}), then γ(Ev) = Rv.
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3.2. The nonarchimedean case: PL-domains. If Kv is nonarchimedean
let h(z) ∈ Cv[z] be a monic polynomial of degree n, and let Rv belong to
the value group of C×v . Following Cantor, we call a set of the form

Ev = {z ∈ Cv : |h(z)|v ≤ Rnv}
a Polynomial Lemniscate Domain (“PL-domain”). Motivated by the pull-
back formula in the archimedean case, Cantor ([3, §3.2]) defined the capacity,
Robin constant, and Green function of Ev by

γ(Ev) = Rv,

V (Ev) = − logv(Rv),(3.4)

G(z,∞;Ev) =
{

(1/n) logv(|h(z)|v/Rnv ) if z 6∈ Ev,
0 if z ∈ Ev,

and showed that these are independent of the choice of h(z).
Note that if Ev = Ôv, then taking f(z) = z and Rv = 1 in the formulas

above yields γ(Ôv) = 1. In our definition of an adelic set E, we required that
Ev = Ôv for all but finitely many v. Thus, the global capacity

γ(E) =
∏

v

γ(Ev)Dv

is in fact a finite product.
An important part of Cantor’s theory was the identification of PL-

domains with “finite unions of balls”, sets of the form

Ev =
M⋃

i=1

B(ai, ri),

where each B(ai, ri) = {z ∈ Cv : |z − ai|v ≤ ri} is a closed ball, with
radius ri in the value group of C×v . By the ultrametric inequality, we can
assume the union is disjoint, which means that |ai − aj |v > max(ri, rj)
for each i 6= j. Cantor showed, by induction on the number of zeros of
h(z), that each PL-domain was a finite union of balls ([3, Theorem 3.12,
p. 180]).

Conversely, given a finite union of balls as above, he showed that there
was a polynomial realizing it as a PL-domain. The construction is as follows.
Define the (M + 1)× (M + 1) symmetric real matrix

(3.5) Θv =




0 1 1 · · · 1

1 logv(r1) logv(|a1 − a2|v) · · · logv(|a1 − aM |v)
1 logv(|a2 − a1|v) logv(r2) · · · logv(|a2 − aM |v)
...

...
...

. . .
...

1 logv(|aM − a1|v) logv(|aM − a2|v) · · · logv(rM)



.
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Then Θv is nonsingular, and, in the unique solution to the system of equa-
tions 



1

0
...

0




= Θv




V (Ev)

w1
...

wM



,(3.6)

the numbers wi are positive. (For a proof, see Appendix II below.) Since Θv
has rational entries, V (Ev) and the wi are rational as well. Let n be a com-
mon denominator for the wi. By Lemma 12.1 of Appendix II, a polynomial
realizing Ev as a PL-domain is given by

h(z) =
M∏

i=1

(z − ai)nwi ,(3.7)

with Rnv = q
−nV (Ev)
v . It follows that

γ(Ev) = q−V (Ev)
v .

Thus, the problem of computing the capacity for finite unions of balls reduces
to linear algebra.

3.3. The nonarchimedean case: compact sets. If v is nonarchimedean
and Ev is compact, we define the Robin constant

V (Ev) = inf
ν

� �

Ev×Ev
− logv(|z − w|v) dν(z) dν(w)(3.8)

where the inf is taken over all probability measures ν supported on Ev. If
V (Ev) is finite, there is a unique probability measure µ, the equilibrium
distribution, for which the inf is achieved (see [11, §4.1]). By analogy with
the archimedean case, we define the capacity and Green function of Ev by

γ(Ev) = q−V (Ev)
v ,

G(z,∞;Ev) = V (Ev) +
�

Ev

logv(|z − w|v) dµ(w).

It is often convenient to work with the potential function

ωµ(z;Ev) =
�

Ev

− logv(|z − w|v) dµ(w) = V (Ev)−G(z,∞;Ev)

rather than the Green function. The equilibrium distribution µ is character-
ized by the property that ωµ(z;Ev) takes a constant value a.e. on Ev (here
a.e. means except on a set of capacity 0); clearly this value is V (Ev).

For example, take Ev = a+ bOv. Since Ev is translation invariant under
bOv, the equilibrium distribution µ is translation invariant as well. Thus
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µ must be additive Haar measure restricted to Ev, normalized so that
µ(Ev) = 1. Put r = |b|v. It is not hard to compute that

ωµ(z;Ev) =





1
qv − 1

− logv(r) for z ∈ Ev,

− logv(|z − a|v) for |z − a|v > r,

so that γ(Ev) = r · q−1/(qv−1)
v . In particular, when Kv = Qp and Ev = Zp,

γ(Zp) = p−1/(p−1),

a formula used implicitly in [12].
More generally, suppose Ev ⊂ Kv is a disjoint union of cosets

M⋃

i=1

(ai + biOv).

Put ri = |bi|v for each i; the disjointness means that max(ri, rj) > |ai− aj |v
for all i 6= j. Using the ultrametric inequality and the characterization of µ,
one sees that µ must be a weighted sum of the equilibrium distributions µi
of the cosets Ev,i = ai + biOv:

µ =
M∑

i=1

wiµi.

We claim that V (Ev) and the wi satisfy a system of equations much like the
ones that determine the polynomial h(z) for a PL-domain. Indeed, let Θv
be defined as in (3.5) for

⋃M
i=1B(ai, ri), and I0 be the (M + 1) × (M + 1)

matrix

I0 =




0 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . . 0

0 0 0 · · · 1



.

The fact that ωµ(z;Ev) must take the same value on each Ev,i yields the
system of equations

[
1
~0

]
=
(
Θv −

1
qv − 1

I0

)[
V (Ev)

~w

]
.(3.9)

More explicitly, since − logv(|ai − aj |v) = ordv(ai − aj) and − logv(ri) =
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ordv(bi), the system is




M∑

i=1

wi = 1, and for j = 1, . . . ,M,

M∑

i=1, i6=j
wi(ordv(ai − aj)) + wj

(
ordv(bj) +

1
qv − 1

)
= V (Ev).

(3.10)

By the existence and uniqueness of µ, this system has a unique solution,
in which wi = µ(Ev,i). Since the matrices have rational entries, V (Ev) and
the wi are rational. Clearly each wi ≥ 0; in fact, each wi > 0 since if wj = 0
for some j then we would have G(z,∞;Ev) > 0 on Ev,j . However, this
is impossible since G(z,∞;Ev) = 0 a.e. on Ev (see [11, Theorem 4.1.11,
p. 195]). As before,

γ(Ev) = q−V (Ev)
v .

Thus, again, computation of capacities reduces to linear algebra. The equa-
tions (3.10) will play a key role in the proof of Theorem 2.3 (see Lemmas 8.7
and 8.8).

The definitions of the capacity for PL-domains and compact sets are
consistent. In [11, §4.3] it is shown that for a PL-domain Uv,

γ(Uv) = sup
Ev⊂Uv

Ev=compact

γ(Ev),

while for a compact set Ev,

γ(Ev) = inf
Uv⊃Ev

Uv= PL-domain

γ(Uv).

4. Reductions. In this section, we will derive Theorem 2.2 from The-
orem 2.1, and Theorem 2.1 from Theorem 2.3. We will also outline the
strategy for the proof of Theorem 2.3.

Preliminary reductions. Before proving Theorems 2.1 and 2.3, we will
make some adjustments to the sets E =

∏
v Ev and U =

∏
v Uv. By as-

sumption, each Ev is stable under Galc(Cv/Kv) and each Uv is open. We
will arrange that in addition each Ev is closed and has a simple form, and
that each Uv is stable under Galc(Cv/Kv). Since the theorems concern the
existence of points α ∈ K̃ with conjugates in U, the conclusions remain valid
as long as we do not enlarge the sets Uv.

Reduction 1. We claim that we can assume that γ(E) > 1. The original
hypothesis of Theorem 2.1 was that either γ(E) > 1, or that γ(E) = 1
and at least one archimedean Ev is compact. In the latter case, choose an
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archimedean place where Ev is compact. If Kv
∼= C, let Zv be a closed ball in

Uv which belongs to the unbounded component of C\Ev. IfKv
∼= R, let Zv be

a closed interval in R∩Uv which belongs to C\Ev. Then γ(Ev∪Zv) > γ(Ev),
so by replacing Ev with Ev ∪ Zv we can make γ(E) > 1.

Reduction 2. Let S be the distinguished set of places where Ev ⊂
P1(Lw) for a finite galois Lw/Kv; we can assume S contains all archimedean
v. We claim that we can assume that for each v ∈ S, Ev is compact; and for
each nonarchimedean v ∈ S, Ev has the form

Ev =
M⋃

i=1

ai + πniw Ow,(4.1)

where Ow is the ring of integers of Lw. Furthermore, we claim we can as-
sume that for each v ∈ S, Uv is stable under Galc(Cv/Kv), and for each
nonarchimedean v ∈ S, Ev = Lw ∩ Uv.

Let Ŝ be the finite set of places of K consisting of all the archimedean
places and all the nonarchimedean places where Ev 6= Ôv; clearly S ⊂ Ŝ.
Since ∏

v∈Ŝ

γ(Ev)Dv = γ(E) > 1,

and since

γ(Ev) = sup
Fv⊂Ev

Fv compact

γ(Fv),

for each v ∈ Ŝ we can choose a compact Fv ⊂ Ev such that
∏

v∈Ŝ

γ(Fv)Dv > 1.

However, a priori Fv may not be stable under Galc(Cv/Kv).
In the archimedean case, if Kv

∼= C, replace Ev by Fv; if Kv
∼= R,

let σ be complex conjugation, and replace Ev by Fv ∪ σ(Fv) and Uv by
Uv ∩ σ(Uv).

In the nonarchimedean case, for v in S, since Uv is open, for each x ∈ Ev
there is a ball B(x, rx) ⊂ Uv. Since Ev ⊂ Lw is stable under Gal(Lw/Kv),
and Gal(Lw/Kv) is finite, we can assume rx is small enough that B(σx, rx) ⊂
Uv for all σ ∈ Gal(Lw/Kv); after further reducing rx, we can assume that
rx belongs to the value group of L×w . Fv is compact, so we can cover it by
a finite number of balls B(x, rx). Replacing Uv by the union of these balls
and their conjugates under Gal(Lw/Kv), and then replacing Ev by Lw ∩Uv
(which contains Fv), yields all the claims.
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Reduction 3. We claim that for each nonarchimedean v ∈ Ŝ, but not
in S, we can assume that Ev is a PL-domain of the form

Ev =
M⋃

i=1

B(ai, ri),(4.2)

and that Uv = Ev; in particular Uv is stable under Galc(Cv/Kv).
For v 6∈ S the set Fv constructed above need not be contained in a

finite extension Lw/Kv, and may have infinitely many conjugates under
Galc(Cv/Kv). However, we will show that Fv is contained in a Galois-stable
set of the form (4.2), contained in Uv. Fixing x ∈ Fv, and using the fact
that x ∈ Fv ⊂ Ev, the Galois-stability of Ev means that σx ∈ Ev for each
σ ∈ Galc(Cv/Kv). Since Uv is open, for each σ there is an r > 0 such that
B(σx, r)− ⊂ Uv. Put

rσ = sup
B(σx,r)−⊂Uv

r,

so that B(σx, rσ)− ⊂ Uv. The map

ϕx : Galc(Cv/Kv)→ R, ϕx(σ) = rσ

is continuous and locally constant, since for a given σ0 ∈ Galc(Cv/Kv), if
σx ∈ B(σ0x, rσ0)−, the ultrametric inequality shows that rσ = rσ0 . Since
Galc(Cv/Kv) is compact, there is an r > 0 such that B(σx, r) ⊂ Uv for
all σ ∈ Galc(Cv/Kv). Without loss of generality, take r in the value group
of C×v . Fix α ∈ K̃v ∩ B(x, r). The fact that Galc(Cv/Kv) preserves |x|v
means that B(σx, r) = B(σα, r) for all σ. Since α has only finitely many
conjugates, there are only finitely many distinct balls B(σx, r).

Since Fv is compact, we can cover it a finite number of balls B(x, r).
Replacing Ev by the union of these balls and their conjugates, we obtain
(4.2). This set is open and contained in Uv, so we can replace Uv with it as
well; by construction, it is stable under Galc(Cv/Kv).

Reduction 4. Finally, we claim that for each v 6∈ Ŝ, we can assume
that

Ev = Uv = Ôv.

Since v 6∈ Ŝ, by hypothesis we have Ev = Ôv; after shrinking Uv, we can
assume that Uv = Ôv as well.

Proof of Theorem 2.2, assuming Theorem 2.1. Let E =
∏
v Ev satisfy

the hypotheses of Theorem 2.2. We will construct sets E ′v ⊂ U ′v ⊂ Ev such
that E′ =

∏
v E
′
v and U′ =

∏
v U
′
v satisfy the hypotheses of Theorem 2.1.

By hypothesis, for each nonarchimedean v, either Ev is a union of balls and
hence is open in the v-adic topology, so we can take E ′v = U ′v = Ev; or
Ev =

⋃M
i=1(ai + biOw), so we can take v ∈ S, and put E ′v = Ev, U ′v =
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⋃M
i=1B(ai, |bi|v). For each archimedean v with Kv

∼= R and Ev ⊂ R, Ev is
a finite union of closed intervals; let E ′v = U ′v be the (real) interior of Ev.
Since U ′v is obtained from Ev by removing a finite set of points, which is
a set of capacity 0, Theorem III.18 of [13] shows that γ(E ′v) = γ(Ev). For
each archimedean v with Kv

∼= C or with Kv
∼= R but Ev 6⊆ R, let E′v = U ′v

be the (complex) interior of Ev. Since Ev is the closure of U ′v, Lemma 11.1
of Appendix I shows that γ(E′v) = γ(Ev). Each E′v is Galois-stable since Ev
is Galois-stable; each U ′v is open; and

∏

v

γ(E′v)
Dv =

∏

v

γ(Ev)Dv > 1.

Thus, we can apply Theorem 2.1 to E′ and U′.
Proof of Theorem 2.1, assuming Theorem 2.3. Suppose the hypotheses

of Theorem 2.1 hold, and let S, Ŝ be as above.
The global capacity γ(E) has good functoriality under base change: by

[11, Theorem 5.1.13, p. 333], for any finite extension L/K, we can pull back
E = EK to a set EL for which

γ(EL) = γ(EK)[L:K].(4.3)

EL is defined as follows: given a place w of L, let v be the place of K below
w. Fix an isomorphism of Cw with Cv, and use it to define a set Ew ∼= Ev.
Since Ev is stable under Galc(Cv/Kv), Ew is independent of the choice of
isomorphism, and is stable under Galc(Cw/Lw). If we put EL =

∏
w Ew,

then (4.3) holds.
After our preliminary reductions, we can assume that each Uv is stable

under Galc(Cv/Kv), so we can also pull back U = UK to a well-defined
adelic neighborhood UL of EL.

We claim that by replacing K with an appropriate finite Galois extension
L/K, we can assume that Ev∩Kv is nonempty for each v, and that Kv = Lw
for each v ∈ S. We will now construct L. For each v ∈ S we are given a finite
Galois extension Lw/Kv with Ev ⊂ Lw. For each v ∈ Ŝ \ S, choose a finite
Galois Lw/Kv such that Ev ∩Lw 6= ∅. Let D be the least common multiple
of the [Lw : Kv], and put mv = D/[Lw : Kv]. For each v, choose mv distinct,
nonconjugate primitive elements αv,j for Lw/Kv. Let fv,j(z) ∈ Kv[z] be the
minimal polynomial for αv,j , and put

fv(z) =
mv∏

j=1

fv,j(z).

By the weak approximation theorem, we can find a monic f(x) ∈ K[x]
which approximates each fv(x) so closely that each root of f(x) in Cv is
again a primitive element for Lw/Kv (continuity of the roots, plus Krasner’s
lemma). We can also arrange that f(x) be irreducible, by requiring it to be
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an Eisenstein polynomial at some fixed v0 6∈ Ŝ. Let L be the splitting field
of f(x) over K. Then L/K is a finite Galois extension, with the prescribed
completion Lw at each place w | v, for each v ∈ Ŝ.

We can now apply Theorem 2.3 to EL and UL. If α ∈ L̃ = K̃ is a
number whose conjugates over L (in Cw) belong to Uw for each w, then
because each Uv is stable under Galc(Cv/Kv) and Uw = Uv for each w | v,
the conjugates of α over K (in Cv) belong to Uv, for each v. Thus, without
loss of generality, we can replace K by L, and Theorem 2.1 follows from
Theorem 2.3.

