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1. Introduction. In the first part [4] of this series of papers we in-
troduced the notion of shift radix system and described its basic prop-
erties as well as its relations to β-expansions and canonical number sys-
tems (1). Specifically, let d ≥ 1 be an integer and r = (r1, . . . , rd) ∈ R

d.
To r we associate the mapping τr : Z

d → Z
d in the following way: For

a = (a1, . . . , ad) ∈ Z
d let (2)

τr(a) = (a2, . . . , ad,−⌊ra⌋),
where ra = r1a1 + · · · + rdad, i.e. the inner product of the vectors r and a.
We call τr a shift radix system (SRS for short) if for all a ∈ Z

d we can find
some k > 0 with τk

r
(a) = 0 (3). In [4] we have started the investigation of

the following sets which are closely connected with the orbits of τr:

D0
d := {r ∈ R

d | ∀a ∈ Z
d ∃k > 0 : τk

r
(a) = 0},

Dd := {r ∈ R
d | ∀a ∈ Z

d : the sequence (τk
r
(a))k≥0 is ultimately periodic}.

It has turned out that the description of these sets is almost trivial for d = 1,
whereas considerable difficulties occur already in dimension 2.

Despite its simple shape, the SRS gives a unified understanding of num-
ber systems and its related dynamics. For example, if the β-expansion by

2000 Mathematics Subject Classification: Primary 11A63.
Key words and phrases: beta expansion, canonical number system, periodic point,

contracting polynomial, Pisot number.
The first author was supported by the Japan Society for the Promotion of Science,

Grants-in-Aid for fundamental research 14540015, 2002–2005.
The third author was supported partially by the Hungarian National Foundation for

Scientific Research grant nos. T42985 and T38225.
The fourth author was supported by project FWF P17557-N12 of the Austrian Science

Foundation.
(1) For a definition of β-expansion and canonical number system we refer the reader

to [4] (see also [13, 19, 20, 22]).
(2) ⌊ . . . ⌋ denotes the floor function.
(3) For simplicity, we write 0 = (0, . . . , 0).

[21]



22 S. Akiyama et al.

a Pisot number base corresponds to an SRS, one can construct a tiling of
the Euclidean space which provides a concrete Markov partition of the dy-
namical system, that is often almost conjugate to a toral automorphism (cf.
[2, 8, 21, 25]). This is essentially due to the fact that a tile contains the
origin as an inner point. The same fact is valid for tilings associated with
canonical number systems. Therefore characterizing SRS is to make an atlas
of good number systems from a dynamical point of view.

In the present paper we are mainly concerned with the characteriza-
tion of quadratic SRS. This is tantamount to the characterization of the
set D0

2. The results on the characterization of D0
2 are summarized in Fig-

ure 1. Note that by the correspondence between SRS and β-expansions as
well as canonical number systems (4) our characterization results of D0

2 im-
ply the characterization of property (F) (5) for β-expansions with respect to
cubic Pisot units (cf. [1]) as well as the characterization of quadratic canon-
ical number systems (cf. [10, 12, 15, 16]). Moreover, our results imply new
characterization results for property (F) for β-expansions of large classes of
cubic Pisot numbers.

Figure 1 has to be interpreted as follows. D0
2 is a subset of the large

trapezium. All the white regions are proved to be contained in D0
2 in the

present paper. The label “T. n.m” means that the corresponding region is
proved to belong to D0

2 in Theorem n.m (“L. n.m” means “Lemma n.m”).
The dark grey regions are known to be outside D0

2. The light grey regions
of Figure 1 are regions where D0

2 has a very complicated structure. It has
been proved in [4, Sections 6–7] that in these regions there exist infinitely
many different small polygons which do not belong to D0

2. Some of them are
visualized in [4, Figure 1] (that figure gives an impression of the difficulty
of the structure of D0

2 in these regions).
The characterization problem becomes harder and harder the nearer we

get to the line x = 1 or to the line y = x + 1. For this reason, the proofs of
Theorems 4.6, 4.8 and 4.27 are the most involved ones in this paper.

The paper is organized as follows. In Section 2 we give some results
on D2. Most of D2 is easy to characterize, however, it turns out to be a hard
problem to decide which part of ∂D2 belongs to D2. For some parts of ∂D2

we give a solution of this problem.
In Section 3 we describe some important subsets of D0

d by generalizing
results of Hollander [14], Kovács and Pethő [17] as well as Pethő [20] to our
new setting. In particular we present applications of these results for the
characterization of D0

2. In the next two sections we are aiming at further
concrete statements for two-dimensional SRS.

(4) This correspondence is established in [4, Theorems 2.1 and 3.1].
(5) Cf. [4] for a definition.
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Fig. 1. Overview the results of the present paper

In Section 4 we concentrate on the investigation of points of D2 which lie
near its boundary. We apply two different methods for the characterization
of elements of D0

2: In Section 4.1 we investigate the purely periodic elements
of τr in order to get an SRS region near to the upper boundary of Figure 1
(Theorem 4.8). In Section 4.2 we exploit a certain “structural stability” of
the mapping τr; we illustrate this remarkable property of τr by some numer-
ical examples (see Figures 5 and 6 below). This leads to a characterization



24 S. Akiyama et al.

result for SRS regions with parameters close to the point (1,−1) which is
the lower right vertex of the trapezium in Figure 1. This proof also shows
as a byproduct that the point (1,−1) is not a critical point in the sense of
[4, Definition 7.1] (Theorem 4.21).

Section 5 is devoted to the characterization of D0
2 in regions which are

far from the boundary of D2. For these regions a powerful algorithm (pre-
sented in [4, Theorem 5.2]) allows us to derive many results with the help of
extensive computer calculations. The combination of these results with the
results of the previous sections yields Theorems 5.6 and 5.8. Both of them
characterize all SRS in quite large regions.

We conclude this paper with some conjectures (Section 6).

2. On the set D2. We will frequently need the set

Ed = Ed(1) := {(r1, . . . , rd) ∈ R
d |

Xd + rdX
d−1 + · · · + r1 has only roots y ∈ C with |y| < 1}.

In [4, Lemmas 4.1 and 4.2] it is shown that up to the boundary the set Dd is
equal to the set Ed. In particular, for d = 2 the set D2 is (again apart from
the boundary) equal to the isosceles rectangular triangle

E2 = {(x, y) ∈ R
2 | x < 1, −x − 1 < y < x + 1}.

Deciding whether or not a point of ∂E2 belongs to D2 seems to be a very
difficult problem. In this section we give a partial solution. In particular, we
prove the following result.

Theorem 2.1. Let

D := {(x, y) ∈ R
2 | x ≤ 1, −x − 1 ≤ y ≤ x + 1, (x, y) 6= (1,−2), (1, 2)}

\ {(x,−x − 1) ∈ R
2 | 0 < x < 1},

L :=D \ {(1, y) ∈ R
2 | 0 < |y| < 1 or 1 < |y| < 2}.

Then L ⊆ D2 ⊆ D, the Lebesgue measure of D2 equals 4, and D2 is neither

open nor closed.

Lemma 2.2. If −1 ≤ x ≤ 0 then (x,−x − 1), (x, x + 1) ∈ D2 \ D0
2.

Proof. For x ∈ {−1, 0} the assertions are easy to check. Let now −1 <
x < 0.

Firstly, we consider τ = τ(x,−x−1), thus τ(a, b) = (b, b − ⌊(a − b)x⌋) for
a, b ∈ Z. Observe that for n ∈ N we have τ(n, n) = (n, n), hence (x,−x− 1)
/∈ D0

2. Now, it suffices to show that for all z ∈ Z
2 we have ‖τ(z)‖∞ ≤ ‖z‖∞.

Let therefore n, m ∈ N with (n, m) 6= (0, 0). If n < m then τ(n, m) =
(m, p) with n + 1 ≤ p ≤ m, and if n ≥ m then τ(n, m) = (m, p) with
m ≤ p ≤ n. Further, τ(n,−m) = (−m, p) with −m + 1 ≤ p ≤ n. Similarly,
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τ(−n, m) = (m,−p) with −m ≤ p ≤ n− 1. Finally, τ(−n,−m) = (−m,−p)
with 0 ≤ p ≤ max{n, m}.

Secondly, let τ = τ(x,x+1), thus τ(a, b) = (b,−b−⌊(a + b)x⌋) for a, b ∈ Z.

We note τ2(−n, n) = (−n, n) for n ∈ N, hence (x, x + 1) /∈ D0
2. Again, we

confine ourselves to showing ‖τ(z)‖∞ ≤ ‖z‖∞ for all z ∈ Z
2. Let there-

fore n, m ∈ N. Then τ(n, m) = (m, p) with −m + 1 ≤ p ≤ n. Further,
τ(n,−m) = (−m, p) and τ(−n, m) = (m,−p) with 0 ≤ p ≤ max{n, m}.
Finally, τ(−n,−m) = (−m, p) with −n + 1 ≤ p ≤ m.

For r ∈ R
d we denote by S(r) the set of elements z ∈ Z

d such that the
sequence (τk

r
(z))k∈N is ultimately periodic.

Lemma 2.3. If 0 < x < 1 then (x, x + 1) ∈ D2 \ D0
2.

Proof. (i) Let τ = τ(x,x+1), thus τ(a, b) = (b,−b−⌊(a + b)x⌋) for a, b ∈ Z.

Observe that for n ∈ N we have τ2(−n, n) = (−n, n), hence (x, x + 1) /∈ D0
2.

(ii) First we show that M = {(−n, m) ∈ Z
2 | m ≥ n ≥ 0} is contained in

S(x, x + 1) by using induction on δ(−n, m) = m − n. By (i) this assertion
is clear if δ(−n, m) = 0. Let a = (−n, m) ∈ M with δ(a) > 0; then τ(a) =
(m,−p) with m ≤ p ≤ 2m − n − 1 and τ2(a) = (−p, p + k) ∈ M with
0 ≤ k ≤ p − m. As δ(τ2(a)) < δ(a) we conclude that a ∈ S(x, x + 1).

(iii) From (ii) we immediately derive (−N)2 ⊂ S(x, x+1), as τ(−n,−m)
= (−m, m + l) ∈ M with some l ∈ N.

(iv) We now show that L = {(a, b) ∈ Z
2 | ab ≤ 0} ∪ N

2 is contained in
S(x, x+1) by using induction on ‖·‖1. The induction start is trivial because
(0, 0) ∈ S(x, x + 1). Take z ∈ L \ {0}.