Outline of the proof of Theorem 2.3. The strategy is to show that under
the hypotheses of Theorem 2.3, for each sufficiently large integer n it is
possible to find an irreducible monic polynomial u(z) ∈ K[z] whose roots,
for each v ∈ Ŝ, belong to Uv; whose coefficients are integral at all v 6∈ Ŝ;
and which has the desired ramification at the places in S ′ = S′1∪S′2. We can
assume that the preliminary reductions for Theorem 2.1 have been carried
out, so that γ(E) > 1 and the sets Ev are of restricted types. The roots of
the u(z) will be the algebraic numbers required by the theorem.

The polynomials u(z) will be constructed by “patching together” local
polynomials u(0)

v (z) ∈ Kv[z], for each v ∈ Ŝ ∪ S′. The patching process has
both a local and a global aspect.

For each v, the local part of the patching process consists of choosing
a monic polynomial u(0)

v (z) ∈ Kv[z] of degree n which has all its roots
in Uv (and in Kv, if v ∈ S), and successively replacing it by polynomi-
als u(1)

v (z), u(2)
v (z), . . . , u(n)

v (z), where u
(k)
v (z) has the same k − 1 highest-

order coefficients as u(k−1)
v (z), and whose kth coefficient differs from that

of u(k−1)
v (z) by a specified quantity ∆

(k)
v ∈ Kv; its lower-order coefficients

may be changed in arbitrary ways. (We will call this “patching with numbers
∆

(k)
v ”.) Thus, formally the kth step of the patching process consists of replac-

ing u(k−1)
v (z) by u(k)

v (z) = u
(k−1)
v (z) +∆

(k)
v w

(k)
v (z), where w(k)

v (z) ∈ Kv[z] is
monic of degree n−k. In the following sections, we will show that if u(0)

v (z) is
chosen carefully and the ∆(k)

v are subject to appropriate constraints, namely
that for certain constants Bv, hv and L

|∆(k)
v |v ≤

{
Bv for k ≤ L,
hkv for k > L,

(4.4)

then the w(k)
v (z) can be chosen so that each u(k)

v (z) has all of its roots in Uv
(and in Kv, if v ∈ S).

From a global point of view, the patching process consists of choosing
the numbers ∆(k)

v in such a way that in the kth step, the coefficient c(k)
v,k
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of zn−k in each u
(k)
v (z) becomes a global Ŝ-integer ck ∈ K independent

of v. In practice, we first choose the target coefficient ck, and if c(k−1)
v,k is the

coefficient of zn−k in u
(k−1)
v (z) we then take

∆(k)
v = ck − c(k−1)

v,k .

The burden of the global part of the argument is to show that numbers ck
can be found so that the local conditions (4.4) are satisfied. This will be
a consequence of the Strong Approximation Theorem. At the end of the
patching process, all the u(n)

v (z) will be equal to a single global polynomial
u(z) ∈ K[z]. This polynomial u(z) will therefore have all its roots in Uv
(and in Kv, if v ∈ S) for all v ∈ Ŝ, and will satisfy the desired ramification
properties, for v ∈ S′. Since its coefficients are Ŝ-integers, its roots also
belong to Uv = Ôv for all v 6∈ Ŝ.

We will provide the details of the proof after presenting the local patch-
ing constructions. However, to give some perspective on the argument, we
indicate how the various parameters are related.

By Reduction 1,
∏
v∈Ŝ∪S′ γ(Ev)Dv = γ(E) > 1. For each v ∈ Ŝ ∪ S′, fix

numbers 0 < hv < rv < γ(Ev) subject to the condition
∏
v∈Ŝ∪S′ h

Dv
v > 1.

The numbers hv and rv control the freedom in the local patching processes.
In the construction, we will choose a constant L, the number of coeffi-

cients to be deemed “high-order”. L is subject to a finite number of local
constraints depending only on Ev, Uv, hv and rv, for each v, and also to a
global constraint arising from the Strong Approximation Theorem; each of
these constraints is satisfied for all large L.

After L has been fixed, we consider the numbers Bv. For nonarchimedean
v, the Bv are determined by the local patching process and depend on L.
However, for archimedean v, the Bv can be chosen as large as we wish,
provided n is big enough. If we make

∏
v∈Ŝ∪S′ B

Dv
v sufficiently large, the

global patching process can be carried out. In this way the construction
succeeds for all sufficiently large n.

Sections 5 through 9 contain the local patching constructions. Section 10
gives the global patching argument.

5. Local patching for sets in C. When Kv ' C, or when Kv ' R and
Ev is stable under complex conjugation, our patching process is an extension
of a method going back to Fekete and Szegő [5].

Proposition 5.1. Suppose that Kv is archimedean, and that Ev ⊂ Uv
⊂ C, where Ev is compact and Uv is open. There is a number Mv, depending
only on Ev and Uv, with the following property. Let 0 < hv < rv < γ(Ev) be
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given, and let L be an integer satisfying
(
hv
rv

)L Mv

1− hv/rv
<

1
8
.(5.1)

If Kv ' C (resp. if Kv ' R, Ev is stable under complex conjugation, and
Ev∩R is nonempty) then, for any Bv > 0, for each sufficiently large n there
is a monic polynomial u(0)

v (z) ∈ C[z] (resp. R[z]) of degree n, whose roots
belong to Uv and which can be patched with arbitrary ∆

(k)
v ∈ C (resp. R)

satisfying

|∆(k)
v | ≤

{
Bv for k ≤ L,
hkv for k > L,

in such a way that its roots remain in Uv.

Proof. We will give the construction whenKv ' C, noting minor changes
in the argument when Kv ' R.

We first reduce to the case where Ev is a finite union of arcs, and C \Ev
is connected. To achieve this, first replace Ev with a finite number of closed
balls contained in Uv, whose interiors cover Ev; this only increases γ(Ev).
Let ∂Eout

v be the outer boundary of Ev; as noted earlier, γ(Ev) = γ(∂Eout
v ).

Replacing Ev by ∂Eout
v , we can assume that Ev consists of a finite union of

arcs
⋃M
i=1 Fi. For each i, choose a point ai ∈ Fi, and let B(ai, r)− be the

open ball of radius r centered at ai. For each i, put ei(r) = Ev ∩B(ai, r)−,
and put

Ev(r) := Ev \
( M⋃

i=1

B(ai, r)−
)
,

so that Ev = Ev(r) ∪ (
⋃M
i=1 ei(r)). Then C \ Ev(r) is connected, and if

r is small enough, no component of Ev(r) is reduced to a point. Fix R
large enough that Ev ⊂ B(0, R). By [13, Theorem III.17, p. 63] and the
homogeneity of γ(E),

1
log(2R/γ(Ev))

≤ 1
log(2R/γ(Ev(r)))

+
M∑

i=1

1
log(2R/γ(ei(r)))

.

Furthermore, γ(ei(r)) ≤ γ(B(ai, r)) = r. Since rv > 0 is fixed and γ(Ev) >
rv, if r is small enough the inequality above implies that γ(Ev(r)) > rv.
Replacing Ev by Ev(r) for a suitably small r yields a set with the properties
we need. If Kv ' R, the construction can be carried out in a way stable
under complex conjugation.

After these reductions the Green function G(z,∞;Ev) is continuous,
with G(z,∞;Ev) = 0 for all z ∈ Ev, and G(z,∞;Ev) > 0 for all z 6∈ Ev. By



364 R. Rumely

continuity, there is an ε > 0 such that

{z ∈ C : G(z,∞;Ev) ≤ ε} ⊂ Uv.(5.2)

Put

(5.3)
Ωε = {z ∈ C : G(z,∞;Ev) < ε},
∂Ωε = {z ∈ C : G(z,∞;Ev) = ε}.

Then Ωε is open, and Ev ⊂ Ωε ⊂ Uv.
We can approximate the equilibrium distribution µ of Ev by a discrete

measure
∑nv

i=1(1/nv)δαi(z) sufficiently well that the monic polynomial

g(z) =
nv∏

i=1

(z − αi) ∈ C[z]

has all its roots in Ev, and for all z 6∈ Ωε it satisfies∣∣∣∣
1
nv

logv(|g(z)|)− (G(z,∞;Ev)− V (Ev))

∣∣∣∣ <
ε

2
(5.4)

(see [6, pp. 294–295], or [11, Lemma 3.3.5, p. 169]). When Kv ' R, µ is stable
under complex conjugation, and g(z) can be chosen in R[z]. This polynomial
g(z), and its degree nv, will be fixed for the rest of the construction. Put
Rv = γ(Ev).

Fix a point a ∈ Ev (if Kv ' R, choose a ∈ Ev ∩ R), and put

(5.5)
C−v = min

0≤h<nv
(( min
z∈∂Ωε

|(z − a)h|)/(Rve2ε)h),

C+
v = max

0≤h<nv
(( max
z∈∂Ωε

|(z − a)h|)/Rhv ).

Finally, put
Mv = C+

v /C
−
v .(5.6)

This is the constant in the proposition.

Construction of the initial patching polynomials. The condition imposed
by v on the globally chosen constant L will be that

(
hv
rv

)L Mv

1− hv/rv
<

1
8
.(5.7)

This holds for all sufficiently large L. Suppose L has been fixed, and choose
an integer Nv large enough that nvNv > L. Set

g̃(z) = g(z)Nv .

By continuity there is a δ > 0 such that for any monic ĝ(z) ∈ C[z] (resp.
R[z]) of degree nvNv, whose coefficients differ from those of g̃(z) by less than
δ in absolute value, all the roots of ĝ(z) belong to Ωε, and for all z ∈ ∂Ωε∣∣∣∣

1
nvNv

logv(|ĝ(z)|)− 1
nv

logv(|g(z)|)
∣∣∣∣ < min

(
ε

2
,

logv(2)
nvNv

)
.(5.8)
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If ĝ(z) is such a polynomial, then 1
nvNv

logv(|ĝ(z)|)− 1
nv

logv(|g(z)|) is har-
monic in the complement of Ωε and remains bounded as z → ∞. By (5.8)
and the maximum modulus principle for harmonic functions, (5.8) holds for
all z 6∈ Ωε. From (5.4) and (5.8), and from Rv = e−V (Ev), it follows that

|ĝ(z)| > RnvNvv for all z 6∈ Ωε.(5.9)

Given n, to construct the initial polynomial u(0)
v (z), first write n = s +

m · nvNv, where s, m are integers and 0 ≤ s < nvNv. Decompose s = s1 +
s2 · nv where 0 ≤ s1 < nv and 0 ≤ s2 ≤ Nv, and put

fs(z) = (z − a)s1g(z)s2.

Then, put
u(0)
v (z) = fs(z)g̃(z)m.

Note that u(0)
v (z) has all its zeros in Ωε. For the rest of the construction,

we hold s fixed, and view n as a function of m. It suffices to prove the
proposition for each fixed s, and all sufficiently large m.

Phase 1. Patching the high-order coefficients (k ≤ L). We will patch the
high-order coefficients of u(0)

v (z) by sequentially modifying the coefficients
of g̃(z), taking advantage of a phenomenon of “magnification”. This idea
is new, and is what ultimately enables archimedean and nonarchimedean
polynomials to be patched together.

We can assume m is large enough that mδ > Bv, where Bv is the number
specified in the proposition.

Put ĝ(0)(z) = g̃(z). For k = 1, . . . , L, we will inductively construct a
polynomial ĝ(k)(z) by adding a number δk ∈ C (resp. δk ∈ R) with |δk| < δ,
to the kth coefficient of ĝ(k−1)(z); we will then put

u(k)
v (z) = fs(z)ĝ(k)(z)m.

Since |δk| < δ, the discussion above applies to each ĝ(k)(z). Fixing k, write

fs(z) = zs +
s∑

h=1

ahz
s−h, ĝ(k−1)(z) = znvNv +

nvNv∑

j=1

bjz
d−j,

and expand

u(k−1)
v (z) := fs(z)ĝ(k−1)(z)m = zn +

n∑

j=1

cv,jz
n−j.

By the multinomial theorem (since nvNv > L and k ≤ L), cv,k has the form

cv,k =
∑

h,l0,l1,...,lk

(
m

l0 l1 . . . lk

)
ahb

l1
1 . . . b

lk
k(5.10)
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where the sum is over all integers h, l0, l1, . . . , lk ≥ 0 satisfying

h+ l1 + 2l2 + . . .+ klk = k, l0 + l1 + . . .+ lk = m, 0 ≤ h ≤ s.
Note that there are only a bounded number of possibilities for h, l1, . . . , lk,
independent of m; and if m > L and a choice of h, l1, . . . , lk is given we can
take l0 = m − l1 − . . . − lk. Moreover, there is only one term in (5.10) in
which bk appears, namely the one with h = l1 = . . . = lk−1 = 0, lk = 1. For
that term, the multinomial coefficient is m, and a0 = 1. Thus, for sufficiently
large m, cv,k is a polynomial in m and b1, . . . , bk of the form

cv,k = mbk +Qk,s(m, b1, . . . , bk−1),

which depends linearly on bk.
If we define ĝ(k)(z) by adding δk to the coefficient bk in ĝ(k−1)(z), the

coefficients cv,l in u
(k−1)
v (z) with l < k remain unchanged, cv,k is changed

to cv,k +mδk, and the coefficients cv,l with l > k are modified in ways that
are unimportant. Thus, since mδ > Bv, for k = 1, . . . , L we can vary the
kth coefficient of u(k−1)(z) by a quantity ∆v,k up to Bv in magnitude, by
adjusting the kth coefficient of ĝ(k−1)(z) by δk=∆v,k/m, a quantity at most
δ in magnitude.

The ∆v,k will be chosen on the basis of global considerations; for the
remainder of the proof we assume that ∆v,1, . . . ,∆v,L have been fixed, and
write ĝ(z) for the corresponding polynomial ĝ(L)(z). In the discussion below,
we use only that ĝ(z) satisfies (5.8) (hence also (5.9)), and that it is monic
with degree nvNv.

Phase 2. Patching the low-order coefficients (L < k ≤ n). We begin
this phase of the patching process with

u(L)
v (z) = fs(z)ĝ(z)m,(5.11)

where ĝ(z) = ĝ(L)(z). Since fs(z) and ĝ(z) have all their zeros in Ωε, the
same is true for u(L)

v (z). Moreover, by (5.5) and (5.9),

|u(L)
v (z)| > C−v R

n
v for all z 6∈ Ωε.(5.12)

In the kth patching step, for k > L, let w(k)
v (z) be the monic polynomial of

degree n− k defined by

w(k)
v (z) = (z − a)h1g(z)h2 ĝ(z)h3,(5.13)

where the integers h1, h2, h3 are determined by

n− k = h1 + h2nv + h3nvNv,

0 ≤ h1 < nv, 0 ≤ h2 < Nv, 0 ≤ h3 < m.

We define u(k)
v (z) by setting

u(k)
v (z) = u(k−1)

v (z) +∆v,kw
(k)
v (z).
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This has the effect of changing the kth coefficient cv,k of u(k−1)
v (z) to cv,k +

∆v,k in u
(k)
v (z), and leaving the coefficients cv,l with l < k unchanged. The

∆v,k will be chosen on the basis of global considerations, subject to |∆v,k|
≤ hkv .

We need bounds for |w(k)
v (z)| and |u(L)

v (z)| in terms of |ĝ(z)|. First, we
bound |z − a|h, for h = 0, . . . , nv − 1. By (5.5), on ∂Ωε,

C−v (Rve2ε)h ≤ |z − a|h ≤ C+
v R

h
v .

On the other hand by (5.4) and (5.8), on ∂Ωε also Rv ≤ |ĝ(z)|1/(nvNv) ≤
Rve

2ε. Thus

C−v |ĝ(z)|h/(nvNv) ≤ |z − a|h ≤ C+
v |ĝ(z)|h/(nvNv).(5.14)

By the maximum modulus principle for harmonic functions, applied to
h

nvNv
logv(|ĝ(z)|) − h log(|z − a|) on P1(C) \ Ωε, these inequalities hold for

all z 6∈ Ωε. Second, we must bound |g(z)|h, for h = 0, . . . , Nv − 1. By (5.8),
on ∂Ωε we have

1
2
|ĝ(z)|h/Nv ≤ |g(z)|h ≤ 2|ĝ(z)|h/Nv(5.15)

and again by the maximum modulus principle, these inequalities hold for
all z 6∈ Ωε. Combining (5.14) and (5.15, we find that for all z 6∈ Ωε,

|w(k)
v (z)| = |(z − a)h1gv(z)h2 ĝv(z)h3 | ≤ 2C+

v |ĝ(z)|(n−k)/(nvNv),(5.16)

|u(L)
v (z)| = |(z − a)s1g(z)s2 ĝ(z)m| ≥ 1

2
C−v |ĝ(z)|n/(nvNv).(5.17)

At the end of the construction we have

u(n)
v (z) = u(L)

v (z) +
n∑

k=L+1

∆v,kw
(k)
v (z).(5.18)

By (5.16), (5.17), and (5.7), together with Mv = C+
v /C

−
v and the inequalities

|∆v,k| ≤ hkv and |ĝ(z)|1/(nvNv) > Rv > rv, for all z 6∈ Ωε we have
∣∣∣∣
u

(n)
v (z)− u(L)

v (z)

u
(L)
v (z)

∣∣∣∣ ≤ 4Mv

n∑

k=L+1

(hv)k|ĝ(z)|−k/(nvNv)(5.19)

< 4Mv

∞∑

k=L

(
hv
rv

)k
≤ 1

2
.

Finally from (5.19) and (5.12) we see that for all z 6∈ Ωε,
|u(n)
v (z)| ≥ 1

2 |u(L)
v (z)| > 1

2C
−
v R

n
v > 0.(5.20)

This means that u(n)
v (z) has all its zeros in Ωε, and hence in Uv.
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6. Local patching for sets in R. When Kv
∼= R and Ev ⊂ R, our

patching process uses Chebyshev polynomials, extending a method due to
Robinson [10]. Replacing Uv by Uv ∩ R, we can assume Uv is a real neigh-
borhood of Ev.

Proposition 6.1. Suppose Kv
∼= R, and that Ev ⊂ Uv ⊂ R, where Ev

is compact and Uv is open. There is a number Mv, depending only on Ev
and Uv, with the following property. Let 0 < hv < rv < γ(Ev) be given, and
let L be an integer such that

(
hv
rv

)L Mv

1− hv/rv
<

1
16
.(6.1)

Given Bv > 0, then for each sufficiently large n there is a monic polynomial
u

(0)
v (z) ∈ R[z] of degree n, whose roots belong to Uv and which can be patched

with arbitrary ∆(k)
v ∈ R satisfying

|∆(k)
v |v ≤

{
Bv for k ≤ L,
hkv for k > L,

in such a way that its roots remain in Uv.

Proof. We begin with some preliminary reductions. After shrinking Uv,
we can assume that it has compact closure, and after enlarging Ev within
Uv, we can assume that it is a finite union of closed intervals:

Ev =
M⋃

i=1

[ai, bi], where a1 < b1 < a2 < b2 < . . . < aM < bM .

Put Rv = γ(Ev). By definition, the Chebyshev polynomial of degree d
for Ev is a monic polynomial Td(z;Ev) ∈ R[z] of degree d, with minimal sup
norm on Ev. It is known that such polynomials exist, and that

‖Td(z;Ev)‖Ev ≥ 2Rdv.

Furthermore, since Ev is a finite union of closed intervals, Td(z;Ev) is unique,
its roots are simple and belong to R, and between each pair of roots, it
achieves its maximum magnitude at a point of Ev. Its roots are real and lie
in [a1, bM ], and there is at most one root in each “gap” (bi, ai+1). For these
facts, see e.g. [10].

Chebyshev polynomials for an interval [−2r, 2r] are known explicitly, and
are discussed for example in [9]. We will write Td,r(z) for Td(z; [−2r, 2r]); it
is the polynomial defined by

Td,r(2r cos(θ)) = 2rd cos(dθ).
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Td,r(z) can be expanded as

Td,r(z) = zd +
bd/2c∑

k=1

(−1)k
d

k

(
d− k − 1
k − 1

)
r2kzd−2k

(see [10]). The graph of Td,r(z) oscillates d times between ±2rd on [−2r, 2r],
and Td,r(z) takes each value between ±2rd exactly d times on [−2r, 2r]
(counting multiplicities), so that

[−2r, 2r] = {z ∈ C : Td,r(z) ∈ [−2rn, 2rn]}.(6.2)

Based on (6.2) one might hope that for a general set Ev, the polynomial
Td(z;Ev) oscillates d times between ±2Rdv on Ev, so that

Ev = {z ∈ C : Td(z;Ev) ∈ [−2Rdv, 2R
d
v]}.(6.3)

Unfortunately, in general (6.3) is false: it fails, for example, if Td(z;Ev) has
a zero in one of the gaps (bi, ai+1). However, a result of Raphael Robinson
([10, p. 422]) asserts that after enlarging the intervals [ai, bi] slightly within
Uv and choosing d appropriately, we can assume that Td(z;Ev) and Ev do
satisfy (6.3). Robinson proved this by carefully analyzing the properties of
certain Schwarz–Christoffel mappings. Robinson’s theorem is the key to our
construction, and the absence of a purely potential-theoretic proof of it is
the chief obstruction to extending the Fekete–Szegő theorem with splitting
conditions to a more general setting.

In general, if f(z) ∈ R[z] is a polynomial of degree d, then for any R > 0
we will say that “f(z) oscillates d times between ±R on a set E ⊂ R” if
{z ∈ C : f(z) ∈ [−R,R]} = E, and we will say that “f(z) oscillates d times
with magnitude at least R on E” if {z ∈ C : f(z) ∈ [−R,R]} ⊆ E.

In the following, we will assume that Ev and d have been chosen so
that (6.3) holds. Since our reductions have only enlarged Ev, the hypothesis
0 < hv < rv < γ(Ev) continues to hold. Put

g(z) = Td(z;Ev), nv = d = deg(g(z)),

so that g(z) ∈ R[z] is monic of degree nv and

Ev = g−1([−2Rnvv , 2R
nv
v ]).(6.4)

An important consequence of (6.2) and (6.4) is that by composing g(z) with
the polynomials Tm,Rnvv (z), we can obtain Chebyshev polynomials for Ev of
higher degree:

Tm,nv(z;Ev) = Tm,Rnvv (g(z)).

This polynomial g(z) and its degree nv will be fixed for the rest of the
construction. The constant in the proposition will be

Mv = max
0≤h<nv

(‖zh‖Uv/Rhv ).(6.5)
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Construction of the initial patching polynomials. The condition imposed
by the place v on the globally chosen constant L will be that

(
hv
rv

)L Mv

1− hv/rv
<

1
16
.(6.6)

Clearly this holds for all sufficiently large L. Assuming L has been fixed,
choose an integer Nv large enough that

nvNv > L and RnvNvv > 2rnvNvv(6.7)

and put
g̃(z) = TNv ,Rnvv (g(z)).

Then g̃(z) is monic of degree nvNv, and by (6.4)

Ev = g̃−1([−2RnvNvv , 2RnvNvv ]).(6.8)

By continuity, there is a number δ > 0 such that for each monic ĝ(z) in R[z]
of degree nvNv, whose coefficients differ from those of g̃(z) by at most δ in
magnitude, we have

|ĝ(z)− g̃(z)| < RnvNvv(6.9)

for all z ∈ Ev. Put
R̂v = 2−1/(nvNv)Rv,(6.10)

noting that by (6.7),
rv < R̂v < Rv.(6.11)

Finally, choose an interval Ev,0 = [c, d] contained in Uv \ Ev. For each
integer s in the range 0 ≤ s < nvNv, let fs(z) be the Chebyshev polynomial
of degree s for Ev,0. Put

% := γ(Ev,0) = (d− c)/4,
so that fs(z) oscillates s times between ±2%s on Ev,0, and

|fs(z)| > 2%s on R \ Ev,0.(6.12)

In the following, we will write T̂m(z) for T
m,R̂nvNvv

(z). Given n, to define

the initial polynomial u(0)
v (z), decompose n = s+m · nvNv, where s, m are

integers and 0 ≤ s < nvNv, and put

u(0)
v (z) = fs(z)T̂m(g̃(z)).

For the rest of the construction, we hold s fixed, and view n as a function
of m. Since there are only finitely many progressions n = s + m · nvNv, it
suffices to prove the proposition for each s, and all sufficiently large m.

Phase 1. Patching the high-order coefficients (k ≤ L). Just as in the
case Kv

∼= C, we patch the high-order coefficients of u(0)
v (z) by modifying

the coefficients of g̃(z), taking advantage of “magnification”. Let Bv > 0 be
the number specified in the proposition.
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Assume m is large enough that m > L and mδ > Bv. Write ĝ(0)(z) =
g̃(z), so that u(0)

v (z) = fs(z)T̂m(ĝ(0)(z)). For each k = 1, . . . , L, we will define
ĝ(k)(z) by adding a number δk ∈ R with |δk| < δ to the kth coefficient of
ĝ(k−1)(z), and patch u(k−1)(z) by taking u(k)(z) = fs(z)T̂m(ĝ(k)(z)). The
choice of δk will be explained below. Since |δk| < δ, each ĝ(k)(z) satisfies
(6.9). Write

fs(z) = zs +
s∑

h=1

ahz
s−h, ĝ(k−1)(z) = znvNv +

nvNv∑

j=1

bjz
nvNv−j ,

and expand

u(k−1)
v (z) = fs(z)T̂m(ĝ(k−1)(z))(6.13)

= fs(z)ĝ(k−1)(z)m

+
bm/2c∑

j=1

(−1)j
m

j

(
m− j − 1
j − 1

)
R̂2j
v fs(z)(ĝ(k−1)(z))m−2j

= zn +
n∑

l=1

cv,lz
n−l.

Each term fs(z)ĝ(k−1)(z)m−2j in the sum has degree s + (m − 2j)nvNv <

n− L, so the L high-order coefficients of u(k−1)
v (z) are the same as those of

fs(z)ĝ(k−1)(z)m.
Thus, just as when Kv

∼= C (see (5.10)), the kth coefficient cv,k is a
polynomial in m and b1, . . . , bk of the form

cv,k = mbk +Qs,k(m, b1, . . . , bk−1),

which depends linearly on bk. If δk is added to the coefficient bk in ĝ(k−1)(z),
then cv,k is changed to cv,k + mδk while the coefficients of u(k−1)

v (z) with
j < k remain unchanged. Hence, since mδ > Bv, we can sequentially vary
the first L coefficients of u(0)

v (z) by quantities∆v,k up to Bv in magnitude, by
sequentially varying the first L coefficients of g̃(z) by quantities δk = ∆v,k/m
at most δ in magnitude.

The choice of the numbers∆v,k will be made on the basis of global consid-
erations; for the remainder of this section we assume that ∆v,1, . . . ,∆v,L ∈ R
have been fixed, and write ĝ(z) for ĝ(L)(z). In the discussion below, we use
only the fact that ĝ(z) ∈ R[z] satisfies (6.9) and that it is monic with degree
nvNv > L.

Phase 2. Patching the middle coefficients (L < k ≤ n − s). By (6.8),
g̃(z) oscillates nvNv times between ±2RnvNvv on Ev. At any point z where
|g̃(z)| = 2RnvNvv , it follows from (6.9) that |ĝ(z)| > RnvNvv , so ĝ(z) oscillates
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nvNv times with magnitude at least RnvNvv = 2R̂nvNvv on Ev. The set

Êv := {z ∈ C : ĝ(z) ∈ [−2R̂nvNvv , 2R̂nvNvv ]}
satisfies Êv ⊂ Ev, and ĝ(z) oscillates nvNv times between ±2R̂nvNvv on Êv.
We have

u(L)
v (z) = fs(z)T̂m(ĝ(z)) and n = s+m · nvNv = deg(u(L)

v (z)).

Since T̂m(z) := T
m,R̂nvNvv

(z) is the Chebyshev polynomial of degree m for

[−2R̂nvNvv , 2R̂nvNvv ], it follows that T̂m (ĝ(z)) oscillates nvNvm times between
±2R̂nvNvmv on Êv.

Our goal is to patch u
(L)
v (z) in such a way that u(n)

v (z) oscillates with
large magnitude on Êv. Write Th(z) = Th,Rnvv (z) for the Chebyshev polyno-

mial of the interval [−2Rnvv , 2R
nv
v ], and let w(k)

v (z) be the monic polynomial
of degree n− k − s given by

w(k)
v (z) = zh1Th2(g(z))T̂h3(ĝ(z)),(6.14)

where the integers h1, h2, h3 are determined by the conditions

n− k − s = h1 + h2nv + h3nvNv,

0 ≤ h1 < nv, 0 ≤ h2 < Nv, 0 ≤ h3 < m.

At the kth step of the patching process, L < k ≤ n− s, we will put

u(k)
v (z) = u(k−1)

v (z) +∆v,kfs(z)wv,k(z),

where ∆v,k ∈ R satisfies |∆v,k| ≤ hkv .
We now seek to bound |wv,k(z)| on Êv. From (6.5), together with (6.10)

and 0 ≤ h1 < nv, it follows that

‖zh1‖Êv ≤MvR
h1
v ≤Mv · 2R̂h1

v .

By the properties of Chebyshev polynomials and the fact that h2 < Nv,

‖Th2(g(z))‖Êv ≤ ‖Th2(g(z))‖Ev = 2Rh2nv
v ≤ 2 · 2R̂h2nv

v .

Likewise, by the properties of Chebyshev polynomials,

‖T̂h3(ĝ(z))‖Êv = 2R̂h3nvNv
v .

Thus,
‖wv,k(z)‖Êv ≤ 16MvR̂

n−k
v .

At the end of this phase of the patching process, we will have

u(n−s)
v (z) = u(L)

v (z) +
n−s∑

k=L+1

∆v,kfs(z)w(k)
v (z)

= fs(z)
(
T̂m(ĝ(z)) +

n−s∑

k=L+1

∆v,kw
(k)
v (z)

)
.
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Put q(z) = T̂m(ĝ(z)) +
∑n−s

k=L+1∆v,kw
(k)
v (z). By the inequalities above, and

(6.6), for z ∈ Êv,

|q(z)− T̂m(ĝ(z))| ≤ 16Mv

n∑

k=L+1

hkvR̂
n−k
v(6.15)

≤ 16Mv

∞∑

k=L

(
hv
rv

)k
R̂nv ≤ R̂nv .

Since T̂m(ĝ(z)) oscillates nvNvm times between ±2R̂nvNvmv on Êv, it follows
that q(z) oscillates nvNvm times with magnitude at least R̂nvNvmv on Êv,
and also that

‖q(z)‖Êv ≤ 3R̂nvNvmv .(6.16)

Before proceeding further, we will need a lemma.

Lemma 6.2. Let E ⊂ R be a compact set of positive capacity with con-
nected complement , and put R = γ(E). Then for any compact set F ⊂ C\E
there is a constant C(E,F ) with the following property : if f(z) is a monic
polynomial of degree d with all its roots in E, and if ‖f‖E ≤ BRd for some
number B, then for all z ∈ F ,∣∣∣∣G(z,∞;E) + log(R)− 1

d
log(|f(z)|)

∣∣∣∣ ≤
C(E,F ) log(B)

d
.

Proof. Let B0 be such that ‖f‖E = B0R
d, and put

h(z) = G(z,∞;E) +
1
d

log(B0) + log(R)− 1
d

log(|f(z)|).

Then h(z) is harmonic in C \ E, and limz→∞ h(z) = 1
d log(B0), so h(z)

extends to a function harmonic in P1(C) \ E with h(∞) = 1
d log(B0). For

each x ∈ ∂(P1(C) \E),
lim inf
z→x

z∈P1(C)\E
h(z) ≥ 0.

By the minimum principle for harmonic functions, we have h(z) ≥ 0 for all
z ∈ P1(C) \ E. Hence, by Harnack’s theorem, there is a constant C0 such
that for all z ∈ F ,

0 ≤ h(z) ≤ C0h(∞) = C0
1
d

log(B0).

Thus, we can take C(E,F ) = max(1, C0 − 1).

Phase 3. Patching the low-order coefficients (n − s < k ≤ n). To mo-
tivate our procedure for patching the low order coefficients, we need lower
bounds for |fs(z)| on Êv and for |q(z)| on Ev,0.

Since fs(z) is the Chebyshev polynomial for Ev,0, and Êv ⊂ Ev ⊂ R is
disjoint from Ev,0, it follows from (6.12) that |fs(z)| ≥ 2%s on Êv. Thus, at
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each point of Êv where |q(z)| ≥ R̂nvNvmv , we have

|u(n−s)
v (z)| = |fs(z)q(z)| ≥ 2%sR̂nvNvmv = 2(%/R̂v)sR̂nv .

On the other hand, there is a positive lower bound σ for G(z,∞; Êv) on
Ev,0. Applying Lemma 6.2, with E = Êv and F = Ev,0, taking f(z) = q(z)
and using (6.16), we see that if m is sufficiently large, then for all z ∈ Ev,0,

1
nvNvm

log(|q(z)|) ≥ σ+ log(R̂v)−
C(Êv;Ev,0) log(3)

nvNvm
≥ log(R̂v),(6.17)

and so at each point of Ev,0 where |fs(z)| = 2%s we also have

|u(n−s)
v (z)| = |fs(z)q(z)| ≥ 2%sR̂nvNvmv = 2(%/R̂v)sR̂nv .