Case I: z = (n,−m) with n, m ∈ N. Then τ(z) = (−m, s) with s =
m − ⌊(n − m)x⌋.

Case I.1: s ≤ 0. Then τ(z) ∈ (−N)2 and we are done by (iii).
Case I.2: s > 0.
Case I.2.1: s ≥ m. Then τ(z) ∈ M and we are done by (ii).
Case I.2.2: s < m. Then n > m, τ(z) ∈ L and ‖τ(z)‖1 = m + s < ‖z‖1,

hence we are done by induction hypothesis.
Case II: z = (−n, m) with n, m ∈ N.
Case II.1: m ≥ n. Then z ∈ M and we are done by (ii).
Case II.2: m < n.
Case II.2.1: m = 0. Then z ∈ (−N)2 and we are done by (iii).
Case II.2.2: m > 0. Then τ(z) = (m, s) with s = l−m, l = −⌊−(n − m)x⌋

and 1 ≤ l ≤ n − m. Clearly, τ(z) ∈ L and −m + 1 ≤ s ≤ n − 2m.
Case II.2.2.1: s ≥ 0. Then ‖τ(z)‖1 = m + s < ‖z‖1 and we are done by

induction hypothesis.
Case II.2.2.2: s < 0. Then ‖τ(z)‖1 = m − s < ‖z‖1 and we are done.
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Case III: z = (n, m) with n, m ∈ N. Then τ(z) = (m,−p) with p ≥ m
and τ2(z) = (−p, q) with q ≥ p. Thus τ2(z) ∈ M and our assertion
follows from (ii).

(v) By (iii) and (iv) we finally see Z
2 ⊆ S(x, x + 1), thereby completing

the proof of the lemma.

Lemma 2.4. If 0 < x < 1 then (x,−x − 1) /∈ D2.

Proof. If m > n > 0 then τ(x,−x−1)(n, m) = (m, p) with p > m. Thus the

sequence (τk
(x,−x−1)(1, 2))k∈N is strictly increasing with respect to the norm

‖ · ‖1.

Proof of Theorem 2.1. (i) By the Schur–Cohn criterion (6) and ([4, Lem-
mas 4.1 and 4.2]) we know that E2 ⊆ D2 ⊆ E2.

(ii) Let (x, y) ∈ L. We are going to show that (x, y) belongs to D2.

Case I: x < 1.
Case I.1: |y| < 1 + x. Then we are done by (i).
Case I.2: |y| = 1 + x.
Case I.2.1: y < 0. Then −y = 1 + x, x ≤ 0, and we are done by Lemma

2.2.
Case I.2.2: y ≥ 0. Thus y = 1 + x.
Case I.2.2.1: x ≤ 0. We are done by Lemma 2.2.
Case I.2.2.2: x > 0. Our assertion drops out of Lemma 2.3.
Case II: x = 1. Then y ∈ {−1, 0, 1} and the assertion can easily be

checked.

(iii) Finally, let (x, y) ∈ D2. By (i) we know |x| ≤ 1 and |y| ≤ 1 + x. We
have to show that (x, y) ∈ D.

Case I: x < 1.
Case I.1: |y| < 1 + x. Then clearly (x, y) ∈ D.
Case I.2: |y| = 1 + x.
Case I.2.1: y ≥ 0. Then y = 1 + x and (x, y) ∈ D.
Case I.2.2: y < 0. Then −y = 1 + x and by Lemma 2.4 we have x ≤ 0,

hence (x, y) ∈ D.
Case II: x = 1. Then (1, 2) /∈ D2 because it is easily seen by induction that

for all k ∈ N there exists some n ∈ N, n > k such that τk
(1,2)(−1, 2) ∈

{(n,−(n + 1)), (−n, n + 1)}.
Similarly (1,−2) /∈ D2 because for a, b ∈ Z we find τ(1,−2)(a, b) =
(b, 2b − a), yielding ‖τ(1,−2)(a, b)‖∞ > ‖(a, b)‖∞ for b > a > 0.

The result now follows easily.

(6) See e.g. [18].
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Corollary 2.5. We have D0
2 ⊂ E2.

Proof. Since D0
2 ⊂ D2 ⊂ E2 we have to show that D0

2 ∩ ∂E2 = ∅. In view
of Lemmas 2.2–2.4 it remains to show

{(1, y) ∈ R
2 | −2 ≤ y ≤ 2} ∩ D0

2 = ∅.
In fact, assume (1, y) ∈ D0

2 for some y ∈ R. Pick z ∈ Z
2 \ {0} and choose

the minimal m ∈ N with τm
(1,y)(z) = 0. Then τm−1

(1,y) (z) = (a, 0) with some

a ∈ Z \ {0}. However, the relation τ(1,y)(a, 0) = 0 is impossible.

Remark 2.6. Let r = (1, y) ∈ R
2 with 0 < y < 1. The first few elements

of the sequence (τk
r
(z))k∈N may grow considerably for certain z ∈ Z

2 \ {0}.
Thus it seems to be difficult to show that, as we conjecture, for each fixed z ∈
Z

2\{0} all elements of this sequence remain in a bounded region. Only some
minor examples can be given here. Set N := max

{

n ∈ N | n < (1 − y)−1
}

.
Then

(i) {(a, b) ∈ Z
2 | ‖(a, b)‖∞ ≤ 2, |a + ⌊by⌋| ≤ 2} ⊂ S(r).

(ii) If 0 ≤ n ≤ N then (0, n) ∈ S(r) with period length 6n + 1.
(iii) {(−2, 3), (N +1, 1)}∪{(N +1,−k), (k,−(N +1)) ∈ Z

2 | 0 ≤ k ≤ N}
∪ ⋃N

n=0({(k,−n), (n,−k) ∈ Z
2 | 0 ≤ k ≤ n}

∪ {(0, n), (n + 1,−n), (n + 1,−(n − 1)}) ⊂ S(r).

The reader will find partial results concerning this question in [5].

3. Several subsets of D0
d. In this section we give unified versions of

results of Hollander [14], Kovács and Pethő [17], Pethő [20] (see also [3, The-
orem 2.3]) as well as Frougny and Solomyak [11]. These results will be stated
in the language of SRS and can be transformed to characterization results
on β-expansions and canonical number systems, respectively, by applying
the correspondence results in [4, Theorems 2.1 and 3.1].

In the following, we employ Hollander’s framework and additionally make
use of the idea of the “set of witnesses” invented independently by Bru-
notte [10] and Scheicher and Thuswaldner [24]. This makes the proofs sub-
stantially simpler and we shall have a way to describe what happens on the
boundary of the region that Hollander gave (see Corollary 3.6).

Before stating the results, we review the algorithms contained in [4, The-
orems 5.1 and 5.2] in a convenient form. For i ∈ {1, . . . , d} let ei be the ith
canonical basis vector of R

d and set rd+1 = 1. For a given r = (r1, . . . , rd),
we say that a set V ⊂ Z

d is a set of witnesses if ±ei ∈ V (1 ≤ i ≤ d) and
if for each (z1, . . . , zd) ∈ V the element (z2, . . . , zd+1) belongs to V provided
that

(3.1) −1 < r1z1 + · · · + rd+1zd+1 < 1.
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Let G(V) be a graph with vertices V and edges defined by (z1, . . . , zd) →
(z2, . . . , zd+1) if and only if

(3.2) 0 ≤ r1z1 + · · · + rd+1zd+1 < 1.

We say that (a1, . . . , ad); ad+1, . . . , aL is a period of length L in the graph
G(V) if there are edges

(ai, . . . , ai+d−1) → (ai+1, . . . , ai+d)

for each i ∈ Z. Here ai (i ∈ Z) is naturally defined by periodicity: ai = ai+L.
By definition, for each vertex there exists exactly one outgoing edge. The

result in [4, Theorem 5.1] states the following.

Lemma 3.1. If every infinite walk in the graph G(V) ends up in the trivial

cycle 0 → 0 then r ∈ D0
d.

Suppose that π = (a1, . . . , ad); ad+1, . . . , aL is a period of length L. Ob-
viously, π is a period of τr if and only if r ∈ Dd satisfies

0 ≤ r1ai + · · · + rd+1ad+i < 1 (i ∈ N).

Since by periodicity this is a finite set of inequalities it determines a (possibly
degenerate) polyhedron P (π) ⊂ R

d. We call this polyhedron the cutout

polyhedron corresponding to π. Note that if (a1, . . . , ad) 6= 0 then P (π) ∩ D0
d

= ∅ since each r ∈ P (π) has period π and is therefore not an SRS. So each
non-trivial period π “cuts out” a polyhedron from Dd.

In [4, Theorem 5.2] it is shown that a similar algorithm even works for
the convex hull H of finitely many points r1, . . . , rk ∈ Dd. In particular, the
following result was proved.

Lemma 3.2. Let H be as above. If the diameter of H is sufficiently small

then there is an algorithm for the construction of a graph (V, E) having the

following properties:

(1) ±e1, . . . ,±ed ∈ V.

(2) If = (z1, . . . , zd) ∈ V, then (z2, . . . , zd+1) ∈ V if and only if

zd+1 ∈ [ min
1≤i≤k

{⌊−riz⌋}, max
1≤i≤k

{−⌊riz⌋}] ∩ Z.

Furthermore, we put an edge (z1, . . . , zd) → (z2, . . . , zd+1) ∈ E if we

even have

zd+1 ∈ [ min
1≤i≤k

{−⌊riz⌋}, max
1≤i≤k

{−⌊riz⌋}] ∩ Z.

(3) H ∩ D0
d = H \ ⋃

π P (π), where the union is taken over all non-zero

primitive cycles π of (V, E).

Specifically , (V, E) can be constructed by the following algorithm. Start with

V0 := {±e1, . . . ,±ed}. Given Vi (i ≥ 0) we construct Vi+1 by (2). This is
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done until Vi = Vi+1 =: V. The edges E between the vertices V are defined

by (2).

This lemma is a slight improvement of [4, Theorem 5.2] since the number
of edges in the graph is diminished. However, the proof remains the same.
We only have to note that the edges occurring in the present lemma are
enough to guarantee that each graph given by a point r ∈ H according to
Lemma 3.1 is a subgraph of (V, E).

If the algorithm given in Lemma 3.2 does not converge, we have to subdi-
vide H into several parts and perform the algorithm for each of these parts.
For further details on this algorithm we refer to [4, Theorem 5.2] and the
discussion after its proof.

The next theorem together with its proof is a slight modification of [7,
Corollary 1].