Put

A1 = min
0≤s<nvNv

(2(%/R̂v)s), A2 = max
0≤s<nvNv

(‖zs‖Uv/hsv).

Since R̂v = 2−1/(nvNv)Rv, these constants depend only on Ev, Uv, and our
choice of nv and Nv. As fs(z) has all its zeros in Ev,0, it has constant sign
on each subinterval of Êv. Similarly, since q(z) has all its zeros in Êv, it has
constant sign on Ev,0. Since q(z) oscillates nvNvm times with magnitude at
least R̂nvNvmv on Êv, and fs(z) oscillates s times between ±2%s on Ev,0, it

follows that u(n−s)
v (z) oscillates n times, with magnitude at least A1R̂

n
v , on

Êv ∪ Ev,0.
To patch the coefficients cv,k for n− s < k ≤ n, set

u(k)
v (z) = u(k−1)

v (z) +∆v,kz
n−k.

On the set Êv∪Ev,0, we have |∆v,kz
n−k| ≤ hkvA2h

n−k
v = A2h

n
v , and the total

patching correction in passing from u
(n−s)
v (z) to u

(n)
v (z) has magnitude at

most nvNv · A2h
n
v . Recall that by (6.11), hv < rv < R̂v. If m (hence n) is

sufficiently large then we will have

nvNvA2h
n
v ≤

1
2
A1R̂

n
v .(6.18)

Consequently, if n is large enough that (6.17) and (6.18) hold, then u
(n)
v (z)

oscillates n times, with magnitude at least 1
2A1R̂

n
v , on Êv ∪ Ev,0. It follows

that u(n)
v (z) has all its roots in Êv ∪ Ev,0, and hence in Uv.

7. Local patching for nonarchimedean PL-domains. When Kv is
nonarchimedean, and Ev is a PL-domain, our patching procedure generalizes
a method introduced by Cantor [3].
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Proposition 7.1. Let Kv be nonarchimedean, and suppose

Ev =
M⋃

i=1

B(ai, ri)

is a finite union of balls with radii in the value group of C×v , stable under
Galc(Cv/Kv), and such that Ev ∩Kv is nonempty. There is a constant Mv,
depending only on Ev, with the following property. Let 0 < hv < rv < γ(Ev)
be given. For each integer L large enough that

(
hv
rv

)L
Mv ≤

1
2
,(7.1)

there is a constant Bv (depending on L), such that for each sufficiently large
n there is a monic polynomial u(0)

v (z) ∈ Kv[z] of degree n whose roots belong
to Ev, and which can be patched with any numbers ∆(k)

v ∈ Kv satisfying

|∆(k)
v |v ≤

{
Bv for k ≤ L,
hkv for k > L,

in such a way that its roots remain in Ev.

Proof. We begin with some reductions. In the decomposition Ev =⋃M
i=1B(ai, ri), we can assume that the balls B(ai, ri) are pairwise disjoint

and that the ai belong to K̃v. Furthermore, since by hypothesis Ev ∩Kv is
nonempty, some B(ai, ri) contains a point of Kv; we can assume that i = 1
and that a1 ∈ Kv. Lemma 12.1 of Appendix II shows there is a polynomial
g0(z) ∈ K̃v[z] of the form g0(z) = c0

∏M
i=1(z − ai)di , with each di > 0, such

that
Ev = {z ∈ Cv : |g0(z)|v ≤ 1}.(7.2)

If σ ∈ Galc(Cv/Kv), then since Ev is Galois-stable,

|g0(z)|v ≤ 1 ⇔ z ∈ Ev ⇔ |(σg0)(z)|v ≤ 1.

Thus taking the product of the conjugates of g0(z) over Kv, and scaling the
product so it is monic, we obtain a polynomial g(z) ∈ Kv[z] of degree nv,
say, and a number Rv in the value group of C×v for which

Ev = {z ∈ Cv : |g(z)|v ≤ Rnvv }.(7.3)

By (3.4), Rv = γ(Ev). The polynomial g(z) will be fixed for the rest of the
construction.

We will need the nonarchimedean Maximum Modulus Principle in the
following form (see [3, Theorem 3.1.1, p. 180] or [11, Theorem 1.4.2, p. 51]).

Lemma 7.2 (Maximum Principle with Distinguished Boundary). Let f(z)
∈ Cv(z) be a nonconstant rational function, and let R belong to the value
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group of C×v . Put

D = {z ∈ P1(Cv) : |f(z)|v ≤ R},
∂D = ∂D(f) = {z ∈ P1(Cv) : |f(z)|v = R}.

Then any rational function F (z) ∈ Cv(z) with no poles in D achieves its
maximum absolute value on D at a point of ∂D. In particular , for any M ,
if |F (z)|v ≤M on ∂D, then |F (z)|v ≤M on all of D.

Put

Dv = {z ∈ P1(Cv) : |g(z)|v ≥ Rnvv }(7.4)

= {z ∈ P1(Cv) : |1/g(z)|v ≤ 1/Rnvv }
noting that

∂Ev(g) = ∂Dv(1/g) = {z ∈ Cv : |g(z)|v = Rnvv }.(7.5)

We will write ∂Dv = ∂Ev for this common boundary. Write a = a1, and
note that a is a root of g(z). By the maximum modulus principle, applied
to F (z) = 1/(z − a) on Dv relative to ∂Dv, the number minz∈∂Ev(|z − a|v)
exists and is positive. Put

C−v = min
0≤h<nv

(( min
z∈∂Ev

|(z − a)h|v)/Rhv ),(7.6)

C+
v = max

0≤h<nv
(( max
z∈∂Ev

|(z − a)h|v)/Rhv ).(7.7)

The constant Mv in the proposition will be

Mv = C+
v /C

−
v .(7.8)

The condition imposed on the globally chosen constant L by the place v is

Mv

(
hv
rv

)L
≤ 1

2
,(7.9)

and the constant Bv in the proposition will be

Bv =
1
2

min
1≤k≤L

(Rkv/Mv).(7.10)

The patching construction. If n = s+mnv, where s,m are integers with
0 ≤ s < nv, we take the initial patching polynomial to be

u(0)
v (z) = (z − a)sg(z)m ∈ Kv[z].

By (7.5) and (7.6), for all z ∈ ∂Ev,
|u(0)
v (z)|v ≥ C−v Rnv .(7.11)

The Maximum Modulus Principle, applied to 1/u(0)
v (z) on ∂Dv, shows this

holds for all z 6∈ Ev.
Let w(k)

v (z) be the monic polynomial of degree n− k
w(k)
v (z) = (z − a)h1g(z)h2,(7.12)
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where the integers h1, h2, are determined by

n− k = h1 + h2nv, 0 ≤ h1 < nv, 0 ≤ h2 < m.(7.13)

By (7.8) and (7.3), for all z ∈ Ev,
|w(k)
v (z)|v ≤ C+

v R
h1
v R

h2nv
v = C+

v R
n−k
v .(7.14)

At the kth step of the patching process, 1 ≤ k ≤ n, we will put

u(k)
v (z) = u(k−1)

v (z) +∆v,kwv,k(z)

where ∆v,k ∈ Kv is chosen on the basis of global considerations, and satisfies
the conditions in the proposition. At the end of the construction,

u(n)
v (z) = u(0)

v (z) +
n∑

k=1

∆(k)
v w(k)

v (z).(7.15)

We claim that the conditions on |∆(k)
v |v imply that for all z ∈ Ev,

∣∣∣
n∑

k=1

∆(k)
v w(k)

v (z)
∣∣∣
v
≤ 1

2
C−v R

n
v .(7.16)

By the ultrametric inequality, it suffices to check this for each k. When
k ≤ L we have |∆(k)

v |v ≤ Bv ≤ 1
2R

k
v/Mv by (7.10), while if k > L, then

|∆(k)
v |v ≤ hkv ≤ 1

2r
k
v/Mv ≤ 1

2R
k
v/Mv by (7.9). Thus, in either case, since

Mv = C+
v /C

−
v , by (7.14),

|∆(k)
v w(k)

v (z)|v ≤
(

1
2
Rkv/Mv

)
(C+

v R
n−k
v ) =

1
2
C−v R

n
v .

We now apply the Maximum Modulus Principle to

F (z) = (u(n)
v (z)− u(0)

v (z))/u(0)
v (z) =

( n∑

k=1

∆(k)
v w(k)

v (z)
)
/u(0)

v (z)

on the domain Dv, relative to the boundary ∂Dv = ∂Ev.
Here u(n)

v (z) and u(0)
v (z) are monic polynomials of degree n, and the zeros

of u(0)
v (z) = (z − a)sg(z)m belong to P1(Cv) \ Dv, so F (z) has no poles in

Dv. On ∂Dv = ∂Ev, (7.16) and (7.11) show that

|F (z)|v ≤ 1/2.

Hence |F (z)|v ≤ 1/2 throughout Dv. This means that for all z 6∈ Ev,

|u(n)
v (z)− u(0)

v (z)|v ≤
1
2
|u(0)
v (z)|v,

and so by the ultrametric inequality, for all z 6∈ Ev,
|u(n)
v (z)|v = |u(0)

v (z)|v ≥ C−v Rnv > 0.(7.17)

In particular, u(n)
v (z) has all its roots in Ev.
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8. Local patching for nonarchimedean compact sets. Let Kv be
nonarchimedean, and suppose Ev ⊂ Kv is compact. By our preliminary
reductions, we can assume Ev is a finite disjoint union of cosets of Ov,

Ev =
M⋃

i=1

(ai + biOv),

where the ai, bi ∈ Kv and the bi 6= 0. Let R be such that Ev ⊂ B(0, R).

Proposition 8.1. Suppose Kv is nonarchimedean and

Ev =
M⋃

i=1

(ai + biOv) ⊂ Kv.

There is a number Mv, depending only on Ev, with the following property.
Let 0 < hv < rv < γ(Ev) be given. If L ≥ 1 is large enough that

L

(
hv
rv

)L
Mv ≤ 1,(8.1)

then there is a constant Bv (depending on L) such that for each sufficiently
large n, there is a monic polynomial u(0)

v (z) ∈ Kv[z] of degree n, which has
all its roots in Ev, and can be patched with arbitrary ∆(k)

v ∈ Kv satisfying

|∆(k)
v |v ≤

{
Bv for k ≤ L,
hkv for k > L,

in such a way that its roots remain in Ev.

Before giving the proof we have several tasks. First, we need to con-
struct the “basic well-distributed sequence for Ev” and define the notion of
a “regular sequence in Ev”. Second, we need to introduce generalized Stirling
polynomials, which play a role analogous to those of Chebyshev polynomials
in the case Kv

∼= R (this idea goes back to Cantor [3]). Finally, we must
prove several lemmas which govern the patching process.

The basic well-distributed sequence. First consider the case where Ev =
Ov. Write q = qv = #(Ov/πvOv), and let βv(k), for k = 0, . . . , q − 1, be a
set of representatives for Ov/πvOv, with βv(0) = 0. For k ≥ q, expand k as

k =
N∑

i=0

di(k)qi

where N = blogq(k)c and 0 ≤ di(k) ≤ q − 1 are the base q digits of k; put

βv(k) =
N∑

i=0

βv(di(k))πiv.
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In this way, the sequence {βv(k)}0≤k<∞ extends {βv(k)}0≤k<q, and uni-
formly fills out the cosets of Ov/πevOv for each e ≥ 0. Define valq(k) to be
the smallest i such that di(k) 6= 0. Then it is easy to see that for each k,

ordv(βv(k)) = valq(k),(8.2)

and that for all k 6= l,

ordv(βv(k)− βv(l)) = valq(|k − l|).(8.3)

We call {βv(k)} the basic well-distributed sequence in Ov. Note that for each
n > 0, if k, l < n and k 6= l, then

ordv(βv(k)− βv(l)) ≤ blogv(n)c,(8.4)

while for each z ∈ Ov, there is a k < n such that

ordv(z − βv(k)) ≥ blogv(n)c.(8.5)

Now consider an arbitrary set of the form Ev =
⋃M
i=1Ev,i, where Ev,i =

ai + biOv with ai, bi ∈ Kv, bi 6= 0, and where the cosets are disjoint. Let µ
be the equilibrium distribution of Ev, and define weights

wi = µ(Ev,i), i = 1, . . . ,M.

Then each wi > 0 as was noted earlier, and
∑M

i=1wi = 1. We want the basic
well-distributed sequence in Ev to assign elements to each Ev,i in proportion
to its weight wi. That this can be done, with small error, follows from a
combinatorial lemma due to Balinski and Young ([2, Theorem 3, p. 714]):

Lemma 8.2. Let w1, . . . , wM > 0 be such that
∑

i wi = 1. Then there is
a 1-1 correspondence Φ : N→ NM , Φ(n) = (Φ1(n), . . . , ΦM (n)), such that :

(A) For each i, Φi(0) = 0 and Φi(n) is nondecreasing with n;
(B) For each n ≥ 0,

∑M
i=1 Φi(n) = n;

(C) For each n and i, bwinc ≤ Φi(n) ≤ dwine. In particular , if win ∈ N,
then Φi(n) = win.

Remark. This lemma has an unusual source. It was originally estab-
lished in the context of the “Alabama Paradox” concerning the apportion-
ment of members in the U.S. House of Representatives. The question was, is
there a rule for allotting representatives to the various states in proportion
to population, in such a way that no state loses representatives when the
size of the House is increased? The author thanks Peter Rice for pointing
the lemma out to him.

Clearly for each n there is exactly one index i for which Φi(n+1) > Φi(n).
We will write i(n) for this i.
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Definition 8.1. The basic well-distributed sequence in Ev is the se-
quence {λv(n)}n≥0 defined by

λv(n) = ai(n) + bi(n) · βv(Φi(n)(n)).

That is, the nth element of the sequence is assigned to Ev,i(n), and the el-
ements assigned to Ev,i = ai+biOv fill out Ev,i like the basic well-distributed
sequence in Ov. Among λv(0), . . . , λv(n−1), precisely Φi(n) elements belong
to Ev,i. If λv(k) and λv(l) belong to distinct cosets Ev,i, Ev,j , then

|λv(k)− λv(l)|v = |ai − aj |v,(8.6)

while if they belong to the same coset Ev,i, then, writing ri = |bi|v,
|λv(k)− λv(l)|v = ri|πv|valq(Φi(k)−Φi(l))

v .(8.7)

Note that the basic well-distributed sequence in Ev depends on the rep-
resentation of Ev as a union of sets ai + biOv, and also on the choice of
the function Φ (which in general is not unique). For the remainder of the
construction we will assume these are fixed.

Stirling polynomials and regular sequences. The classical Stirling poly-
nomial of degree n is Sn(z) =

∏n−1
i=0 (z − i). Pólya introduced Stirling poly-

nomials for the rings of integers Ov, putting

Sn(z;Ov) =
n−1∏

k=0

(z − βv(k))

(cf. [8]). For general Ev, we put S0(z;Ev) = 1 and define the Stirling poly-
nomial of degree n ≥ 1 for Ev to be

Sn(z;Ev) =
n−1∏

k=0

(z − λv(k)).(8.8)

However, for our needs it is not enough to consider Stirling polynomials
alone, but also polynomials with roots which behave sufficiently like them.

Lemma 8.3. The basic well-distributed sequence in Ev has the following
property. Put

A0 = max(0,max
i

(ordv(bi))).

Then for each n > 0 and each k, l with 0 ≤ k, l < n and k 6= l,

ordv(λv(k)− λv(l)) < A0 + logv(n).

Proof. Let n, k and l be as above. If i(k) 6= i(l), then ordv(ai(k)−ai(l)) <
ordv(bi(k)) ≤ A0, so

ordv(λv(k)− λv(l)) = ordv(ai(k) − ai(l)) < A0 + logv(n).

On the other hand, if i(k) = i(l) = i, then

ordv(λv(k)− λv(l)) = ordv(bi) + valq(|Φi(k)− Φi(l)|) < A0 + logv(n).
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Remark 8.1. A0 has the following properties:

(1) A0 ≥ 0;
(2) A0 ≥ − logv(R) for any R with Ev ⊂ B(0, R);
(3) A0 > ordv(ai − aj) for each i 6= j; and
(4) if α ∈ Kv satisfies ordv(α− x) ≥ A0 for some x ∈ Ev, then α ∈ Ev.
Definition 8.2. A regular sequence of length n in Ev is a sequence

{α0, . . . , αn−1} ⊂ Ev such that

ordv(αk − λv(k)) ≥ A0 + logv(n)

for each k = 0, . . . , n− 1.

Thus, in a regular sequence of length n, if 0 ≤ k, l < n and k 6= l then

ordv(αk − αl) = ordv(λv(k)− λv(l)) < A0 + logv(n).(8.9)

We now establish some simple properties of regular sequences.

Lemma 8.4. There is a constant A1 ≥ 0 such that for any n, any regular
sequence {α0, . . . , αn−1} of length n in Ev, and any z ∈ Ev, there is an index
J for which ordv(z − αJ ) ≥ logv(n)− A1.

Proof. Suppose z ∈ Ev,i = ai+biOv, and let ni be the number of elements
of the sequence which belong toEv,i. Let J be an index for which ordv(z−αJ)
is maximal. If ni > 0, then αJ ∈ Ev,i, and by (8.5),

ordv(z − αJ) ≥ ordv(bi) + blogv(ni)c ≥ logv(n) + ordv(bi) + logv(wi)− 1.

On the other hand if ni = 0 then necessarily win < 1 and so

ordv(z − αJ ) ≥ − logv(R) > logv(n)− logv(R) + logv(wi).

Since there are only finitely many Ev,i the result follows.

Lemma 8.5. Let {α0, . . . , αn−1} be a regular sequence of length n in Ev.
Given z ∈ Ev, let 0 ≤ J < n be an index for which ordv(z−αJ) is maximal.
Then for any i 6= J ,

ordv(z − αi) ≤ ordv(αJ − αi).
Moreover , if n is large enough that each Ev,h contains points of the regular
sequence, then for any i 6= J ,

ordv(z − αi) = ordv(αJ − αi).
Proof. To prove the inequality, first suppose i is such that ordv(z−αi) <

ordv(z − αJ ). Then

ordv(αJ − αi) = min(ordv(z − αJ ), ordv(z − αi)) = ordv(z − αi).
Next suppose that i is an index for which ordv(z − αi) = ordv(z − αJ). If
ordv(z − αi) > ordv(αJ − αi), then

ordv(z−αJ)=min(ordv(z−αi), ordv(αJ−αi))=ordv(αJ−αi)<ordv(z−αi),
a contradiction. Hence ordv(z − αi) ≤ ordv(αJ − αi).



382 R. Rumely

If n is large enough that each Ev,h contains points of the regular sequence,
then necessarily αJ belongs to the same coset Ev,h = ah + bhOv as z. If αi
belongs to another coset Ev,l = al + blOv, then

ordv(z − αi) = ordv(ah − al) = ordv(αJ − αi).
If αi belongs to Ev,h, let nh be the number of elements of the regular sequence
in Ev,h. By the construction of the basic well-distributed sequence, since
ordv(z − αJ ) is maximal, by (8.5) we must have

ordv(z − αJ) ≥ ordv(bh) + blogv(nh)c,(8.10)

while by (8.4), since αi 6= αJ ,

ordv(αJ − αi) ≤ ordv(bh) + blogv(nh)c.(8.11)

Hence ordv(z−αi) ≥ ordv(αJ−αi) by the ultrametric inequality. Combined
with our earlier inequality, this gives ordv(z − αi) = ordv(αJ − αi).

The following lemma shows that each regular sequence of length n con-
tains “many” disjoint regular subsequences of shorter length.

Lemma 8.6. (A) For any C1 > 0, there is a C2 > 0 such that for all
sufficiently large n, any regular sequence of length n in Ev contains at least
dC2
√
n e pairwise disjoint subsets, each of which is a regular sequence in Ev

of length dC1
√
n e.

(B) For any C3 > 0, there is a C4 > 0 such that for all sufficiently
large n, if S1, . . . , SZ are regular sequences in Ev, where each Sl has length
nl ≤ dC3

√
n e and Z ≤ dC4

√
n e, then any regular sequence {αi}0≤i<n in Ev

contains a regular subsequence Q = {αi0 , . . . , αiW−1} of length W = dC3
√
n e

such that for each αik ∈ Q and each θ ∈ ⋃Z
l=1 Sl,

ordv(αik − θ) < A0 + logv(n).

Proof. For (A), recall that for any n, each Ev,i = ai + biOv receives
Φi(n) ≥ bwinc elements from a regular sequence of length n. Write Bi =
ordv(bi). Then for each integer B ≥ Bi, these Φi(n) elements are distributed
among the cosets d+πBv Ov in Ev,i in such a way that each coset receives at
least bbwinc/qB−Bic elements. Now take B = dA0 + logv(dC1

√
n e)e. Then

each coset d+ πBv Ov contained in Ev,i receives at least

bbwinc/qB−Bic ≥ win/qA0+logv(
√
n)+logv(C1)+2−Bi − 2

= (wi/qA0−Bi+logv(C1)+2)
√
n− 2

elements from a regular sequence with length n, but at most one element
from a regular sequence of length dC1

√
n e (by the definition of a regular

sequence).
Let C2 > 0 be less than the minimum of wi/qA0−Bi+logv(C1)+2 for i =

1, . . . ,M . For sufficiently large n, each regular sequence of length n in Ev
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contains regular subsequences of length dC1
√
n e (the initial elements form

such a subsequence). And, if B is as above, then for sufficiently large n each
coset d + πBv Ov in Ev receives at least dC2

√
n e elements from the regular

sequence, so there are at least that many disjoint regular subsequences of
length dC1

√
n e in a regular sequence of length n.

The proof of (B) is similar.

Products like
∏n−1
j=0 (βv(n)− βv(j)) are analogous to factorials: by (8.3),

ordv
( n−1∏

j=0

(βv(n)− βv(j))
)

=
n∑

j=1

valq(j).(8.12)

We claim that n∑

j=1

valq(j) =
n

q − 1
− 1
q − 1

∑

i≥0

di(n).(8.13)

This generalizes the familiar formula for ordp(n!). For each k ≥ 1, there are
exactly bn/qkc numbers j in the range 1 ≤ j ≤ n for which valq(j) ≥ k.
Hence, writing di = di(n), we have

n∑

j=1

valq(j) =
∑

k≥1

⌊
n

qk

⌋

= (d1 + d2q + d3q
2 + . . .) + (d2 + d3q + . . .) + . . .

= d1 ·
q − 1
q − 1

+ d2 ·
q2 − 1
q − 1

+ d3 ·
q3 − 1
q − 1

+ . . .

=
d0 + d1q + d2q

2 + . . .

q − 1
− d0 + d1 + d2 + . . .

q − 1

=
n

q − 1
− 1
q − 1

∑

i≥0

di(n).

For the next lemma, it is crucial that the weights wi defining a regular
sequence arise from the equilibrium distribution of Ev.

Lemma 8.7. There is a constant A2 ≥ 0 such that for all n, if {αi}0≤i<n
is a regular sequence of length n in Ev and f(z) =

∏n−1
i=0 (z − αi), then:

(A) For each J in the range 0 ≤ J < n, we have

nV (Ev)− 2 logv(n)−A2 ≤ ordv
( n−1∏

i=0
i6=J

(αJ − αi)
)
≤ nV (Ev) +A2.(8.14)

(B) For each z ∈ Ev, if 0 ≤ J < n is such that ordv(z−αJ ) is maximal ,
then

nV (Ev)−logv(n)−A2 ≤ ordv(f(z)) ≤ nV (Ev)+A2+ordv(z−αJ ).(8.15)

In particular , ‖f‖Ev ≤ q−nV (Ev)+logv(n)+A2.
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Proof. First consider the special case Ev = Ov with {λv(k)} = {βv(k)}.
Then V (Ov) = 1/(q − 1) and A0 = 0.

To prove (A), fix J and note that if i 6= J , then ordv(αJ − αi) =
ordv(βv(J)− βv(i)) = valq(|J − i|). Hence

ordv
( n−1∏

i=0
i6=J

(αJ − αi)
)

=
J∑

l=1

valq(l) +
n−J−1∑

l=1

valq(l)

=
n

q − 1
−
∑
di(J) +

∑
di(n− J − 1) + 1
q − 1

.

It is easy to see that

0 ≤
∑

di(J) +
∑

di(n− J − 1) + 1 ≤ 2(q − 1)dlogv(n)e
and hence that

n

q − 1
− 2 logv(n)− 2 ≤ ordv

( n−1∏

i=0
i6=J

(αJ − αi)
)
≤ n

q − 1
.(8.16)

This yields assertion (A).
To obtain (B), let J be an index for which ordv(z−αJ) is maximal. Then

ordv(z − αJ) ≥ blogv(n)c ≥ logv(n)− 1

and by Lemma 8.5, using the fact that Ev = Ov consists of only one coset,
for each i 6= J ,

ordv(z − αi) = ordv(αJ − αi).
Hence, adding the term ordv(z − αJ) to (8.16), we find that

n

q − 1
− logv(n)− 3 ≤ ordv(f(z)) ≤ n

q − 1
+ ordv(z − αJ).(8.17)

Now let Ev be arbitrary: Ev =
⋃M
l=1Ev,l, where Ev,l = al + blOv. We

can assume n is large enough that any regular sequence of length n in Ev
contains elements from each Ev,l.

To prove (A), fix J , and let h be the index for which αJ ∈ Ev,h. If l 6= h
and αi ∈ Ev,l, then |αJ − αi|v = |al − ah|v, so

ordv
( ∏

αi∈Ev,l
(αJ − αi)

)
= Φl(n) ordv(al − ah).(8.18)

On the other hand, the αi ∈ Ev,h form a regular sequence of length Φh(n) in
Ev,h, and are an affine transformation of a regular sequence in Ov. By (8.16),

(8.19) Φh(n)
(

1
q − 1

+ ordv(bh)
)
− 2 logv(Φh(n))− 2− ordv(bh)

≤ ordv
( ∏

αi∈Ev,h
i6=J

(αJ − αi)
)
≤ Φh(n)

(
1

q − 1
+ ordv(bh)

)
− ordv(bh).



Fekete–Szegő theorem 385

For each l, we have bwlnc ≤ Φl(n) ≤ dwlne, while by (3.10),
∑

l 6=h
wl ordv(al − ah) + wh

(
1

q − 1
+ ordv(bh)

)
= V (Ev).(8.20)

Summing the inequalities (8.18) and (8.19) and using (8.20), we find that
there is a constant A2 (which can be taken independent of h) such that

nV (Ev)− 2 logv(n)− A2 ≤ ordv
( n−1∏

i=0
i6=J

(αJ − αi)
)
≤ nV (Ev) + A2.

This yields (A). We obtain (B) as before, possibly after increasing A2.

We can now state the basic lemma governing the patching process.

Lemma 8.8. Let {αi}0≤i<m be a regular sequence of length m in Ev, and
put f(z) =

∏m−1
i=0 (z−αi). Then for any M ≥ A0+logv(m), and any ∆ ∈ Kv

satisfying
ordv(∆) ≥ mV (Ev) + A2 +M,

the roots of f∗(z) := f(z) + ∆ again form a regular sequence of length m
in Ev, and if we write f∗(z) =

∏m−1
i=0 (z − α∗i ), the roots α∗i can be uniquely

labeled in such a way that

ordv(α∗i − αi) ≥M
for each i. More generally , if Ev ⊂ B(0, R), let ∆(z) ∈ Kv[z] be any poly-
nomial of degree < m such that

ordv(∆(z)) ≥ mV (Ev) + A2 +M

for all z ∈ B(0, R). Then the same assertions hold for f ∗(z) := f(z)+∆(z).

Proof. Fix a root αJ of f(z), and expand f(z), f ∗(z) and ∆(z) about
αJ , writing

f(z) = b1(z − αJ ) + b2(z − αJ)2 + . . .+ bm−1(z − αJ)m−1 + (z − αJ )m,

f∗(z) = c0 + c1(z − αJ) + c2(z − αJ)2 + . . .+ (z − αJ)m,

∆(z) = ∆0 +∆1(z − αJ) + . . .+∆m−1(z − αJ )m−1.

Here b1 = ±∏i6=J(αJ −αi), so by Lemma 8.7(A), ordv(b1) ≤ mV (Ev) +A2.
For each k ≥ 2,

bk = ±b1
∑

i1<...<ik−1
each ij 6=J

1
(αJ − αi1) . . . (αJ − αik−1)

and so by (8.9),

ordv(bk) > ordv(b1)− (k − 1)(A0 + logv(m)).
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On the other hand, by the hypothesis on ∆(z) and an easy estimate using
the maximum principle, for each k ≥ 0,

ordv(∆k) ≥ (mV (Ev) + A2 +M) + k logv(R).

Here A0 ≥ − logv(R) by Remark 8.1, and M ≥ A0+logv(m) > A0 (assuming
m ≥ 2, which is permissible since the lemma is trivial when m = 1), so for
each k ≥ 1,

ordv(∆k) > ordv(b1)− (k − 1)(A0 + logv(m)).

Now consider the Newton polygon of f ∗(z), expanded about αJ . By the
estimates above, we have

ordv(c0) = ordv(∆0) ≥ ordv(b1) +M,

ordv(c1) = ordv(b1),

ordv(ck) > ordv(b1)− (k − 1)(A0 + logv(m)) for all k ≥ 2.

Thus the Newton polygon has a break at the point (1, ordv(c1)), and f∗(z)
has a unique root α∗J for which

ordv(α∗J − αJ) ≥M.

By its uniqueness, α∗J belongs to Kv, and by Remark 8.1 it belongs to Ev,
since M ≥ A0.

Since this is true for each J , it follows that {α∗J}0≤J<m is a regular
sequence of length m in Ev.

Recall that numbers hv and rv were fixed at the beginning of the proof,
satisfying

0 < hv < rv < γ(Ev) = q−V (Ev).

We are constructing a constant L subject to various local conditions; for
this place v the condition will be that

L · (− logv(hv/rv)) ≥ A2 + A0 + logv(L) + 2.(8.21)

The line on the left side of (8.21) meets the logarithmic curve on the right
side at most twice. Since (A2+A0+2) log(qv) ≥ 2 log(2) > 1, if there are two
intersections, one occurs for L < 1. Hence there is a unique least positive
integer L for which (8.21) holds; for all l ≥ L,

l · (− logv(hv/rv)) ≥ A2 + A0 + dlogv(l)e.(8.22)

Taking Mv = qA2+A0+2
v , (8.21) is equivalent to

L

(
hv
rv

)L
Mv ≤ 1,



Fekete–Szegő theorem 387

which is the condition stated in Proposition 8.1. The constant Bv in Propo-
sition 8.1 will be defined by

− logv(Bv) = max
1≤k≤L

(dkV (Ev) + A2 + A0 + dlogv(k)ee).(8.23)

Proof of Proposition 8.1. Given n, choose a regular sequence {αl}0≤l<n
of length n in Ev, and take the initial patching polynomial to be

u(0)
v (z) =

n−1∏

l=0

(z − αl).

In the construction, if n is sufficiently large, we will successively modify
u

(0)
v (z) to polynomials u(1)

v (z), u(2)
v (z), . . . , u(n)

v (z), where

u(k)
v (z) = zn +

n∑

i=1

c
(k)
v,i z

n−i =
n−1∏

l=0

(z − α(k)
l ).

At each step, all the roots of u(k)
v (z) will belong to Ev. There will be a

well-defined correspondence between the roots of u(k−1)
v (z) and those of

u
(k)
v (z), so that a given root α(0)

l = αl of u(0)
v (z) is successively modified to

α
(1)
l , α

(2)
l , . . . , α

(n)
l . Because of this, if S is a subset of the original regular

sequence {α0, . . . , αn−1}, it makes sense to speak of the set

{α(k)
l : αl ∈ S}.

The k − 1 high-order coefficients of u(k)
v (z) will be the same as those of

u
(k−1)
v (z), while c(k)

v,k = c
(k−1)
v,k +∆

(k)
v . In applications, the numbers ∆(k)

v will
be chosen on the basis of global considerations.

The construction has five phases. The first two phases involve “building
up strength” regarding the amount of movement which a patching correction
c

(k)
v,k = c

(k−1)
v,k +∆

(k)
v causes in the roots of u(k−1)

v (z). These initial steps will
cause large movement in some of the roots, destroying the property that the
roots form a regular sequence of length n. The last three phases compensate
for this.

The basic idea in the first two phases is as follows. To pass from u
(k−1)
v (z)

to u(k)
v (z), we take a subset S = {α(k−1)

i0
, . . . , α

(k−1)
ik−1

} of the roots u(k−1)
v (z)

which forms a regular sequence of length k. Put

fk(z) =
∏

α
(k−1)
l ∈S

(z − α(k−1)
l ),(8.24)

w(k)
v (z) =

∏

α
(k−1)
l 6∈S

(z − α(k−1)
l ) = u(k−1)

v (z)/fk(z),(8.25)



388 R. Rumely

and set

u(k)
v (z) = u(k−1)

v (z) +∆(k)
v w(k)

v (z) = (fk(z) +∆(k)
v )w(k)

v (z).(8.26)

We then apply Lemma 8.8 to fk(z) and ∆(k)
v , checking that the condition on

∆
(k)
v assures that the roots of f ∗k (z) = fk(z)+∆(k)

v belong to E. Since w(k)
v (z)

is monic of degree n−k, the step (8.26) changes c(k−1)
v,k to c(k)

v,k = c
(k−1)
v,k +∆(k)

v

and accomplishes the desired patching correction in u
(k−1)
v (z).