Theorem 3.3. If
∑d

i=1 |ri| ≤ 1 then Ud = {(z1, . . . , zd) | zi ∈ {0,±1}}
is a set of witnesses for r. Further if ri ≥ 0 for i = 1, . . . , d and

∑d
i=1 ri < 1

then r ∈ D0
d.

Proof. By
∑d

i=1 |ri| ≤ 1, we have |∑d
i=1rizi| ≤ ∑d

i=1 |ri| ≤ 1. Thus
zd+1 ∈ {0,±1} by (3.1), which shows that Ud is a set of witnesses. Further

if
∑d

i=1 |ri| < 1 then r ∈ Ed, i.e. τr is contracting. Thus it suffices to show
that the only period in G(Ud) is the 0-cycle if ri ≥ 0 for i = 1, . . . , d and
∑d

i=1 ri < 1. Suppose that (a1, . . . , ad); ad+1, . . . , aL is a period in G(Ud).
Assume that there exists an index i such that ai = −1. Then shifting indices,
we have

0 ≤ r1a1 + · · · + rd+1ad+1 < 1

with ad+1 = −1. This implies that 1 ≤ ∑d
i=1 riai ≤

∑d
i=1 ri < 1, which is a

contradiction. Thus ai ≥ 0 for each i. Assume that there exists i such that
ai = 1. Shifting indices again, we have 0 ≤ r1a1 + · · · + rd+1ad+1 < 1 with

ad+1 = 1. But this implies another contradiction 0 ≤ ∑d
i=1 riai < 0. The

result now follows from Lemma 3.1.

We can also generalize [6, Theorem 3.5].

Theorem 3.4. If
∑d

i=1 |ri| < 1 and there exists exactly one index k in

{1, . . . , d} such that rd+1−k < 0, then r ∈ D0
d if and only if

∑

1≤j≤d/k rd+1−kj

≥ 0.

Proof. By Theorem 3.3, Ud is a set of witnesses. First if
∑

0≤j≤d/k rd+1−kj

< 0 then the period 0, . . . , 0, 1 of length k is in G(Ud). Thus r 6∈ D0
d, which

shows the necessity of the condition. Let us show the sufficiency. Assume
that there exists a non-zero period (a1, . . . , ad); ad+1, . . . , aL in G(Ud). By
the same discussion as in the proof of Theorem 3.3, ai ≥ 0 for all i. Shifting
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indices, we have 0 ≤ r1a1 + · · · + rd+1ad+1 < 1 with ad+1 = 1. This shows
that ad+1−k = 1 since d + 1 − k is the only index such that rd+1−k < 0.
Repeating this, we have ad+1−kj = 1 for all j = 0, 1, . . . . However this shows
that

d+1
∑

i=1

riai ≥ 1 +
∑

1≤k≤d/k

rd+1−kj ≥ 1,

which contradicts (3.2). The result now follows from Lemma 3.1.

We say that (z1, . . . , zd) ∈ Ud is sign alternating if zizj ≤ 0 for any pair
of positive integers i < j having the property that zk = 0 for each i < k < j.
In other words, ignoring 0 the numbers 1 and −1 occur alternatively (7).
Define the set

Wd = {(z1, . . . , zd) ∈ Ud | (z1, . . . , zd) is sign alternating}.
For example,

W1 = {−1, 0, 1},
W2 = {(−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0)},
W3 = {(−1, 0, 0), (−1, 0, 1), (−1, 1,−1), (−1, 1, 0), (0,−1, 0),

(0,−1, 1), (0, 0,−1), (0, 0, 0), (0, 0, 1), (0, 1,−1),

(0, 1, 0), (1,−1, 0), (1,−1, 1), (1, 0,−1), (1, 0, 0)}.
An easy induction argument shows that the cardinality of Wd is 2d+1−1.
We say that a period (a1, . . . , ad); ad+1, . . . , aL is sign alternating if each
(ai, . . . , ai+d−1) is sign alternating for all i ∈ N.

Theorem 3.5. If 0 ≤ r1 ≤ · · · ≤ rd ≤ 1 then Wd is a set of witnesses

for r. Further if 0 ≤ r1 ≤ · · · ≤ rd < 1 then r ∈ D0
d.

Proof. Note that ±ei ∈ Wd (1 ≤ i ≤ d). Assume that (z1, . . . , zd) 6= 0.
Let j be the maximum index in {1, . . . , d} for which zj 6= 0. Then by the

sign alternating property, the sum
∑d

i=1 rizi takes a value between 0 and
sign(zj)rj . Thus (3.2) implies zjzd+1 ≤ 0. This shows that Wd is a set of
witnesses. Further if 0 ≤ r1 ≤ · · · ≤ rd < 1 then r ∈ Ed, i.e. τr is contracting
(cf. [9]). Thus by Lemma 3.1 it suffices to show that the only period in G(Wd)
is the trivial 0-cycle. Note that each period in G(Wd) is sign alternating by
definition. Suppose that (a1, . . . , ad); ad+1, . . . , aL is a non-zero period in
G(Wd). By shifting indices and by (3.2), we have

0 ≤ r1a1 + · · · + rd+1ad+1 < 1

with ad+1 = −1. By the left inequality, there must be an index j ∈ {1, . . . , d}
such that aj = 1. Take the maximal j with aj > 0. Then ak = 0 for

(7) This sign alternating set first appeared in Scheicher [23].
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j < k < d + 1 and 0 ≤ ∑d
i=1 riai ≤ rj < 1 by the sign alternating property.

This gives a contradiction. Thus ai ≥ 0 for all i. Assume that there exists
an index i such that ai = 1. Shifting indices again we have 0 ≤ r1a1 + · · ·+
rd+1ad+1 < 1 with ad+1 = 1. By the right inequality, there must exist an
index j ∈ {1, . . . , d} with aj = −1, which is a contradiction.

Theorems 3.3–3.5 give a pretty large SRS region in D0
d. Moreover one

can discuss the boundary of these regions. In fact, Theorems 3.3 and 3.5

give a set of witnesses when 0 ≤ r1 ≤ · · · ≤ rd ≤ 1 or
∑d

i=1 |ri| ≤ 1.
Thus we can describe the sets {r ∈ D0

d ∩ Ed | 0 ≤ r1 ≤ · · · ≤ rd ≤ 1} and

{r ∈ D0
d ∩ Ed | ∑d

i=1 |ri| ≤ 1} including their boundaries explicitly by using
the algorithm in Lemma 3.1.

The remaining part of the paper is devoted to the characterization of
D0

2. It is clear that D0
2 is a subset of D2. However, by [4, Example 4.7] and

Corollary 2.5 we even see that D0
2 ⊂ D′

2 where D′
2 is the trapezium

D′
2 = {(x, y) | 0 ≤ x < 1, −x < y < x + 1}

depicted in Figure 1. Theorems 3.3–3.5 imply that

{(x, y) ∈ R
2 | 0 ≤ x ≤ y < 1},

{(x, y) ∈ R
2 | x ≥ 0, 0 ≤ x + y < 1, y > x − 1}

are contained in D0
2 (cf. Figure 1). We now give a characterization result

for the boundary of these regions. In the following we frequently denote by
∆(a, b, c) the closed plane triangle with vertices a, b, c ∈ R

2.

Corollary 3.6. Let

F1 = {(x, y) ∈ R
2 | 0 ≤ x ≤ y ≤ 1},

F2 = {(x, y) ∈ R
2 | x ≥ 0, 0 ≤ x + y ≤ 1, y ≥ x − 1},

F = (F1 ∪ F2) \ {(0, 1), (1, 0), (1, 1)}.
Then F ⊂ D0

2, and (0, 1), (1, 0), (1, 1) ∈ D2 \ D0
2.

Proof. Note that (F1 ∪ F2) \ E2 = {(0, 1), (1, 0), (1, 1)}. For these excep-
tional points we have (0, 1), (1, 0), (1, 1) ∈ D2 \ D0

2 by Theorem 2.1. Define
three triangles ∆1 = ∆((0, 0), (0, 1), (1, 1)), ∆2 = ∆((0, 0), (0, 1), (1, 0)) and
∆3 = ∆((0, 0), (1, 0), (1,−1)). Lemma 3.1 can be applied to each point of
these triangles. It is easy to check that at each point this algorithm yields
exactly the set V given by Theorems 3.5, 3.4 and 3.3, respectively, as set
of witnesses. We just draw all possible edges according to Lemma 3.1 and
depict their graphs.

For ∆1, we get the graph given in Figure 2. The trivial cycle 0 → 0
and the incoming edges of it (indicated by wavy arrows) are removed. Af-
ter this removal, there are six primitive cycles and we can directly show
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Fig. 2. The graph (V, E) for ∆1

∆1 \ {(0, 1), (1, 1)} ⊂ D0
2 from these by calculating the related cutout poly-

gons. In fact, it can be done even simpler. The two broken arrows appear
only for the points (0, 1) or (1, 0) which have been excluded by Theorem 2.1.
After removing the broken arrows only the primitive cycle (0, 1);−1 remains.
This gives the cutout polygon P ((0, 1);−1) = {(1, 1)}. Thus we proved that
∆1 \ {(0, 1), (1, 1)} ⊂ D0

2.
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Fig. 3. The graph (V, E) for ∆2 without the trivial cycle 0 → 0

Hereafter we omit drawing the trivial cycle and its incoming edges.
For ∆2, the resulting graph is depicted in Figure 3. The broken arrows
appear only for the points (1, 0) and (0, 1). Thus in ∆2 \ {(1, 0), (0, 1)}, the
only non-trivial cycle is given by (−1, 1); 1. The cutout polygon P ((−1, 1); 1)
is easily seen to be empty.

Finally for ∆3, we have the graph depicted in Figure 4. The broken
arrows appear only for the point (1, 0). Therefore in ∆3 \ {(1, 0)} there are
only two relevant cycles (1, 1) and (−1,−1), which are the self-loops 1 → 1
and −1 → −1. Both of the associated cutout polygons are irrelevant.



Radix representations and dynamical systems 33

(0,−1)

//

��

(−1, 0) // (0, 1) //

��

(1, 0)
vv

(−1,−1)
HH

==
{

{
{

{
{

{
{

{
{

{
{

{
{

88
(1,−1)oo

OO

(1, 1)oo
HH

??
�

�
�

�
�

�
�

�
�

�
�

�

(−1, 1)

OO

oo

Fig. 4. The graph (V, E) for ∆3 without the trivial cycle 0 → 0

In general it is easier to examine if a certain region does not belong to
D0

2 than the opposite. The next result contains some regions of D2 \ D0
2.

Proposition 3.7. Set

E1 = {(x, y) | x < 1, y < 2x, 2x/3 + 1 ≤ y},
E2 = {(x, y) | x < 1, x/2 + 1 < y < 2x, y < 2x/3 + 1},
E3 = {(x, y) | x < 1, −x + 1/2 ≤ y < 2x − 2, y < −x/3},
E4 = {(x, y) | x < 1, −2x + 1 ≤ y < −x/2}.

Then

E1 ∪ E2 ∪ E3 ∪ E4 ⊆ D2 \ D0
2.

In fact these regions are the four dark cutout polygons depicted in Figure 1.

Proof. It follows from Theorem 2.1 that Ei is a subset of D2 for i ∈
{1, 2, 3, 4}. Therefore it remains to show that they have empty intersection
with D0

2.
Each of the sets Ei (1 ≤ i ≤ 4) corresponds to a cutout polygon related

to a certain period. Consider the period π4 = (2, 1);−1,−1, 1. From the
definition of a cutout polygon we see that P ((2, 1);−1,−1, 1) is given by
the set of all points (x, y) satisfying

0 ≤ 2x + y − 1 < 1,

0 ≤ x − y − 1 < 1,

0 ≤ −x − y + 1 < 1,

0 ≤ −x + y + 2 < 1,

0 ≤ x + 2y + 1 < 1.

Simplifying this system of inequalities we get

(3.3) P ((2, 1);−1,−1, 1) = {(x, y) | x − 2 < y < −x/2, y ≥ −2x + 1}.
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From this we see that E4 = P ((2, 1);−1,−1, 1) ∩ Dd and the proposition is
proved for E4. The regions E1, E2 and E3 correspond to longer cycles. With
the same type of argument we can show that

E1 = P ((1,−2); 3,−3, 3,−2, 1) ∩ Dd,

E2 = P ((1,−2); 3,−2, 1) ∩ Dd,

E3 = P ((2,−1);−2, 1, 3, 1,−2,−1, 2) ∩ Dd.

This proves the result (8).

Remark 3.8. It is possible to show an analogue of Corollary 3.6 for D3

also. In fact, let

F1 = {(x, y, z) ∈ R
3 | 0 ≤ x ≤ y ≤ z ≤ 1},

F2 = {(x, y, z) ∈ R
3 | x ≥ 0, y ≥ 0, 0 ≤ x + y + z ≤ 1, z ≥ x + y − 1},

F = ((F1 ∪ F2) \ {(0, 1, 0), (0, 1, 1)})
∪{(x, x, 1) ∈ R

3 | x ≥ 0} ∪ {(x, 0, 1 − x) ∈ R
3 | x ≥ 0}.

Then F ⊂ D0
3. The proof of this result is much more involved than that of

Corollary 3.6 and will appear elsewhere.

4. Subsets of D0
2 near to the boundary of D2. The characterization

of D0
2 becomes more and more difficult the nearer we approach ∂D2. In this

section we show two characterization results of D0
2 near the boundary of D2.

4.1. An SRS region near the upper boundary of D2. In this subsection
we describe another idea to exhibit a region belonging to D0

2. Let R be the
subset of D2 given by

R = {(x, y) ∈ R
2 | 0 < x < 1, y > 0, y < x + 1, x < y2/4}.

For (x, y) ∈ R consider the characteristic polynomial of the matrix (9)
(

0 1

−x −y

)

given by χ(t) = t2 + yt + x. Denote by α and β the two roots of χ(t). As
(x, y) ∈ R, α and β are real and have modulus less than 1. Clearly, we have
y = −(α +β) > 0 and x = αβ. As χ(0) = x > 0, χ(−1) = 1− y +x > 0 and
χ(−y/2) < 0, we may assume −1 < α < β < 0.

We denote by

Π(x, y) = {a ∈ Z
2 | τ l

(x,y)(a) = a for some l > 0}
the purely periodic elements associated to τ(x,y). For an element a ∈ Π(x, y)
of period length L, i.e. (a1, a2); a3, . . . , aL, we let for convenience Ξa =

(8) Explicit representations of these cutout polygons are given in Section 5.
(9) See [4, Section 4].
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. . . a−2a−1a0a1a2 . . . aL . . . be the bi-infinite periodic word generated by a.
If ai is a letter in the word Ξa then we will write ai ∈ Ξa.

Proposition 4.1. Let (x, y) ∈ R and a ∈ Π(x, y). Then

β

1 − β2
≤ ai+1 − αai ≤

1

1 − β2
,(4.1)

α

1 − α2
≤ ai+1 − βai ≤

1

1 − α2
(4.2)

for all consecutive letters ai, ai+1 ∈ Ξa.

Proof. We only show (4.1); (4.2) is proved in a similar way. By the defi-
nition of τ(x,y) we have, for i ∈ Z,

0 ≤ xai+1 + yai+2 + ai+3 < 1.

Rewrite this as

(4.3) 0 ≤ (ai+3 − αai+2) − β(ai+2 − αai+1) < 1.

Multiplying (4.3) by β < 0 and shifting indices of (4.3), respectively, we get

β < β(ai+3 − αai+2) − β2(ai+2 − αai+1) ≤ 0,

0 ≤ (ai+4 − αai+3) − β(ai+3 − αai+2) < 1.

Adding these two chains of inequalities, we see that

β < (ai+4 − αai+3) − β2(ai+2 − αai+1) < 1.

Repeating this and shifting indices, we have

· · ·+β5 +β3 +β < (ai+2−αai+1)−βn+1(ai−n+1−αai−n) < 1+β2 +β4 + · · ·
for all n ∈ N. As Ξa is a periodic word its letters are uniformly bounded.
Thus, taking n → ∞ we get the result.

Remark 4.2. As α 6= β, Proposition 4.1 gives lattice points in a paral-
lelogram. However, if α is near to −1 the above inequalities give neither a
uniform bound nor a “uniform” algorithm (10) to determine whether or not
(x, y) belongs to D0

2.

For κ ∈ R let
Rκ = {(x, y) ∈ R | x < κy − κ2}.

In the following we assume 0 < κ ≤ γq where q > 0 is an integer and γq

is the positive root of the polynomial qt3 + qt2 − qt − q + 1; in particular
we have γ1 = 1/ω with ω = (1 +

√
5)/2. Observe that for (x, y) ∈ Rκ, the

following inequalities hold:

α < −κ < β,
1

(1 − α)(1 − β2)
< q.

(10) Like the one in Lemma 3.2.
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Lemma 4.3. Let (x, y) ∈ Rκ and (a, b) ∈ Π(x, y) with min{|a|, |b|} ≥ q.
Then ab ≤ 0.

Proof. Let us assume ab > 0. If a, b > 0 then by Proposition 4.1 we find
(1 − α) min{a, b} ≤ b − αa ≤ 1/(1 − β2), yielding

q ≤ min{a, b} ≤ 1

(1 − α)(1 − β2)
< q,

which is impossible. Analogously, if a, b < 0 we have β/(1 − β2) ≤ b−αa ≤
(1 − α) max{a, b} yielding the contradiction

−q ≥ max{a, b} ≥ β

(1 − α)(1 − β2)
> βq > −q.

In the following, the (finite) set

Aκ,q =

{

(a, b) ∈ Z
2

∣

∣

∣

∣

|a| < q, − κ

1 − κ2
− q + 1 < b <

1

1 − κ2
+ q − 1

}

will help us to decide whether a given element of Rκ belongs to D0
2.

Lemma 4.4. Let (x, y) ∈ Rκ and (a, b) ∈ Π(x, y) with |a| < q. Then

(a, b) ∈ Aκ,q.

Proof. By Proposition 4.1 we find β/(1 − β2)−(q−1) ≤ b ≤ 1/(1 − β2)+
q − 1, from which we easily deduce our assertion.

Lemma 4.5. Let (x, y) ∈ Rκ and suppose that for all (a, b) ∈ Aκ,q there

exists a k ∈ N such that τk
(x,y)(a, b) = 0. Then (x, y) ∈ D0

2.

Proof. Assume that (x, y) /∈ D0
2. Let a ∈ Π(x, y) be a non-zero periodic

point associated to τ(x,y).
(i) We first observe that |ai| ≥ q for all ai ∈ Ξa. Indeed, if |ai| < q for

some i ∈ Z then (ai, ai+1) ∈ Aκ,q by Lemma 4.4, hence the orbit of a tends
to zero contrary to our hypothesis.

(ii) By the periodicity of Ξa there exists some index i with |ai+2| ≤ |ai+1|.
Using (i) we see that the element (ai+1, ai+2) belongs to the set

E = {(c, d) ∈ Π(x, y) | q ≤ |d| ≤ |c|}.
(iii) We claim that the set E is invariant under τ(x,y). Indeed, for (c, d)

∈ E we clearly have τ(x,y)(c, d) ∈ Π(x, y) \ {0}. We distinguish two cases:

Case 1: d < 0. Then Lemma 4.3 implies c > 0. Since |d| ≤ |c|, we see
that

⌊cx + dy⌋ > cx + dy − 1 ≥ (y − x)d − 1.

Therefore |⌊cx + dy⌋| < |d| + 1, which shows |⌊cx + dy⌋| ≤ |d|. Thus we get
τ(x,y)(c, d) ∈ E.



Radix representations and dynamical systems 37

Case 2: d > 0. Similarly we have c < 0. Since |d| ≤ |c|,
⌊cx + dy⌋ ≤ cx + dy ≤ dy − dx < |d|.

Thus we have |⌊cx + dy⌋| < |d| and again τ(x,y)(c, d) ∈ E.

(iv) We have shown that |ai+1| ≤ |ai| for each i. By periodicity this is
possible only if |ai+1| = |ai|. Since ai 6= 0, Lemma 4.3 implies that a2i−1 = g
and a2i = −g for some g 6= 0. Going back to the definition of τ(x,y), we have

0 ≤ xg − yg + g < 1, 0 ≤ −xg + yg − g < 1.

As 1−y+x > 0, this is possible only for g = 0. This yields a contradiction.

We are now in a position to state the first theorem of this subsection.

Theorem 4.6. The set

{(x, y) ∈ R | x < 1/ω2 or y > ωx + 1/ω}
is contained in D0

2.

Proof. As x = κy − κ2 is the tangent line to x = y2/4 at (κ2, 2κ), we
have

⋃

0<κ≤1/ω

Rκ = {(x, y) ∈ R | x < 1/ω2 or y > ωx + 1/ω}.