Write Ω = {αl}0≤l<n for the initial regular sequence of length n, and let
T be the least positive integer such that

T · (− logv(hv/rv)) ≥ A2 +A0 + logv(n) + 2.(8.27)

Just as in (8.21), for all k ≥ T we have

k · (− logv(hv/rv)) ≥ A2 + A0 + dlogv(n)e.(8.28)

There is a constant A3 such that for all sufficiently large n,

T ≤ A3 logv(n).

The construction will require us to choose T pairwise disjoint regular subse-
quences from Ω, one of each length 1, 2, . . . , T . By Lemma 8.6(A) this can
be done if n is large enough, which we henceforth assume. Let S1, . . . , ST
be these subsequences. Only roots αl ∈ Sk are moved in the kth step of the
construction, for k = 1, . . . , T .

Phase 1. Patching the high-order coefficients, k = 1, . . . , L. Inductively
suppose u(k−1)

v (z) has been determined, and that its roots, apart from the
αl in S1, . . . , Sk−1, are the same as those of u(0)

v (z). Take S = Sk, and define
fk(z), w(k)

v (z), and u
(k)
v (z) as in (8.24)–(8.26). Since |∆(k)

v |v ≤ Bv it follows
from (8.23) that

ordv(∆(k)
v ) ≥ kV (Ev) +A2 + A0 + dlogv(k)e

and so by Lemma 8.8,

f∗k (z) = fk(z) +∆(k)
v =

∏

αl∈Sk
(z − α∗l )

is a polynomial whose roots belong to Ev; moreover Lemma 8.8 gives a
unique correspondence between the roots αl and the α∗l such that

ordv(α∗l − αl) ≥ A0 + dlogv(k)e.
In passing from u

(k−1)
v (z) to u(k)

v (z), the roots αl ∈ Sk are replaced by the
α∗l , and the remaining roots are unchanged; S∗k = {α∗l }αl∈Sk is a regular
sequence of length k in Ev.

Phase 2. Patching the coefficients for k = L+ 1, . . . , T . In this phase,
the construction is exactly the same as in Phase 1, except that now |∆(k)

v |v
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≤ hkv . By (8.22),

ordv(∆(k)
v ) ≥ kV (Ev) +A0 + A2 + dlogv(k)e

and so Lemma 8.8 applies as before. In passing from u
(k−1)
v (z) to u

(k)
v (z),

the roots in Sk are replaced by the roots in S∗k = {α∗l }αl∈Sk forming a new
regular sequence of length k, and the remaining roots are unchanged.

Phase 3. Moving the roots apart . Put Ω0 = Ω \ (S1 ∪ . . .∪ ST ). At this
point, we have a polynomial u(T )

v (z) whose roots compose the set Ω0 ∪S∗1 ∪
. . .∪S∗T . Although the roots within Ω0 and within each S∗i are well-separated

from each other in the sense that each pair α(T )
k 6= α

(T )
l of such roots satisfies

ordv(α
(T )
k −α

(T )
l ) < A0 +logv(n), some roots in S∗i may be very near to roots

in Ω0 or roots in other S∗j . Therefore, we pause to move them apart. Put

B = d(T − 1)(V (Ev) + logv(R))e(8.29)

+dmax(0, V (Ev)) +A2 + A0 + dlogv(n)ee.
Since B ≥ A0 + dlogv(n)e, each coset of the form d+ πBv Ov in Ev contains
at most T + 1 elements from Ω0 ∪ S∗1 ∪ . . . ∪ S∗T . Let D ≥ 0 be the smallest
integer for which

qD ≥ T + 1.

Then it is possible to move the roots α∗l in S∗1 ∪ . . . ∪ S∗T to numbers α#
l =

α∗l + εl, by adding on quantities εl ∈ Kv with ordv(εl) ≥ B, in such a way
that each α#

l satisfies
{

ordv(α
#
l − α

#
j ) ≤ B +D for all α#

j 6= α#
l ,

ordv(α
#
l − αj) ≤ B +D for all αj ∈ Ω0.

Let S#
k be the set of roots α#

l obtained from S∗k ; each S#
k is a regular

sequence of length k in Ev. Since T ≤ A3 logv(n), there is a constant A4
such that for all sufficiently large n,

B +D < A4 logv(n).

Put

ũ(T )
v (z) =

T∏

k=1

( ∏

α#
l ∈S

#
k

(z − α#
l )
)
·
∏

αl∈Ω0

(z − αl).

The roots of ũ(T )
v (z) are “moderately well-separated” in the sense that

(for sufficiently large n) any two of its roots α̃l 6= α̃j satisfy ordv(α̃l− α̃j)
≤ A4 logv(n). However, in general it will not have the same T high-order
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coefficients as u(T )
v (z). Write

ũ(T )
v (z) = zn +

n∑

l=1

c̃
(T )
v,l z

n−l

and for each l ≤ T , put
δl = c

(T )
v,l − c̃

(T )
v,l .

Considering the expansions of the c(T )
v,l and c̃

(T )
v,l as symmetric functions in

the roots of u(T )
v (z) and ũ

(T )
v (z), we see that

ordv(δl) ≥ B − (l − 1) logv(R).(8.30)

To change the T high-order coefficients of ũ(T )
v (z) back to those of u(T )

v (z),
we move a second set of roots so as to compensate for the first.

For this purpose, choose a regular subsequence QT of length T from Ω0,
which has the property that for each αi ∈ QT , and each α#

j ∈ S
#
1 ∪ . . .∪S

#
T ,

ordv(αi − α#
j ) < A0 + logv(n).(8.31)

That is, QT is a regular sequence in Ev of length T , contained in the original
regular sequence Ω of length n, whose elements are “well-separated” from
elements in S1, . . . , ST and S#

1 , . . . , S
#
T . If n is sufficiently large, the existence

of such a subsequence follows from Lemma 8.6(B).
We now need a lemma.

Lemma 8.9. Let h(z) ∈ Kv[z] be a monic polynomial of degree N whose
roots belong to B(0, R). Then for any m ≥ 0, there is a monic polynomial
gm(z) ∈ Kv[z] of degree m, with ‖gm(z)‖B(0,R) ≤ Rm, such that gm(z)h(z)
has the form

gm(z)h(z) = zN+m +
N∑

k=1

dkz
N−k.

Proof. Write h(z) = zN +
∑N

i=1 hiz
N−i; by the hypothesis on the roots

of h(z), we have |hi|v ≤ Ri for all i. Similarly, expand gm(z) = zm +∑m
j=1 γjz

N−j with undetermined coefficients. For gm(z)h(z) to have the de-
sired form, we must have





γ1 = −h1,

γ2 = −h1γ1 − h2,
...

γm = −h1γm−1 − h2γm−2 − . . .− hm,
where we take hk = 0 if k > N . These equations recursively determine
γ1, . . . , γm; moreover one sees inductively that |γj |v ≤ Rj for each j. This in
turn yields ‖gm(z)‖B(0,R) ≤ Rm.
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To apply this, take N = n− T and put

h(z) = ũ(T )
v (z)

/ ∏

αl∈QT
(z − αl), f̃T (z) =

∏

αl∈QT
(z − αl).

With the gj(z) from the lemma, put

∆(z) =
T∑

l=1

δl gT−l(z).

By (8.29), (8.30) and the bounds ‖gT−l(z)‖B(0,R) ≤ RT−l,
ordv(∆(z)) ≥ B − (T − 1) logv(R)(8.32)

≥ TV (Ev) + A2 + A0 + dlogv(n)e
for all z ∈ B(0, R).

Now define

u(T )
v (z) = ũ(T )

v (z) +∆(z)h(z) = (f̃T (z) +∆(z))h(z).

By Lemma 8.9 the high-order coefficients of u(T )
v (z) are c(T )

v,l for l = 1, . . . , T .

On the other hand, f̃T (z) and ∆(z) satisfy the conditions of Lemma 8.8, so
by (8.32),

f̃∗T (z) = f̃T (z) +∆(z) =
∏

αl∈QT
(z − α∗l )

is a polynomial whose roots belong to Ev and can uniquely be put in corre-
spondence with the αl ∈ QT in such a way that

ordv(α∗l − αl) ≥ A0 + dlogv(n)e
for all i. By (8.31) these α∗l have not moved nearer to any of the α#

j . Put

S0 = (Ω0 \QT ) ∪ {α∗l : αl ∈ QT }.
Then S0 is a subset of a regular sequence of length n in Ev (indeed, S0 ∪
S1 ∪ . . . ∪ ST is such a sequence), and the roots of u(T )

v (z) form the set
S0∪S#

1 ∪. . .∪S#
T , where each S#

k is a regular sequence of length k in Ev. Fur-

thermore each pair of distinct roots αi, αj of u(T )
v (z) satisfies ordv(αi − αj)

< A4 logv(n).

Replace u(T )
v (z) by u(T )

v (z).

Phase 4. Carry on. By (8.28), at the end of Phase 2 the construction
reached a point that further patching moves roots only by quantities ε with
ordv(ε) ≥ A0 + dlogv(n)e, preserving their position in a regular sequence of
length n. In Phase 3, we arranged that ordv(α

(T )
i −α

(T )
j ) < A4 logv(n) for all

i 6= j. The purpose of Phase 4 is to carry on the construction, using the basic
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patching lemma, until further patching moves roots by quantities ε with
ordv(ε) ≥ dA4 logv(n)e, meaning that the “delicate” roots in S#

1 ∪ . . . ∪ S#
T

can again be included in the patching process.
To motivate the duration of Phase 4, we need the following generalization

of the basic patching lemma, which will be used in Phase 5.

Lemma 8.10. Let Θ = {θi}0≤i<n ⊂ Ev be a sequence obtained by per-
turbing a regular sequence Ω = {αi}0≤i<n of length n; assume Θ can be par-
titioned into disjoint subsets Θ0∪Θ1∪. . .∪ΘZ such that for each l = 1, . . . , Z,
Θl is a regular sequence of length nl in Ev. Suppose n is large enough that

logv(n) ≥ A0 + A1 + max
1≤l≤Z

(logv(nl)).

Furthermore, suppose that

ordv(θi − αi) ≥
{
A0 + logv(n) for each θi ∈ Θ0,
A0 + logv(nl) for each θi ∈ Θl with l ≥ 1.

(8.33)

Finally , suppose that for some M ≥ A0 + logv(n), all θi 6= θj in Θ satisfy
ordv(θi − θj) < M . Given k ≤ n, put fk(z) =

∏k−1
i=0 (z − θi). Then for any

∆ ∈ Kv with

ordv(∆) ≥ kV (Ev) + A2 + Z · (M + logv(R)) +M,

the roots of

f∗k (z) := fk(z) +∆ =
k−1∏

i=0

(z − θ∗i )

belong to Ev and can be uniquely labeled in such a way that

ordv(θ∗i − θi) ≥M
for each i = 0, . . . ,m− 1.

Proof. Fix a root θJ of fk(z), and expand

fk(z) = b1(z − θJ ) + b2(z − θJ)2 + . . .+ bk−1(z − θJ )k−1 + (z − θJ)k.

Here b1 = ±∏i6=J(θJ − θi), and for each j ≥ 2,

bj = ±b1
∑

i1<...<ij−1<m
each ih 6=J

1
(θJ − θi1) . . . (θJ − θij−1)

.

By our hypothesis, for each j ≥ 2,

ordv(bj) > ordv(b1)− (j − 1)M.(8.34)

We now seek an upper bound for ordv(b1). Let I be an index, 0 ≤ I < n,
for which ordv(θJ − αI) is maximal. By Lemma 8.5 and the definition of a
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regular sequence, for each i 6= I,

ordv(θJ − αi) ≤ ordv(αI − αi) < A0 + logv(n).

Hence by (8.33), for each θi ∈ Θ0, with i 6= I, J ,

ordv(θJ − θi) ≤ ordv(αI − αi).(8.35)

Fix l ≥ 1, and let Il be an index such that ordv(θJ − θIl) is maximal
among the ordv(θJ − θi) with θi ∈ Θl. Since Θl is a regular sequence of
length nl, for each θi ∈ Θl, i 6= Il,

ordv(θIl − θi) < A0 + logv(nl).

Furthermore Lemma 8.5 gives

ordv(θJ − θi) ≤ ordv(θIl − θi).
By Lemma 8.4 and our hypothesis on n,

ordv(θJ − αI) ≥ logv(n)− A1 ≥ A0 + logv(nl)

so using (8.33) we find that for each θi ∈ Θl with i 6= Il,

ordv(θJ − θi) = ordv(αI − αi).(8.36)

To estimate ordv(b1), we now consider two possibilities. If θJ ∈ Θ0, then
I = J , and we have

ordv(b1) =
k−1∑

i=0
i6=J

ordv(θJ − θi)(8.37)

=
k−1∑

i=0
i6=J,I1,...,IZ

ordv(θJ − θi) +
∑

i∈{I1,...,IZ}
ordv(θJ − θi)

=
k−1∑

i=0
i6=I

ordv(αI − αi)−
∑

i∈{I1,...,IZ}
ordv(αI − αi)

+
∑

i∈{I1,...,IZ}
ordv(θJ − θi)

≤ kV (Ev) +A2 + Z · (M + logv(R)).

On the other hand, if θJ ∈ Θl for some l ≥ 1, then Il = J ; I may or
may not equal one of the Il. In any case the sets {I, I1, . . . , IZ} \ {I} and
{I, I1, . . . , IZ} \ {J} have the same number of elements, either Z − 1 or Z
according as I = Il for some l ≥ 1, or not. We have
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ordv(b1) =
k−1∑

i=0
i6=J

ordv(θJ − θi)(8.38)

=
k−1∑

i=0
i6=I,I1,...,IZ

ordv(θJ − θi) +
∑

i∈{I,I1,...,IZ}
i6=J

ordv(θJ − θi)

=
k−1∑

i=0
i6=I

ordv(αI − αi)−
∑

i∈{I,I1,...,IZ}
i6=I

ordv(αI − αi)

+
∑

i∈{I,I1,...,IZ}
i6=J

ordv(θJ − θi)

≤ kV (Ev) + A2 + Z · (M + logv(R))

once again.
Since f∗k (z) = fk(z) + ∆, and ordv(∆) ≥ kV (Ev) + A2 + Z · (M +

logv(R)) + M , by (8.34), (8.37) and (8.38) the Newton polygon of f ∗k (z),
expanded about θJ , has a break at the point (1, ordv(b1)) and there is a
unique root θ∗J of f∗k (z) for which

ordv(θ∗J − θJ) ≥M.

This holds for every J , so the lemma is established.

We will apply Lemma 8.10 with Z = T < A3 logv(n), the sets Θl for
l ≥ 1 being the S#

l with length nl = l ≤ T , and with M = A4 logv(n). Let
W be the least positive integer such that

W · (− logv(hv/rv)) ≥ A2 + T · (M + logv(R)) +M + 2.(8.39)

As in (8.21), a similar inequality holds for each k ≥W . There is a constant
A5 such that W ≤ A5(logv(n))2 for all sufficiently large n. The purpose of
Phase 4 is to carry out the patching process for k = T + 1, . . . ,W .

For this, choose a regular subsequence QW of length W in Ev contained
in S0, which has the property that for each α ∈ QW , and each θ ∈ S1∪ . . .∪
ST ∪ S#

1 ∪ . . . ∪ S#
T ,

ordv(α− θ) < A0 + logv(n).

For large enough n, the existence of such a subsequence follows from Lemma
8.6(B), applied to the regular sequence S0 ∪ S1 ∪ . . . ∪ ST . Write

QW = {α(T )
i0
, . . . , α

(T )
iW−1
},

listing the elements in their order as a regular sequence.



Fekete–Szegő theorem 395

To patch u
(k−1)
v (z) to u(k)

v (z), put

fk(z) =
k−1∏

l=0

(z − α(k−1)
il

), w(k)
v (z) = u(k−1)

v (z)/fk(z)

(using the same indices as in QW ) and set

u(k)
v (z) = u(k−1)

v (z) +∆(k)
v w(k)

v (z) = (fk(z) +∆(k)
v )w(k)

v (z).

Since ordv(∆
(k)
v ) ≥ k logv(hv) ≥ kV (Ev) +A2 +A0 + dlogv(n)e, Lemma 8.8

shows that the roots α(k)
il

:= (α(k−1)
il

)∗ of f∗k (z) = fk(z) +∆
(k)
v satisfy

ordv(α
(k)
il
− α(k−1)

il
) ≥ A0 + dlogv(n)e,

so they retain their positions in a regular sequence of length n and do not
move closer to the roots in S#

1 , . . . , S
#
T ; moreover {α(l)

i0
, . . . , α

(l)
iW−1
} continues

to form a regular sequence of length W in Ev. The remaining roots of u(l)
v (z)

are the same as those of u(l−1)
v (z).