Therefore it suffices to show that if κ ≤ 1/ω, then Rκ ⊂ D0
2. Taking q = 1

we get

Aκ,1 =

{

(0, b) ∈ Z
2

∣

∣

∣

∣

− κ

1 − κ2
< b <

1

1 − κ2

}

,

by the definition of Aκ,q, and

−1 ≤ − κ

1 − κ2
< b <

1

1 − κ2
≤ ω < 1.7.

Thus b ∈ {0, 1}. As R ⊂ {(x, y) | 0 < x < 1, x < y < x + 1}, we easily see
by direct computation that τ4

(x,y)(0, 1) = 0 for (x, y) ∈ R. Thus Lemma 4.5

concludes the proof.

It is of course possible to apply Lemma 4.5 to q ≥ 2, but the correspond-
ing graphs become very large and beyond hand computation. We need the
following lemma.

Lemma 4.7. Let H ⊂ Dd be the convex hull of r1, . . . , rk ∈ Dd and let

A ⊂ Z
d be a finite set. Let GA(H) = (V, E) be the smallest graph with the

following properties:

(1) A ⊂ V .

(2) If z = (z1, . . . , zd) ∈ V then (z2, . . . , zd, j) ∈ V and (z1, . . . , zd) →
(z2, . . . , zd, j) ∈ E if and only if

j ∈ [ min
1≤i≤k

{−⌊riz⌋}, max
1≤i≤k

{−⌊riz⌋}].
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If each infinite walk in GA(H) ends up in the zero cycle 0 → 0 then

∀r ∈ H ∀a ∈ A ∃k ∈ N : τk
r
(a) = 0.

Proof. This follows immediately from the definition of τr and the fact
that min1≤i≤k{−⌊riz⌋} ≤ −⌊rz⌋ ≤ max1≤i≤k{−⌊riz⌋} holds for all r ∈ H
(cf. [4, Theorem 4.6]).

The graph GA(H) can be constructed in an analogous way to the graph
described in Lemma 3.2.

Theorem 4.8. Rκ ⊂ D0
2 for κ = γ2, γ3, γ4, γ5 and γ6 ≃ 0.956458072.

Proof. Suppose that the theorem is already proved for q − 1. Start with
an initial set of vertices V = Aγq,q with q ≥ 2 and construct GV (H) with

H = ∆((γq−1, 1 + γq−1), (γq, 1 + γq), (γq−1 + γq, γq−1 + γq))

= ∆((0, 1), (0, γq), (γq, 1 + γq)) \ Int∆((0, 1), (0, γq−1), (γq−1, 1 + γq−1)),

according to Lemma 4.7 (note that we may assume that the interior of
∆((0, 1), (0, γq−1), (γq−1, 1 + γq−1)) is a subset of D0

2).
Delete edges (−a, a) → (a,−a) for a = 1, 2, . . . , which obviously only

correspond to the boundary of Rγq
. Delete also the trivial cycle (0, 0) →

(0, 0). We call the resulting graph Gq. The numbers of vertices and edges
of Gq are listed in Table 1. If Gq is acyclic, then Rγq

⊂ D0
2 by Lemma 4.5. In

Table 1. Size of Gq

q Vertices Edges

2 294 538

3 1398 2292

4 3991 6554

5 8732 14408

6 16258 26951

fact, one can check that Gq is acyclic for q = 2, 3, 4, 5, 6.

4.2. An SRS region near the point (1,−1). Our first aim is to show that
the set

S := {(1 − T,−1 + cT ) | 0 < T ≤ 1/30, 1 ≤ c < 2}
is contained in D0

2. In particular, this shows that (1,−1) is not a critical
point (11). Despite this being a very small region its characterization is the
crucial part in proving Theorem 5.6, which characterizes a very big SRS
region.

(11) For the definition see [4, Definition 7.1].
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4.2.1. Basic definitions. For some results it is convenient to deal with
the following region:

R := {(1 − T,−1 + cT ) | 0 < T ≤ 1/30, 1 ≤ c ≤ 2}.
Let r ∈ D2 and (u, v) ∈ Z

2. We will need the following abbreviations:

α := ⌊cTv − Tu⌋,
β := ⌊−cTα + (c − 1)Tv − cTu⌋,
γ := ⌊−cTβ − (c − 1)Tα − Tv − (c − 1)Tu⌋.

Furthermore, in what follows, we will set

(u2, v2) := τ3
r
(u, v).

From the definition of τr this implies that

(4.4) u2 = −α − β − u, v2 = −β − γ − v.

The proof of the above-mentioned characterization result relies on a cer-
tain “structural stability” of τr in r. In fact, if we look at the orbit of a point
(x, y) of τr with r ∈ R then essentially only one shape can occur. If T−1 is
small compared to the modulus of the coordinates of (x, y) then the orbit of
(x, y) is of a shape similar to the orbit in Figure 5. However, if T−1 is large
compared to the coordinates (x, y) then the orbit looks similar to the one
depicted in Figure 6. (Note that near the origin of Figure 5 the orbit is of a
similar shape to the orbit in Figure 6.)

–300

–200

–100

100

200

300

–300 –200 –100 100 200 300

Fig. 5. An example of an orbit

Looking at several examples of orbits of τr (r ∈ R) we are led to con-
jecture that the following facts are always true: Each of the orbits consists
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Fig. 6. Another example of an orbit

of six “branches” (see Figures 5 and 6). If we number consecutively these
branches from 1 to 6 then the following holds: If (x, y) is part of branch 6
then τk

r
(x, y) is part of branch k mod 6. Moreover, for points (x, y) ∈ Z

2

and r ∈ R we always observe that τ3
r
(x, y) is “near” to the point (−x,−y).

Because of this fact the third iterate of τr plays a big role in our proofs.
(Since τ6

r
(x, y) is “near” to (x, y) in the orbits under consideration it may

look more natural to deal with τ6
r

rather than τ3
r
. However, this would re-

sult in much more involved proofs.) Let r ∈ R and (x, y) ∈ Z
2. Consider an

arbitrary branch of the orbit of (x, y). If this branch enters the second or
fourth quadrant, it is farther away from the origin than it is when it exits
this quadrant.

Making these observations precise we will construct a sequence of points
of each orbit with decreasing distance from the origin in the following way.
Find an element (x0, y0) of the orbit of (x, y) contained in the second or
fourth quadrant and follow (by iteration of τ3

r
) the branches of (x0, y0) and

τ3
r
(x0, y0) as long as they stay in the second and fourth quadrant, respec-

tively. Denote the last element of this iteration process which stays in the
second or fourth quadrant by (x1, y1). It turns out that (x2, y2) = τ2

r
(x1, y1)

is again contained in the second or fourth quadrant (but on another branch).

Now perform the following algorithm starting with i = 1 and (x
(1)
0 , y

(1)
0 )

:= (x2, y2):

• Follow (by iteration of τ3
r
) the branches of (x

(i)
0 , y

(i)
0 ) and τ3

r
(x

(i)
0 , y

(i)
0 )

as long as they stay in the second and fourth quadrant, respectively.
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Denote the last element of this iteration process which stays in the

second or fourth quadrant by (x
(i)
1 , y

(i)
1 ).

• Set (x
(i)
2 , y

(i)
2 ) = τ2

r
(x

(i)
1 , y

(i)
1 ). This point is again contained in the

second or fourth quadrant (but on another branch).

• If max{|x(i)
2 |, |y(i)

2 |} > 25 then start again with (x
(i+1)
0 , y

(i+1)
0 ) :=

(x
(i)
2 , y

(i)
2 ).

We will show that either max{|x(i+1)
0 |, |y(i+1)

0 |} < max{|x(i)
0 |, |y(i)

0 |} or

max{|x(i)
0 |, |y(i)

0 |} ≤ 25. Thus the algorithm terminates after finitely many
steps, showing that each orbit contains a point (x′, y′) with max{|x′|, |y′|}
≤ 25. Now in order to prove our result it remains to show that for each
r ∈ S each (x′, y′) with max{|x′|, |y′|} ≤ 25 has an orbit ending at (0, 0).
This is done with computer aid.

4.2.2. A series of lemmas. Before we can give our result, we need a
series of technical lemmas. Some of these are valid even in larger domains
than R; u2 and v2 are always defined as in (4.4).

Lemma 4.9. Let u ≥ 0 and v ≤ 0. Furthermore, suppose that u ≥ 2 or

v ≤ −1. If c ∈ [1, 2] and 0 < T ≤ 1/5 then

u + u2 ≥ v + v2.

Proof. By (4.4) the claim is equivalent to γ ≥ α. First observe that, since
(c − 1)Tv − cTu ≤ 0, we have

−cTβ − (c − 1)Tα = −cT ⌊−cTα + (c − 1)Tv − cTu⌋ − (c − 1)Tα

≥ −cT ⌊−cTα⌋ − (c − 1)Tα ≥ T (1 − c + c2T )α.

Inserting this in the definition of γ yields

γ ≥ ⌊T (1 − c + c2T )α − Tv − (c − 1)Tu⌋.
Suppose first that 1 − c + c2T ≤ 0. Since u ≥ 0 and v ≤ 0 we have α ≤ 0
and thus

γ ≥ ⌊−Tv − (c − 1)Tu⌋ ≥ ⌊cTv − Tu⌋ = α.

Now suppose on the contrary that 1 − c + c2T > 0. Since T ≤ 1/5 this can
happen only for c < 5/2 −

√
5/2 < 7/5. Now

γ ≥ ⌊T (1 − c + c2T )α − Tv − (c − 1)Tu⌋
≥ ⌊T (1 − c + c2T )(cTv − Tu) − T (1 − c + c2T ) − Tv − (c − 1)Tu⌋
= ⌊c(1 − c)T 2v + (c − 1)T 2u

+ c3T 3v − c2T 3u − T (1 − c + c2T ) − Tv − (c − 1)Tu⌋.
Since 1− c + c2T < 1, c(1− c)T 2v ≥ 0 and (c− 1)T 2u ≥ 0 this implies that

(4.5) γ ≥ ⌊c3T 3v − c2T 3u − T − Tv − (c − 1)Tu⌋.
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Now we have u ≥ 2 or v ≤ −1. Suppose first that u ≥ 2. Then −T ≥
−1

2Tu and thus

γ ≥ ⌊(c3T 2 − 1)Tv − (c2T 2 + c − 1/2)Tu⌋ ≥ α.

The latter inequality follows because c≤7/5 and T ≤1/5 imply that c3T 2−1
≤ c and c2T 2 + c − 1/2 ≤ 1.