Thus, we can patch the coefficients c(k)
v,k, k = T + 1, . . . ,W .

Phase 5. Completing the patching process (W + 1 ≤ k ≤ n). To patch
the coefficients c(k)

v,k for k = W +1, . . . , n, we apply Lemma 8.10 as indicated
above, with Z = T and M = A4 logv(n), taking Θ to be the set of roots of
u

(k−1)
v (z), and taking the Θl for l = 1, . . . , T to be the sets of roots obtained

from S#
1 , . . . , S

#
T by the patching process (at the step k = W + 1 they are

exactly the S#
l ). Put

fk(z) =
k−1∏

l=0

(z − α(k−1)
l ), w(k)

v (z) = u(k−1)
v (z)/fk(z),

and
u(k)
v (z) = u(k−1)

v (z) +∆(k)
v w(k)

v (z) = (fk(z) +∆(k)
v )w(k)

v (z).

By the choice of W in (8.39), we have

ordv(∆(k)
v ) ≥ k logv(hv) ≥ kV (Ev) +A2 + T · (M + logv(R)) +M.

By Lemma 8.10, the roots α(k)
l := (α(k−1)

l )∗ of f∗k (z) = fk(z) +∆
(k)
v satisfy

ordv(α
(k)
l − α

(k−1)
l ) ≥ A4 logv(n) for l = 0, . . . , k − 1

while the remaining roots of u(k)
v (z) are the same as those of u(k−1)

v (z).
Thus the hypotheses of Lemma 8.10 continue hold, and the process car-

ries through to the end.
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9. Local patching for irreducibility and ramification. In this sec-
tion we will present two simple propositions which show that at a nonar-
chimedean place where Ev is the trivial set Ôv, patching can be carried out
in such a way that the final polynomial is irreducible over Kv, and the ex-
tension Lw/Kv obtained by adjoining one of its roots is either unramified,
or totally ramified.

Let Ov be the ring of integers of Kv, let mv be the maximal ideal of Ov,
let πv ∈ mv be a uniformizing parameter, and let kv = Ov/mv be the residue
field.

Proposition 9.1. Suppose Kv is nonarchimedean, and Ev = Ôv. Let
0 < hv < rv < γ(Ev) = 1 be given, let L be any positive integer , and
suppose 0 < Bv < 1. For each n there is a monic polynomial u(0)

v (z) ∈ Ov[z]
of degree n, whose roots belong to Ev and which can be patched with arbitrary
∆

(k)
v ∈ Kv satisfying

|∆(k)
v |v ≤

{
Bv for k ≤ L,
hkv for k > L,

in such a way that its roots remain in Ev, and u
(n)
v (z) (mod mv) is irreducible

over kv[z]. In particular , u(n)
v (z) is irreducible over Kv[z], and for any root

α of u(n)
v (z), if Lw = Kv(α) then Lw/Kv is unramified of degree n.

Proof. Let u(z) ∈ kv[z] be any monic irreducible polynomial of degree
n, and let u(0)

v (z) ∈ Ov[z] be a monic polynomial of degree n such that

u(0)
v (z) (mod mv) = u(z).

Patch u(0)
v (z) successively to u(1)

v (z), u(2)
v (z), . . . , u(n)

v (z) by setting u(k)
v (z) =

u
(k−1)
v (z) +∆

(k)
v zn−k. As each |∆(k)

v |v < 1 for each k, at each step we have

u(k)
v (z) (modmv) = u(z).

Proposition 9.2. Suppose Kv is nonarchimedean, and Ev = Ôv. Let
0 < hv < rv < γ(Ev) = 1 be given, let L be any positive integer , and
suppose 0 < Bv < 1. Let u(0)

v (z) ∈ Ov[z] be an Eisenstein polynomial of
degree n. If n is sufficiently large, then u

(0)
v (z) can be patched with arbitrary

∆
(k)
v ∈ Kv satisfying

|∆(k)
v |v ≤

{
Bv for k ≤ L,
hkv for k > L,

in such a way u
(n)
v (z) remains an Eisenstein polynomial. In particular ,

u
(n)
v (z) is irreducible over Kv[z] and has all its roots in Ev, and for any

root α of u(n)
v (z), if Lw = Kv(α) then Lw/Kv is totally ramified of degree n.
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Proof. Let u(0)
v (z) ∈ Ov[z] be an Eisenstein polynomial of degree n.

Patch u
(0)
v (z) successively to u(1)

v (z), u(2)
v (z), . . . , u(n)

v (z) by setting

u(k)
v (z) = u(k−1)

v (z) +∆(k)
v zn−k.

By hypothesis |∆(k)
v |v < 1 at each step; if n > L is large enough that

hnv < |πv|v, then |∆(n)
v |v ≤ |π2

v |v and u
(n)
v (z) will also be an Eisenstein

polynomial.

10. The global patching argument. We can now complete the proof
of Theorem 2.3. For this, we will need the following version of the Strong
Approximation Theorem, which can easily be derived from the Lemma on
p. 66 of [4]. Let S be a finite set of places of K including all the archimedean
places. Recall that the set of S-integers of K is

KS := {κ ∈ K : |κ|v ≤ 1 for all v 6∈ S}.

Lemma 10.1. Let K be a number field , and let S be a finite set of places
of K containing all the archimedean places. There is a constant C(K,S),
depending only on K and S, such that if numbers Cv > 0 are specified for
each v ∈ S, subject to the condition

∏

v∈S
CDvv > C(K,S),

then for any elements cv ∈ Kv (v ∈ S) there is an S-integer c with |c−cv|v ≤
Cv for all v ∈ S.

Remark. If each Cv were required to belong to the value group of K×v ,
then the constant C(K,S) would depend only on K.

Proof of Theorem 2.3. Let Ŝ be the finite set of places of K consisting
of all archimedean v and all nonarchimedean v where Ev 6= Ôv. By the
hypotheses of Theorem 2.3 and the preliminary reductions (1)–(5), we can
assume that γ(E) > 1, that each Ev and Uv is stable under Galc(Cv/Kv),
and

(1) For each archimedean v, Ev is compact;

(2) For each nonarchimedean v ∈ S, Ev =
⋃M
i=1 ai + πniv Ov;

(3) For each nonarchimedean v ∈ Ŝ \ S, Ev is a PL-domain;

(4) For each v 6∈ Ŝ, Ev = Ôv.

We are also given a finite set of places S ′ = S′1 ∪ S′2 of K, disjoint from
Ŝ, such that each v ∈ S′1 is to be inert, and each v ∈ S ′2 is to be totally
ramified, in the extensions K(α)/K. We can assume that S ′ is nonempty.
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Using
∏
v∈Ŝ∪S′ γ(Ev)Dv = γ(E) > 1, fix numbers 0 < hv < rv < γ(Ev)

for each v ∈ Ŝ ∪ S′, with

H :=
∏

v∈Ŝ∪S′
hDvv > 1.

For each v ∈ Ŝ, letMv be the constant from the corresponding local patching
proposition 5.1, 6.1, 7.1, or 8.1.

Fix an integer L > 0 subject to the appropriate local condition (5.1),
(6.1), (7.1), or (8.1) for each v ∈ Ŝ: namely




(
hv
rv

)L Mv

1− hv/rv
<

1
8

if Kv
∼= C, or if Kv

∼= R but Ev  R,
(
hv
rv

)L Mv

1− hv/rv
<

1
16

if Kv
∼= R and Ev ⊂ R,

(
hv
rv

)L
Mv ≤

1
2

if Kv is nonarchimedean and Ev is a PL-domain,

L ·
(
hv
rv

)L
Mv ≤ 1 if Kv is nonarchimedean and Ev ⊂ Kv;

and also subject to the global condition

HL > C(K, Ŝ ∪ S′),(10.1)

where C(K, Ŝ ∪ S′) is the constant from Lemma 10.1 above.
Next choose constants Bv, for v ∈ Ŝ ∪ S′, as follows. For each nonar-

chimedean v ∈ Ŝ, let Bv be the constant specified in Proposition 7.1 or
8.1; note that Bv depends on L. For each v ∈ S ′, take Bv = 1/2. Then,
recalling that in Propositions 5.1 and 6.1 the constants Bv can be specified
arbitrarily, choose numbers Bv > 0 for the archimedean v ∈ Ŝ in such a way
that ∏

v∈Ŝ∪S′
BDv
v > C(K, Ŝ ∪ S′).(10.2)

Finally, let n ≥ L be any integer sufficiently large that for each v ∈
Ŝ ∪ S′ the appropriate local patching proposition 5.1, 6.1, 7.1, 8.1, 9.1, or
9.2 applies, relative to the given Ev, Uv, L, and Bv.

For each v ∈ Ŝ∪S′, let u(0)
v (z) ∈ Kv[z] be the monic polynomial of degree

n given by the corresponding local patching proposition. We will patch these
to a common global polynomial u(z) ∈ K[z]. Suppose inductively there are
global Ŝ ∪ S′-integers cl ∈ K, for l = 1, . . . , k − 1, such that the coefficients
of the polynomials

u(k−1)
v (z) = zn +

n∑

l=1

c
(k−1)
v,l zn−l
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satisfy
c

(k−1)
v,l = cl

for all v ∈ Ŝ ∪ S′ and all l = 1, . . . , k − 1. If k ≤ L, (10.2) together with
Proposition 10.1 shows that there is a global Ŝ ∪ S′-integer ck satisfying

|ck − c(k−1)
v,k |v ≤ Bv

for each v. If k > L, then by (10.1),
∏

v∈S
(hkv)

Dv = Hk > C(K, Ŝ ∪ S′)

and Proposition 10.1 shows that there is a global Ŝ∪S′-integer ck such that

|ck − c(k−1)
v,k |v ≤ hkv

for each v. In either case, put ∆(k)
v = ck − c

(k−1)
v,k for each v, and patch

u
(k−1)
v (z) to u(k)

v (z) using the appropriate local patching construction.
At the end of the patching process, we have a global polynomial

u(z) = zn +
n∑

k=1

ckz
n−k

with Ŝ∪S′-integer coefficients such that u(z) = u
(n)
v (z) for each v ∈ Ŝ∪S′. By

the local patching constructions, the roots of u(z) belong to Uv for each v ∈
Ŝ, and to Kv for each v ∈ S. For each v ∈ S ′1, u(z) (mod mv) is irreducible,
and for each v ∈ S′2, u(z) is an Eisenstein polynomial. In particular, u(z)
is irreducible; and if α ∈ K̃ is any root of u(z), then each v ∈ S ′1 is inert
in K(α)/K, and each v ∈ S′2 is totally ramified. Finally, because the ck
are S-integers, the roots of u(z) belong to Uv = Ôv for each v 6∈ Ŝ. This
completes the proof.

11. Appendix I. Inner capacities of archimedean sets. In this
appendix we will prove the following lemma, which is presumably well known
but seems not to appear in the literature.

Lemma 11.1. Let E ⊂ C be a compact set which is the closure of its
interior E0, and whose boundary is a finite union of smooth arcs. Then

γ(E0) = γ(E).

Proof. Put F0 = ∅. For each n ≥ 1, let Fn ⊂ E0 be a compact set
containing Fn−1 and all z ∈ E with distance at least 1/n from the boundary
∂E, so

⋃∞
n=1 Fn = E0. The potential function and Robin constant of Fn are

un(z) = u(z, Fn) =
�
− log(|z − w|) dµn(w),
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V (Fn) =
���
− log(|z − w|) dµn(z) dµn(w).

Let u(z) be the potential function, and V (E) the Robin constant, of E. Put

V̂ (E) = lim
n→∞

V (Fn).

The limit is decreasing, since the Fn are increasing. We will prove that
V̂ (E) = V (E), so

lim
n→∞

γ(Fn) = γ(E).

Let µn be the equilibrium distribution of Fn. Our strategy is to show
that the sequence {µn} converges weakly to the equilibrium distribution µ
of E. In any case, after passing to a subsequence of the Fn, we can suppose
that {µn} converges weakly to some measure µ̂. Clearly µ̂ is a probability
measure supported on ∂E. We will now study the properties of the potential
function

û(z) =
�
− log(|z − w|) dµ̂(w)

associated to µ̂.

Step 1. We claim that û(z) = V̂ (E) for all z ∈ E0. To see this, fix
z0 ∈ E0, and let δ = infx∈∂E(|z0 − x|) be the distance from z to ∂E. Let
N be large enough that 1/N < δ. Then for all n ≥ N , z0 is in the interior
of Fn, and hence un(z0) = V (Fn). The function log(|z0 − w|) is continuous
and bounded on the set

∂E(1/N) := {z ∈ C : |z − x| < 1/N for some x ∈ ∂E},
so by weak convergence,

û(z0) =
�
− log(|z0 − w|) dµ̂(w) = lim

n→∞

�
− log(|z0 − w|) dµn(w)

= lim
n→∞

un(z0) = lim
n→∞

V (Fn) = V̂ (E).

Step 2. We claim that û(z) ≤ V̂ (E) for all z ∈ E. Indeed, for any M
and n,

u(M)
n (z) :=

�
min(M,− log(|z − w|)) dµn(w)

≤
�
− log(|z − w|) dµn(w) = un(z) ≤ V (Fn),

and so by weak convergence

û(M)(z) =
�
min(M,− log(|z − w|)) dµ̂(w)

= lim
n→∞

u(M)
n (z) ≤ lim

n→∞
V (Fn) = V̂ (E).

Hence, letting M →∞, we obtain

û(z) = lim
M→∞

û(M)(z) ≤ V̂ (E).
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Step 3. Third, we claim that û(z) = V̂ (E) for all z ∈ E except possibly
a finite set of points. Here we use the hypotheses that ∂E is a finite union of
smooth arcs, and that E is the closure of E0. Take any point z0 ∈ ∂E which
is not an intersection point of two arcs. Then there is a well-defined normal
line N to ∂E at z0. For small enough r, the ball B(z0, r) will not meet any
of the arcs comprising ∂E except for the one containing z0. Also for small
enough r, if w ∈ ∂E ∩B(z0, r) with w 6= z0, and x ∈ N ∩E0 ∩B(z0, r) then
the angle between the segments z0x and z0w will be at least π/4. Fix an r
satisfying these two conditions. We assert that there is a constant C such
that for all x ∈ N ∩ E0 ∩B(z0, r/2), and all w ∈ ∂E,

− log(|x− w|) ≤ − log(|z0 − w|) + C.(11.1)

For w ∈ ∂E \B(z0, r/2), and x ∈ N ∩E0∩B(z0, r), both − log(|x−w|) and
− log(|z0 − w|) are uniformly bounded, so the assertion is trivial. For any
fixed w ∈ ∂E ∩ B(z0, r) with w 6= z0, if x0 ∈ N ∩ E ∩ B(z0, r) is the point
nearest to z, then by our hypothesis we have |x0 − w| ≥ |z0 − w| sin(π/4),
and hence for any x ∈ N ∩E0 ∩B(z0, r),

− log(|x− w|) ≤ − log(|x0 − w|) ≤ − log(|z0 − w|) + log(
√

2).

Finally, if w = z0 the assertion is again trivial.
By Step 2,

�
(− log(|z0 − w|) + C) dµ̂(w) ≤ V̂ (E) + C <∞.

Let x1, x2, . . . be a sequence of points in N ∩E0 ∩B(z0, r) with limn→∞ xn
= z0. Then pointwise, for each z ∈ ∂E, limn→∞ |z − xn| = |z − z0|. By
Lebesgue’s dominated convergence theorem, (11.1) and Step 1,

û(z0) :=
�
− log(|z0 − w|) dµ̂(w) = lim

n→∞

�
− log(|xn − w|) dµ̂(w)

= lim
n→∞

û(xn) = V̂ (E).

Thus, û(z) = V̂ (E) for all z ∈ E, except possibly on set of capacity 0 (the
finite set of intersection points of the arcs in ∂E).

Step 4. We can now show that V (E) = V̂ (E) and µ̂ = µ, the equi-
librium distribution of E. Then since uE(z) = V (E) for all z ∈ E except
possibly on a set of capacity 0, which has µ-measure 0, and û(z) = V̂ (E)
for all z ∈ E except possibly on a set of capacity 0, which has µ̂-measure 0
(see [13, Theorem III.7, p. 56]), Fubini’s theorem gives

V (E) =
�
uE(z) dµ(z) =

���
− log(|z − w|) dµ(z) dµ̂(w)

=
�
û(w) dµ̂(z) = V̂ (E).
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Furthermore,
���
− log(|z − w|) dµ̂(z) dµ̂(w) =

�
û(w) dµ̂(z) = V (E).