If, on the other hand, v ≤ −1 then −T ≥ Tv and thus

γ ≥ ⌊c3T 3v − (c2T 2 + c − 1)Tu⌋ ≥ α.

The latter inequality follows because c ≤ 7/5 and T ≤ 1/5 imply that
c3T 2 ≤ c and c2T 2 + c − 1 ≤ 1. Thus the lemma is proved.

Lemma 4.10. Let u ≤ 0, v ≥ 0, c ∈ [1, 2] and 0 < T ≤ 1/5. Furthermore,
suppose that u ≤ −4 or v ≥ 2. Then

u + u2 ≤ v + v2.

Proof. It is easy to see that we have to prove γ ≤ α. We first treat the
case v = 0. Since u ≤ 0 we have α ≥ 0. Furthermore, β = ⌊−cT (u + α)⌋.
Since

u + α = u + ⌊−Tu⌋ ≤ u − Tu = (1 − T )u ≤ 0

we also have β ≥ 0. Thus

γ ≤ ⌊−(c − 1)Tu⌋ ≤ ⌊−Tu⌋ = α.

In what follows we may assume v≥1. Observe that, since (c−1)Tv−cTu≥0,
we have

−cTβ − (c − 1)Tα = −cT ⌊−cTα + (c − 1)Tv − cTu⌋ − (c − 1)Tα

≤ −cT ⌊−cTα⌋ − (c − 1)Tα ≤ T (1 − c + c2T )α + cT.

This implies that

γ ≤ ⌊T (1 − c + c2T )α + cT − Tv − (c − 1)Tu⌋.
Suppose first that 1 − c + c2T ≤ 0. Then, as α ≥ 0 and v ≥ 1, we have

γ ≤ ⌊cT − Tv − (c − 1)Tu⌋ ≤ ⌊(c − 1)Tv − (c − 1)Tu⌋ ≤ ⌊cTv − Tu⌋ = α.

Now suppose on the contrary that 1 − c + c2T > 0. Since T ≤ 1/5 this can
happen only for c ≤ 5/2 −

√
5/2 < 7/5. Since 1 − c + c2T < 1 we get

γ ≤ ⌊T (1 − c + c2T )(cTv − Tu) + cT − Tv − (c − 1)Tu⌋(4.6)

≤ ⌊cT 2v − T 2u + cT − Tv − (c − 1)Tu⌋.
Now we have either u ≤ −4 or v ≥ 2. Suppose first that u ≤ −4. Since

c < 7/5 we have Tc ≤ −2
5Tu and this yields

γ ≤ ⌊(cT − 1)Tv − (T + c − 1 + 2/5)Tu⌋.
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Since c ≤ 7/5 and T ≤ 1/5 this implies that γ ≤ α. If, on the other hand,
v ≥ 2, we have cT ≤ Tv,

γ ≤ ⌊cT 2v − (T + c − 1)Tu⌋,
and the result follows as well.

Lemma 4.11. Let u ≥ 0 and v ≤ −2 and assume that

(4.7) −v ≥ 3u/2.

If 0 < T ≤ 1/10 and c ∈ [1, 2] then

u + u2 ≥ 2(v + v2).

Proof. In view of (4.4) we have to show 2γ + β ≥ α. As in Lemma 4.9
we derive

γ ≥ ⌊T (1 − c + c2T )α − Tv − (c − 1)Tu⌋.
Furthermore, since α ≤ 0 we have

β = ⌊−cTα + (c − 1)Tv − cTu⌋ ≥ ⌊(c − 1)Tv − cTu⌋.
We distinguish two cases. First suppose that 1− c+ c2T ≤ 0. Combining

the above estimates for α, β and γ and using (4.7) we derive

2γ + β ≥ 2⌊T (1 − c + c2T )α − Tv − (c − 1)Tu⌋ + ⌊(c − 1)Tv − cTu⌋
≥ 2⌊(1 − c + 3/2)Tu⌋ + ⌊(c − 1)Tv − cTu⌋.

Since c ≤ 2 and u ≥ 0, the first term in the second line is non-negative.
Thus using (4.7) again we get

2γ + β ≥ ⌊(c − 1)Tv − cTu⌋ ≥ ⌊cTv − (c − 3/2)Tu⌋ ≥ ⌊cTv − Tu⌋ = α

and we are done in this case.
Now suppose that 1 − c + c2T > 0. As above this implies that c < 7/5.

As in the proof of Lemma 4.9 (inequality (4.5)), we derive

γ ≥ ⌊c3T 3v − c2T 3u − T − Tv − (c − 1)Tu⌋.
Since v ≤ −2 we have −T ≥ 1

2Tv and this implies

γ ≥ ⌊(c3T 2 − 1/2)Tv − (c2T 2 + c − 1)Tu⌋.
Together with (4.7) this yields

γ ≥ ⌊−(c − 7/4 + T 2(c2 + 3c3/2))Tu⌋.
Since c − 7/4 + T 2(c2 + 3c3/2) ≤ 0 this implies that γ ≥ 0. Thus

2γ + β ≥ β ≥ ⌊(c − 1)Tv − cTu⌋.
Using (4.7) again this yields

2γ + β ≥ ⌊(c − 1)Tv − cTu⌋ ≥
⌊

cTv −
(

c − 3
2

)

Tu
⌋

≥ ⌊cTv − Tu⌋ = α.
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Lemma 4.12. Let u ≤ 0 and v ≥ 6 and assume that

(4.8) v ≥ −3u/2.

If 0 < T ≤ 1/10 and c ∈ [1, 2] then

u + u2 ≤ 2(v + v2).

Proof. We have to show that 2γ + β ≤ α. As in Lemma 4.10 we derive

γ ≤ ⌊T (1 − c + c2T )α + cT − Tv − (c − 1)Tu⌋.
Since α ≥ 0 we have

β ≤ ⌊(c − 1)Tv − cTu⌋.
Again we distinguish two cases. First assume that 1− c + c2T ≤ 0. Since

v ≥ 6 we get, using (4.8) in the form −v ≤ 3u/2,

γ ≤ ⌊cT − Tv − (c − 1)Tu⌋ ≤ ⌊(c/6 − 1)Tv − (c − 1)Tu⌋
≤

⌊

−3
2(c/6 − 1)Tu − (c − 1)Tu

⌋

= ⌊(1 − c + 3/2 − c/4)Tu⌋ ≤ 0.

Note that the last inequality holds because c ≤ 2. Now the desired estimate
follows easily via

2γ + β ≤ β ≤ ⌊(c − 1)Tv − cTu⌋ ≤ ⌊cTv − (c − 3/2)Tu⌋
≤ ⌊cTv − Tu⌋ = α.

Now suppose that 1 − c + c2T > 0. Again this implies that c ≤ 7/5. As
in the proof of Lemma 4.10 (inequality (4.6)), we derive

γ ≤ ⌊cT 2v − T 2u + cT − Tv − (c − 1)Tu⌋.
Since v ≥ 6 we have cT < 1

3Tv. This implies that

γ ≤ ⌊(cT − 2/3)Tv − (c − 1 + T )Tu⌋.
Using (4.8) this implies

γ ≤
⌊(

−3
2Tc − T − c + 2

)

Tu
⌋

≤ 0.

The last inequality is a consequence of T ≤ 1/10 and c ≤ 7/5. Summing up
we get (arguing as in the first part of the proof)

2γ + β ≤ β ≤ ⌊(c − 1)Tv − cTu⌋ ≤ ⌊cTv − Tu⌋ = α.

Lemma 4.13. If u ≥ 0, v ≤ 0, (u, v) 6= (0, 0), c ∈ [1, 2] and 0 < T ≤ 1/4
then u + u2 ≥ 1.

Proof. We have to show that β + α ≤ −1. It is clear that α ≤ −1. If
α = −1 then β ≤ 0 because cT < 1, and the result follows. If α ≤ −2 then

α + β ≤ (1 − cT )α + (c − 1)Tv − cTu ≤ −1.

The latter inequality is true because 1 − cT ≥ 1/2.

Lemma 4.14. Let u ≤ 0, v ≥ 0, c ∈ [1, 2] and 0 < T ≤ 1/2. Then

u + u2 ≤ 0.
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Proof. We have to show that α + β ≥ 0. Note that α ≥ 0. If α = 0 then
obviously β ≥ 0 and we are done. If α ≥ 1 then

α + β = ⌊(1 − cT )α + (c − 1)Tv − cTu⌋
≥ ⌊(1 − cT ) + (c − 1)Tv − cTu⌋ ≥ 0

since 1 − cT ≥ 0.

Lemma 4.15. Let u ≥ 0, v ≤ 0, c ∈ [1, 2], 0 < T ≤ 1/2 and u − v ≤ l.
Then u + u2 ≤ −⌊−3T l⌋ + 1.

Proof. Since u + u2 = −α − β we will establish the desired bound for
−α − β. We have

−α − β = −⌊(1 − cT )α + (c − 1)Tv − cTu⌋
≤ −⌊(1 − cT )(cTv − Tu) + (c − 1)Tv − cTu⌋ + 1

≤ −⌊cTv − Tu + (c − 1)Tv − cTu⌋ + 1

= −⌊(2c − 1)Tv − (1 + c)Tu⌋ + 1.

Since 2c − 1 ≤ 1 + c and u − v ≤ l this implies that

−α − β ≤ −⌊−(1 + c)T l⌋ + 1 ≤ −⌊−3T l⌋ + 1.

Lemma 4.16. Let u ≤ 0, v ≥ 0, c ∈ [1, 2], 0 < T ≤ 1/2 and −u + v ≤ l.
Then u + u2 ≥ ⌊−3T l⌋ − 1.

Proof. It suffices to establish the desired lower bound for −α − β. We
have

−α − β = −⌊(1 − cT )α + (c − 1)Tv − cTu⌋
≥ −⌊(1 − cT )(cTv − Tu) + (c − 1)Tv − cTu⌋
≥ −⌊cTv − Tu + (c − 1)Tv − cTu⌋ = −⌊(2c − 1)Tv − (1 + c)Tu⌋.

Since 2c − 1 ≤ 1 + c and −u + v ≤ l this implies

−α − β ≥ −⌊(1 + c)T l⌋ ≥ −⌊3T l⌋ ≥ ⌊−3T l⌋ − 1.

Lemma 4.17. Let u ≥ 0, v ≤ 0, c ∈ [1, 2], 0 < T ≤ 1/10. If u ≥ 2 or

v ≤ −1, then v2 ≥ 0.