This is the defining property of µ, and µ is unique. Hence µ̂ = µ.

12. Appendix II. Proof of a lemma of Cantor. In this section we
will give a proof of the key fact needed for the local patching construc-
tion for nonarchimedean PL-domains, the fact that finite unions of balls
are PL-domains. The proof follows an argument sketched by Cantor ([3,
Lemma 3.2.3]): Cantor’s proof, though basically correct, was incomplete.

We remark that the result in now known in a much more general setting,
for algebraic curves (see [11, Theorem 4.2.12, p. 244]). It has also been
extended for the affine line over a valuation field with a valuation group of
arbitrary rank (see [7]). Related results have been proved by Fieseler and
by Matignon in the context of rigid analysis. However, the argument given
here leads to an explicit construction of the polynomial, which is not true
in the general case.

Let v be a nonarchimedean place of K. Suppose a ∈ Cv, and r > 0.
Recall that we write

B(a, r) = {z ∈ Cv : |z − a|v ≤ r},
∂B(a, r) = {z ∈ Cv : |z − a|v = r},
B(a, r)− = {z ∈ Cv : |z − a|v < r}.

By a finite union of balls, we mean a set of the form

Ev =
M⋃

i=1

B(ai, ri)

where each ri belongs to the value group of C×v . By the ultrametric inequal-
ity, we can assume the B(ai, ri) are pairwise disjoint. Fix such a set Ev.

Let ζ be a point in P1(Cv)\Ev. Our goal is to show that there is a rational
function f(z), whose only poles are at ζ, and whose zeros are supported on
the ai’s, such that

Ev = {z ∈ P1(Cv) : |f(z)|v ≤ 1}.
To motivate the construction, first suppose that ζ = ∞, and that f(z)

could be taken to be polynomial of the form

f(z) = πnw0
v

M∏

i=1

(z − ai)nwi(12.1)

where n is the degree of f(z), and the wi are rational numbers with
∑M

i=1wi
= 1 such that wi ≥ 0 for i = 1, . . . ,M , and πv is a uniformizing parameter
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for Kv. Write

Θij =

{
logv(|ai − aj |v) if i 6= j,

logv(ri) if i = j,

noting that since the balls B(ai, ri) are disjoint we have Θij > Θii if i 6= j.
The numbers wi are subject to several constraints. To see them, take x ∈

∂B(ai, ri). Then logv(|x − aj |v) = Θij for j = 1, . . . ,M , and by hypothesis
logv(|f(x)|v) = 0. This leads to the system of equations

0 = w0 +
M∑

j=1

Θijwj for i = 1, . . . ,M.(12.2)

In addition we have the relation

1 = 0 · w0 +
M∑

j=1

1 · wj .(12.3)

If we write 



Θ00 = 0,

Θ0j = 1 for j = 1, . . . ,M,

Θi0 = 1 for i = 1, . . . ,M,

and put Θ = (Θij)0≤i,j≤M , then the system of equations (12.2), (12.3) be-
comes 



1

0
...

0




= Θ




w0

w1
...

wm



.

Next, suppose ζ 6= ∞. In this case one could hope f(z) would have the
form

f(z) = πnw0
v ·

∏M
i=1(z − ai)nwi

(z − ζ)n
.(12.4)

Taking x ∈ ∂B(ai, ri) and using |f(x)|v = 1, we find

0 = nw0 +
( M∑

j=1

logv(|x− ai|v)nwj
)
− n logv(|x− ζ|v)

which, since |x− ζ|v = |ζ − ai|v, can be written as

logv(|ζ − ai|v) = w0 +
M∑

j=1

logv(|x− ai|v)wj
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for each i. Thus we are led to the system of equations



1

logv(|ζ − a1|v)
...

logv(|ζ − aM |v)




= Θ




w0

w1
...

wM



.(12.5)

Cantor’s idea was to reverse this construction: if the matrix Θ could be
shown to be nonsingular, then the wi’s would be uniquely defined by the
equations above; and if they could be shown to be positive, then it would
be natural to expect that they could be used to construct a function f(z)
with the desired property.

Write 1M for the M -element column vector whose entries are all 1’s, and
write JM for the M ×M matrix whose entries are all 1’s. For any matrix
A, write tA for its transpose. Observe that

JM = 1M t1M .

Further, write Θ′ = (Θij)1≤i,j≤M , so that in terms of block matrices,

Θ =

[
0 t1M

1M Θ′

]
.

Cantor’s Lemma 3.2.3 can be formulated as follows:

Lemma 12.1. The matrix Θ is nonsingular , and if w0, w1, . . . , wm are
defined by




w0

w1
...

wM




= Θ−1




1

0
...

0



, resp.




w0

w1
...

wM




= Θ−1




1

logv(|ζ − a1|v)
...

logv(|ζ − aM |v)



,

according as ζ = ∞ or ζ 6= ∞, then w1, . . . , wm > 0 and
∑m

i=1wi = 1; and
if f(z) is defined by (12.1), respectively (12.4), then

Ev = {z ∈ P1(Cv) : |f(z)|v ≤ 1}.
Furthermore, we have the following formula for Θ−1: let δ be any number
satisfying δ > max1≤i,j≤m (Θij). Then

(A) the symmetric matrix Aδ := Θ′ − δJM is negative definite;
(B) if we define α by α−1 = −t1MA−1

δ 1M and put b = −A−1
δ 1M , then

α > 0 and

Θ−1 =

[
α− δ α tb

αb A−1
δ + αb tb

]
.
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Proof. We first prove (A) and (B), by induction on M . Fix δ, and write
A = Aδ.

If M = 1, then A = Θ11 − δ < 0, so (A) holds, and we find

b =
−1

Θ11 − δ
, α =

1
b

= δ −Θ11 > 0, Θ =

[
0 1

1 Θ11

]
.

The matrix on the right side of (B) is
[
α− δ αb

αb 1/A+ αb2

]
=



−Θ11 1

1
1

Θ11 − δ
+ (δ −Θ11)

( −1
Θ11 − δ

)2




=

[
−Θ11 1

1 0

]

which equals Θ−1, so (B) holds as well.
Next take M > 1 and suppose (A) and (B) have been proven for all

M ′ < M . Put
δ′ = max

1≤i,j≤M
Θij

and define an equivalence relation on {a1, . . . , aM} by ai ∼ aj if Θij < δ′.
(To see this is an equivalence relation, note that since M ≥ 2, for each i there
is a j 6= i, and Θii < Θij ≤ δ′. This yields reflexivity. Symmetry is clear,
and transitivity follows from the ultrametric inequality.) After relabeling
the ai’s if necessary, we can assume that the equivalence classes consist of
elements whose indices are consecutive blocks of integers. By the definition
of δ′, there are at least two equivalence classes.

The matrix Θ′ thus has the form


Θ′1 δ′ . . . δ′

δ′ Θ′2 δ′

...
...

. . .
...

δ′ δ′ Θ′r




with blocks corresponding to the various equivalence classes down the di-
agonal, and entries δ′ everywhere else. By the definition of the relation
∼, each entry in each Θ′k is strictly less than δ′. Consequently the ma-
trix A′ := Θ′ − δ′JM has the block diagonal form diag(A1, . . . ,Ar), where
Ak = Θ′k − δ′Jmk if mk is the number of elements of the kth equivalence
class. Since δ′ is strictly greater than every entry in Θ′k, each Ak satisfies the
hypotheses of the lemma, and by induction is negative definite. Therefore

A = A′ − (δ − δ′)JM
is also negative definite, and in particular is nonsingular. This yields (A).
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To prove (B), write A = Aδ, 1 = 1M , J = JM , b = −A−11M , and let

∇ =

[
α− δ α tb
αb A−1 + αb tb

]
;

note that α−1 = −t1A−11 = t1b. We compute

Θ · ∇ =

[
0 t1
1 Θ′

]
·
[
α− δ α tb
αb A−1 + αb tb

]

=

[
α t1b t1A−1 + α t1b tb

(α− δ)1 + αΘ′b α1tb +Θ′(A−1 + αb tb)

]
.

Since A is negative definite, so is A−1, and consequently α > 0. Now let us
compute the quantities in the four corners of Θ · ∇. For the first three:

α t1b = α · α−1 = 1;
t1A−1 + α t1b tb = t1A−1 + α t1(−A−11)(−t1A−1)

= t1A−1 + α(t1A−11) ( t1A−1)

= t1A−1 + α · (−α−1) t1A−1 = 0;

(α− δ)1 + αΘ′b = α1− δ1 + αΘ′(−A−11)

= α1− δ1 + α(A + δJ)(−A−11)

= α1− δ1− αAA−11− δα1 t1A−11

= −δ1− (δ1)(α t1A−11) = −δ1 + δ1 = 0.

For the fourth, note first that

α1 tb +Θ′(A−1 + αb tb)

= α1( t(−A−11)) + (A + δJ)(A−1 + α(−A−11)t(−A−11))

= −α1t1A−1 + AA−1 + δJA−1 + αAA−11t1A−1 + αδJA−11t1A−1

= IM + δJA−1 + αδJA−1JA−1.

But, expanding J by columns and rows,

JA−1JA−1 = J(A−1J)A−1

= J[A−11, . . . ,A−11]A−1 = J[−b, . . . ,−b]A−1

= −




t1
...

t1


 [b, . . . ,b]A−1 = −




t1b . . . t1b
...

...
t1b . . . t1b


A−1

= −α−1JA−1.

Consequently, δJA−1 + αδJA−1JA−1 = 0, so the lower right corner of
Θ · ∇ is the identity matrix IM . Thus Θ is invertible, and Θ−1 = ∇. This
yields (B).
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So far we have followed Cantor’s argument; now we leave it. We aim
to prove the existence of a function f(z) with poles only at ζ such that
Ev =

⋃M
i=1B(ai, ri) =

{
z ∈ P1(Cv) : |f(z)|v ≤ 1

}
.

Suppose first that ζ=∞. We claim that if w0, w1, . . . , wM are defined by



w0

w1
...

wM




= Θ−1




1

0
...

0




(12.6)

then the wi are rational, w1, . . . , wM are positive,
∑M

i=1wi = 1, and the
polynomial f(z) defined by (12.1) satisfies the required conditions (where
we take the degree n of f(z) to be a number such that each nwi is integral).

The wi are rational since every element in Θ is. To prove the remaining
assertions we proceed by induction on M .

If M = 1, then[
w0

w1

]
= Θ−1

[
1

0

]
=

[
−Θ11 1

1 0

][
1

0

]
=

[
−Θ11

1

]

where w0 = Θ11 = − logv(r1). Thus w1 = 1 > 0 and as a trivial sum w1 = 1.
Take n so that nw0 is integral. If we put

f(z) = πnw0
v (z − a1)n

then it is obvious that B(a1, r1) =
{
z ∈ P1(Cv) : |f(z)|v ≤ 1

}
.

Now take M > 1 and suppose the assertions proved for M ′ < M . Let the
equivalence relation ∼ on {a1, . . . , aM} be as defined above, and keep the
other notations established there. Suppose {a1, . . . , am1} is the first equiva-
lence class. Put

E′v =
m1⋃

i=1

B(ai, ri), E′′v =
M⋃

i=m1+1

B(ai, ri).

By induction, the numbers w′0, w
′
1, . . . , w

′
m1

and w′′0 , w
′′
m1+1, . . . , w

′′
M defined

for the sets E′v, E
′′
v by the equations




w′0
w′1
...

w′m1




=
(
Θ′
)−1




1

0
...

0



,




w′′0
w′′m1+1

...

w′′M




=
[
Θ′′
]−1




1

0
...

0




satisfy the required conditions, and the polynomials f1(z), f2(z) of respective
degrees n1, n2 given by (12.1) serve to define E ′v, E

′′
v as PL-domains. After

raising f1(z) and f2(z) to appropriate powers, we can assume that n1 = n2.
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We claim that there exist rational numbers w0, α1, and α2 with α1, α2 >
0 and α1 + α2 = 1, such that

ŵ :=




w0

α1w
′
1

...

α1w
′
m1

α2w
′′
m1+1
...

α2w
′′
M




satisfies the equation [
1
~0

]
= Θŵ.(12.7)

Since such a solution is unique, the entries in ŵ must be the numbers wi in
(12.6), and our claims that w1, . . . , wm are positive and

∑m
i=1wi = 1 will be

established.
Letting ŵ be as above, with w0, α1 and α2 as variables, in view of the

block structure of the matrix Θ, and the equations satisfied by the w′j and
the w′′j , (12.7) reads

[
1
~0

]
=




α1 + α2

w0 + α1(−w′0) + α2δ
′

...

w0 + α1(−w′0) + α2δ
′

w0 + α1δ
′ + α2(−w′′0)
...

w0 + α1δ
′ + α2(−w′′0)




.

Consequently, in order to obtain (12.7), we need w0, α1 and α2 to satisfy

α1 + α2 = 1,

w0 − w′0α1 + δ′α2 = 0,

w0 + δ′α1 − w′′0α2 = 0.

Solving, we find

α1 =
δ′ + w′′0

(δ′ + w′0) + (δ′ + w′′0)
, α2 =

δ′ + w′0
(δ′ + w′0) + (δ′ + w′′0)

,
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w0 =
w′0w

′′
0 − δ′δ′

(δ′ + w′0) + (δ′ + w′′0)
.

Thus, our assertions hold if δ′+w′0 and δ′+w′′0 are both positive. However,
that is the case, since −w′0 =

∑m1
j=1Θijw

′
j is an average (with positive coef-

ficients) of numbers Θij which are strictly less than δ′, and similarly w′′0 is
an average of numbers Θij ≤ δ′, with Θii < δ′.

Now let N be a common multiple of the denominators of α1 and α2, and

F (z) = f1(z)Nα1f2(z)Nα2.

By the ultrametric inequality and the definition of the equivalence classes
for ∼, |f1(z)|v is constant on E′′v , and similarly |f2(z)|v is constant on E′v.
Hence |F (z)|v takes the same value, say R, at each point of the “boundary”
∂Ev =

⋃M
i=1 ∂B(ai, ri). By the construction of f1(z) and f2(z) it follows that

Ev = E′v ∪E′′v ⊂ {z ∈ P1(Cv) : |F (z)|v ≤ R}.
Let r′ be such that δ′ = logv(r

′). For the same reasons as above, |f1(z)|v
is constant on each “open” ball B(aj , r′)− with aj 6∼ a1, and |f2(z)|v is
constant on B(a1, r

′)−. Suppose now that x 6∈ Ev. If x belongs to B(a1, r
′)−,

fix x1 ∈ ∂B(a1, r1). By the definition of f1(z) and the discussion above,

|f1(x)|v > |f1(x1)|v, while |f2(x)|v = |f2(x1)|v.
Consequently |F (x)|v > |F (x1)|v = R. Similarly if x belongs to any other
open ball B(aj , r′)− then |F (x)|v > R. If x belongs to none of these open
balls, then |x− ai|v ≥ r′ for all i, and so fixing x1 ∈ ∂B(a1, r1) we see that
|f1(x)|v > |f1(x1)|v and |f2(x)|v ≥ |f2(x1)|v. Hence again |F (x)|v > R. We
have thus shown that

Ev = {z ∈ P1(Cv) : |F (z)|v ≤ R}.
By scaling F (z) appropriately we can obtain a polynomial f(z) for which

Ev = {z ∈ P1(Cv) : |f(z)|v ≤ 1}.
Since the roots of f(z) have the same relative multiplicities as those of F (z)
(namely w1, . . . , wM ), while

w0 = −
M∑

j=1

Θijwj for any i,

we have shown that the polynomial defined by (12.1) exhibits Ev as a PL-
domain. This completes the proof when ζ =∞.

Finally, suppose ζ 6= ∞. The linear fractional transformation h(z) =
1/(z− ζ) takes ζ to ∞, and takes a ball B(a, r) not containing ζ to the ball
B(h(a), r/|ζ − a|2v). Consequently, h(Ev) is again a finite union of balls. If
g(z) is the polynomial constructed by (12.1) for the set h(Ev), with zeros



410 R. Rumely

supported on the points h(ai), then f(z) = g(h(z)) will be a rational function
with poles only at ζ and zeros supported on the ai, such that

Ev = {z ∈ P1(Cv) : |f(z)|v ≤ 1}.
After scaling f(z) by a number u ∈ Cv with |u|v = 1, we can assume f(z)
has the form (12.4) with w1, . . . , wM positive. If we now repeat the argument
leading to (12.5), it follows that w0, w1, . . . , wM satisfy




w0

w1
...

wM




= Θ−1




1

logv(|ζ − a1|v)
...

logv(|ζ − aM |v)



.
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[4] J. W. S. Cassels and A. Fröhlich (eds.), Algebraic Number Theory , Thompson,

Washington, 1967.
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