Proof. Note that the assertion is equivalent to γ + β ≤ −v. We have

γ + β ≤ (1 − cT )β − (c − 1)Tα − Tv − (c − 1)Tu

≤ (1 − cT )(−cTα + (c − 1)Tv − cTu) − (c − 1)Tα − Tv − (c − 1)Tu

= (1 − 2c + c2T )Tα + (c − 2 + cT − c2T )Tv − (2c − 1 − c2T )Tu

≤ (1 − 2c + c2T )T (cTv − Tu) + (c − 2 + cT − c2T )Tv

−(2c − 1 − c2T )Tu + (2c − 1 − c2T )T

= (c − 2 + 2cT − 3c2T + c3T 2)Tv

+(1 − 2c − T + 2cT + c2T − c2T 2)Tu + (2c − 1 − c2T )T.
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Note that u ≥ 2 or v ≤ −1. Suppose first that u ≥ 2. Then (2c− 1− c2T )T
≤ 1

2(2c − 1 − c2T )Tu. Thus

γ + β ≤ (c − 2 + 2cT − 3c2T + c3T 2)Tv

+
(

1 − 2c − T + 2cT + c2T − c2T 2 + 1
2(2c − 1 − c2T )

)

Tu

≤ (c − 2 + 2cT − 3c2T + c3T 2)Tv ≤ −v.

These inequalities follow since T ≤ 1/10. If, on the other hand, v ≤ −1,
then

γ + β ≤ (c − 2 + 2cT − 3c2T + c3T 2 − (2c − 1 − c2T ))Tv ≤ −v.

Lemma 4.18. Let u ≤ 0, v ≥ 0, c ∈ [1, 2], 0 < T ≤ 1/10. If max{−u, v}
≥ 3 then v2 ≤ 0.

Proof. We need to show that γ + β ≥ −v. We have

γ + β = ⌊(1 − cT )β − (c − 1)Tα − Tv − (c − 1)Tu⌋
= ⌊(1 − cT )⌊−cTα + (c − 1)Tv − cTu⌋

− (c − 1)Tα − Tv − (c − 1)Tu⌋
≥ ⌊(1 − cT )⌊−cT (cTv − Tu) + (c − 1)Tv − cTu⌋

− (c − 1)Tα − Tv − (c − 1)Tu⌋.
Suppose first that −u = max{−u, v}, i.e. −v ≥ u. Then

−cT (cTv − Tu) + (c − 1)Tv − cTu ≥ −c2T 2v − c(1 − T )Tu

≥ −(c − cT − c2T )Tu ≥ 0.

Thus

γ + β ≥ ⌊−(c − 1)Tα − Tv − (c − 1)Tu⌋(4.9)

≥ ⌊−(c − 1)T (cTv − Tu) − Tv − (c − 1)Tu⌋
= ⌊(−1 − (c − 1)cT )Tv − (c − 1)(1 − T )Tu⌋.

Since c ≤ 2 and T ≤ 1/10 this yields

γ + β ≥ ⌊(−1 − (c − 1)cT )Tv − (c − 1)(1 − T )Tu⌋
≥ ⌊(−1 − (c − 1)cT )Tv⌋ ≥ −v.

Now suppose that v = max{−u, v}. Then

−cT (cTv − Tu) + (c − 1)Tv − cTu ≥ −c2T 2v

and thus as in (4.9) we see that

γ + β ≥ ⌊−c2T 2v⌋ + ⌊(−1 − (c − 1)cT )Tv − (c − 1)(1 − T )Tu⌋.
Since v ≥ 3, c ≤ 2 and T ≤ 1/10,

γ + β ≥ ⌊−c2T 2v⌋ + ⌊(−1 − (c − 1)cT )Tv⌋ ≥ (−1 − (2c − 1)cT )Tv − 2

≥ − 3
10 v − 2 ≥ −v.
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In what follows set (u1, v1) := τ2
r
(u, v); this implies that

u1 = −α + v − u, v1 = −β − α − u.

Lemma 4.19. Let u > 0, v ≤ 0, u2 ≥ 0, v2 ≥ 0, c ∈ [1, 2] and T ≤ 1/10.
If max{u,−v} ≥ 4 then u1 < 0, v1 ≥ 0 and u1 + v1 ≤ 0.

Proof. Since v1 = u2 we trivially have v1 ≥ 0. In order to prove that
u1 < 0 note that

u1 = −α + v − u ≤ −α + min{v,−u}.
If −v = max{u,−v} then

u1 ≤ −⌊cTv − Tu⌋ + v ≤ −(cTv − Tu) + v + 1 ≤ −(c + 1)Tv + v + 1 < 0.

If u = max{u,−v} then

u1 ≤ −⌊cTv − Tu⌋ − u ≤ −(cTv − Tu) − u + 1 ≤ (c + 1)Tu − u + 1 < 0

and we are done. To prove u1+v1 ≤ 0 observe that u1+v1 = −2α−β+v−2u.
If −v = max{u,−v} we get (note u ≥ 1 and ⌊(c + 1)Tv⌋ ≤ α ≤ 0)

u1 + v1 = −2α − ⌊−cTα + (c − 1)Tv − cTu⌋ + v − 2u

< −2α + cTα − (c − 1)Tv + cTu + 1 + v − 2u

≤ −2α − (c − 1)Tv + cTu + v − 2u + 1

≤ −2⌊(c + 1)Tv⌋ − (c − 1)Tv − cTv + v − 2 + 1

< 2(−(c + 1))Tv + 2 − (2c − 1)Tv + v − 1

= −(2(c + 1) + 2c − 1)Tv + v + 1 = (1 − (4c + 1)T )v + 1 ≤ 1.

The last inequality follows from the restriction on T . Since u1 + v1 is an
integer, u1 + v1 < 1 implies that u1 + v1 ≤ 0. If u = max{u,−v} we derive

u1 + v1 ≤ −2α + cTα − (c − 1)Tv + cTu + v − 2u

≤ −(2 − cT )α + (c − 1)Tu + cTu − 2u

≤ −(2 − cT )⌊−(c + 1)Tu⌋ + (2c − 1)Tu − 2u

< (2 − cT )((c + 1)Tu + 1) + (2c − 1)Tu − 2u

= (4c + 1 − cT (c + 1))Tu + 2(1 − u) − cT

≤ ((4c + 1)T − 2)u + 2 − cT < 0.

The last inequality follows from the restriction on T .

Lemma 4.20. Let u < 0, v ≥ 0, u2 ≤ 0, v2 ≤ 0, c ∈ [1, 2] and T ≤ 1/7.
If max{u,−v} ≥ 2 then we have u1 > 0, v1 ≤ 0 and u1 + v1 ≥ 0.

Proof. Again v1 ≤ 0 follows because v1 = u2. Furthermore, we have

u1 ≥ −cTv +Tu+ v−u = (1− cT )v− (1−T )u ≥ (1−T )(−u) ≥ 1−T > 0.
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Thus it remains to prove that u1 + v1 ≥ 0. Since u1 + v1 = −2α−β + v−2u
we have (note α ≥ 0)

u1 + v1 = −2α − ⌊−cTα + (c − 1)Tv − cTu⌋ + v − 2u

≥ −2α + cTα − (c − 1)Tv + cTu + v − 2u

≥ −2α − (c − 1)Tv + cTu + v − 2u

≥ −2(cTv − Tu) − (c − 1)Tv + cTu + v − 2u

= (T − 3cT )v + (c + 2)Tu + v − 2u

= (1 + T (1 − 3c))v + ((c + 2)T − 2)u

> (1 − 5T )v − 2u ≥ −2u ≥ 2.

4.2.3. The characterization result and its proof. First we shall prove the
following result.

Theorem 4.21. In order to characterize the SRS in the region R we

need at most 512 cutout polygons. Thus (1,−1) is not a critical point.

For l ∈ N we need the following sets:

M
(1)
l := {(u, v) | u > 0, v ≤ 0, u − v ≤ l, u − 2v ≤ 8l/5 − ⌊−3T l⌋ + 1},

M
(2)
l := {(u, v) | u < 0, v ≥ 0, v − u ≤ l, 2v − u ≤ 8l/5 − ⌊−3T l⌋ + 1},
Ml := M

(1)
l ∪ M

(2)
l .

Now we use the lemmas of the previous subsection to establish the fol-
lowing results. From now on we always assume that r ∈ R.

We want to show that the orbit of each element (x, y) ∈ Z
2 contains an

element of M25. In a first step we show that we can confine ourselves to
studying elements which are contained in Ml for a certain l ∈ N.

Lemma 4.22. Let r ∈ R and (x, y) ∈ Z
2 with max{|x|, |y|} ≥ 20. Then

there exist l, n ∈ N such that τn
r
(x, y) ∈ Ml.

Proof. Using the definition of τr it is easy to see that either n = 0, n = 1
or n = 2 does the job for l sufficiently large.

Lemma 4.23. Let r ∈ R. If (u, v) ∈ M
(1)
l with max{u,−v} ≥ 20 then

(u2, v2) ∈ M
(2)
l or u2, v2 ≥ 0. If (u, v) ∈ M

(2)
l with max{−u, v} ≥ 20 then

(u2, v2) ∈ M
(1)
l or u2, v2 ≤ 0.

Proof. Since (u, v) ∈ M
(1)
l we have u − v ≤ l. Thus Lemma 4.9 implies

that

(4.10) −u2 + v2 ≤ l.

Next we want to show that

(4.11) 2v2 − u2 ≤ 8l/5 − ⌊−3T l⌋ + 1.
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For this we distinguish two cases. Assume first that v ≥ −3l/5. Then
Lemma 4.9 yields

2v2 = 2(v + v2) − 2v ≤ 2(u + u2) − 2v, u2 = (u + u2) − u.

Since u − v ≤ l and −v ≤ 3l/5, Lemma 4.15 implies that

2v2 − u2 ≤ (u + u2) − 2v + u ≤ 8l/5 − ⌊−3T l⌋ + 1.

If, on the contrary, −v > 3l/5 then u ≤ 2l/5 and thus −v ≥ 3u/2. In this
case Lemma 4.11 yields

2v2 − u2 ≤ −2v + u ≤ 8l/5 − ⌊−3T l⌋ + 1

and (4.11) is proved. Finally, note that Lemma 4.17 implies that

(4.12) v2 ≥ 0.

Combining (4.10)–(4.12) we get the first claim. The second claim is proved
in an analogous way. Just use Lemmas 4.10, 4.12, 4.16 and 4.18 instead of
Lemmas 4.9, 4.11, 4.15 and 4.17.

Lemma 4.24. Let r ∈ R. Let (x, y) ∈ M
(1)
l , (x′, y′) := τ3

r
(x, y) ∈ M

(2)
l

and set (x′′, y′′) := τ6
r
(x, y). Then x′′ < x or one of the pairs (x, y), (x′, y′)

has coordinate maximum less than 20 in modulus.

Let (x, y) ∈ M
(2)
l , (x′, y′) := τ3

r
(x, y) ∈ M

(1)
l and set (x′′, y′′) := τ6

r
(x, y).

Then x′′ > x or one of the pairs (x, y), (x′, y′) has coordinate maximum less

than 20 in modulus.

Proof. We only prove the first assertion, the second one is proved in the
same way.

Applying Lemma 4.13 with u = x, v = y, u2 = x′, v2 = y′ we get

x + x′ ≥ 1.

Now we use Lemma 4.14 with u=x′, v=y′, u2 =x′′, v2 =y′′ in order to get

x′ + x′′ ≤ 0.

Combining both inequalities yields the desired result.

Lemma 4.25. Let r ∈ R. Let (x, y) ∈ Ml. Then there exists a least n ∈ N

such that for

(u, v) := τ3n
r

(x, y), (u2, v2) := τ3n+3
r

(x, y)

one of the following statements holds:

• (u, v) ∈ M
(1)
l and u2, v2 ≥ 0.

• (u, v) ∈ M
(2)
l and u2, v2 ≤ 0.

• max{|u|, |v|} ≤ 20.
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Proof. This is an easy consequence of Lemmas 4.23 and 4.24. Note that
Lemma 4.24 ensures that after finitely many iterations of τ3

r
we must have

(u, v) 6∈ Ml.

Proposition 4.26. Let r ∈ R, l ∈ N, l ≥ 25, and (u, v) ∈ Ml with

max{|u|, |v|} > 20. Then there exists n ∈ N such that z := τn
r (u, v) satisfies

one of the following alternatives:

(i) |z|∞ ≤ 20.
(ii) |z|∞ > 20 and z ∈ Ml2 for some l2 ∈ N with l2 < l.

Proof. In view of Lemma 4.25 we can assume without loss of generality
that (u, v) satisfies one of the three statements of that lemma.

Suppose that the first statement of Lemma 4.25 holds. Then Lemma 4.19
implies that for (u1, v1) = τ2

r
(u, v) we have u1 < 0, v1 ≥ 0 and u1 + v1 ≤ 0.

Recall that

u1 = −α + v − u, v1 = −β − α − u.

We claim that (u1, v1) ∈ Ml2 for

l2 := −v − β.

First we note that v1 − u1 = −v − β = l2. Thus it remains to show that
2v1 − u1 ≤ 8l2/5 − ⌊−3T l2⌋ + 1. Since u1 + v1 ≤ 0 this follows from

2v1 − u1 ≤ 3
2(v1 − u1) ≤ 3

2(−v − β) ≤ 3
2 l2 ≤ 8l2/5 − ⌊−3T l2⌋ + 1.

Summing up we have proved the claim. Now we need to show that l2 < l.

Since (u, v) ∈ M
(1)
l we have

−v ≤ 4
5 l + 1

2(−⌊−3T l⌋ + 1)

and u − v ≤ l. Thus, since α < 0,

l2 ≤ 4
5 l + 1

2(−⌊−3T l⌋ + 1) − β

≤ 4
5 l + 1

2(−⌊−3T l⌋ + 1) + cTα − (c − 1)Tv + cTu + 1

≤ 4
5 l + 1

2(−⌊−3T l⌋) + cT l + 3/2 ≤ (4/5 + (3/2 + c)T )l + 2

≤ 11
12 l + 2 < l.

If the second statement of Lemma 4.25 holds, a similar reasoning leads to
the conclusion. If the third statement of Lemma 4.25 holds, there is nothing
to prove.

Proof of Theorem 4.21. Start with Lemma 4.22 in order to get a point in
the orbit which is contained in some Ml. Then iterate Proposition 4.26 until
you arrive at (u, v) ∈ Ml for some l ≤ 25. It is easily seen that (u, v) ∈ Ml

with l ≤ 25 implies that max{|u|, |v|} ≤ 25. Thus each orbit contains a point
(u, v) with max{|u|, |v|} ≤ 25.

We now prove our main result.



Radix representations and dynamical systems 51

Theorem 4.27. Let r ∈ S. Then τr is an SRS.

Proof. For z ∈ R set

R1(z) := {(1 − T,−1 + cT ) | z ≤ T ≤ 1/30, 1 ≤ c ≤ 1.99},
R2(z) := {(1 − T,−1 + cT ) | z ≤ T ≤ 1/30, 1.99 ≤ c ≤ 2}

and Q0 := {(x, y) | max{|x|, |y|} ≤ 25}. Furthermore we adopt the following
notation. For a set M ⊂ Z

2 we write

τrM := {τr(x, y) | (x, y) ∈ M}.
First we want to prove that R1(10−3) is a subset of D0

2. Define the se-
quence of sets

Qn+1 := {τrQn | r ∈ R1(10−3)}.
Note that we have just proved that for r ∈ R each orbit of τr contains a
point in Q0. Thus what we have to show is that there exists an n ∈ N such
that Qn = {(0, 0)}. For z ∈ R define the points

p1 := (1 − 1/30,−1 + 1/30), p2 := (1 − 1/30,−1 + 1.99/30),

p3 := (1 − z,−1 + z), p4 := (1 − z,−1 + 1.99z).

Note that R1(10−3) is the convex hull of these points with z = 10−3. By the
definition of τr we see that

Qn+1 ⊂ {(y, j) | min
i
{−⌊pi · (x, y)⌋} ≤ j ≤ max

i
{−⌊pi · (x, y)⌋}

for some x ∈ R with (x, y) ∈ Qn}
(the dot “·” denotes scalar multiplication). Thus we set P0 := Q0 and

Pn+1 := {(y, j) |min
i
{−⌊pi · (x, y)⌋} ≤ j ≤ max

i
{−⌊pi · (x, y)⌋}

for some x ∈ R with (x, y) ∈ Pn}.
Since Qn ⊂ Pn what remains to prove is that for some n we have Pn =
{(0, 0)}. With the help of an easy computer program we find that this is
true for n = 500.

Performing the same procedure for R2(10−3) we get, for n = 500,

Qn ⊂ {(−1,−1), (−1, 1), (0, 0), (1,−1), (1, 0), (1, 2), (2, 1)}.
If c < 2, i.e. r ∈ R2(10−3) ∩ S, we can easily see by direct calculation that
each of these points (x, y) admits an n ∈ N such that τr(x, y) = (0, 0) for all
R2(10−3) ∩ S. Summing up we have shown that

{(1 − T,−1 + cT ) | 10−3 ≤ T ≤ 1/30, 1 ≤ c < 2}
is a subset of D0

2.
Now we have to make the bound 10−3 smaller. First consider R1(z) for

0 < z ≤ 10−3. The sequence Pn only depends on the minimal and maximal
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values of −⌊pi · (x, y)⌋ for i ∈ {1, 2, 3, 4}. Since p1 and p2 do not depend on
z we need to examine what happens with the functions

fi(x, y; z) := −⌊pi · (x, y)⌋, i = 3, 4,

for 0 ≤ z ≤ 10−3. First we note that all elements (x, y) occurring in the
sets Pn have max{|x|, |y|} ≤ 100 (this can easily be checked by the above-
mentioned computer program) and that

f3(x, y; z) = −⌊(−x + y)z⌋ − x + y.

Thus, since max{|x|, |y|} ≤ 100 and 0 < z ≤ 10−3 the value of the function
f3(x, y; z) only depends on x and y and not on z. The same follows for
f4(x, y; z) by similar reasoning. Thus the sequence of the Pn is not altered
if we replace R1(10−3) by R1(z) for some 0 < z ≤ 10−3. Summing up we
have shown that

{(1 − T,−1 + cT ) | 0 < T ≤ 1/30, 1 ≤ c ≤ 1.99}
is contained in D0

2. Performing the same considerations for R2(z) mutatis

mutandis leads to the result.

5. Computational results. By using the algorithm in Lemma 3.2 for a
given small closed convex polygon H ⊂ E2 we can describe H∩D0

2 explicitly.
In this subsection, we give several examples to illustrate the efficiency of this
algorithm.

5.1. Complete characterization of D0
2 for x ≤ 2/3

Lemma 5.1.The triangle ∆((1/2, 1/2), (2/3, 1/3), (2/3, 2/3)) is contained

in D0
2.

Proof. We apply the algorithm of Lemma 3.2. Start with V0 = {(±1, 0),
(0,±1)} and add successively all possible vertices and edges according to
(2) of Lemma 3.2. In the present case this leads to the graph (V, E) of 21
vertices and 30 edges as follows:

(1, 0), (0, 1), (−1, 0), (0,−1), (−1, 1), (0, 0), (1,−1), (−1,−1), (1, 1),
(−1, 2), (1,−2), (−2, 0), (−2, 1), (2,−1), (2, 0), (0,−2), (0, 2), (−2, 2),
(2,−2), (−2,−1), (2, 1);

(−2,−1) → (−1, 2), (−2, 0) → (0, 1), (−2, 0) → (0, 2), (−2, 1) → (1, 1),
(−2, 2) → (2, 0), (−2, 2) → (2, 1), (−1,−1) → (−1, 1),
(−1,−1) → (−1, 2), (−1, 0) → (0, 1), (−1, 1) → (1, 0), (−1, 1) → (1, 1),
(−1, 2) → (2, 0), (0,−2) → (−2, 1), (0,−2) → (−2, 2), (0,−1) → (−1, 1),
(0, 0) → (0, 0), (0, 1) → (1, 0), (0, 2) → (2,−1), (0, 2) → (2, 0),
(1,−2) → (−2, 0), (1,−2) → (−2, 1), (1,−1) → (−1, 0), (1, 0) → (0, 0),
(1, 1) → (1,−1), (2,−2) → (−2, 0), (2,−1) → (−1,−1),
(2,−1) → (−1, 0), (2, 0) → (0,−1), (2, 1) → (1,−2), (2, 1) → (1,−1).
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As this graph has only one cycle (0, 0) → (0, 0), the lemma follows from
Lemma 3.2.

Lemma 5.2.The triangle ∆((1/2,−1/2), (2/3,−1/3), (2/3,−2/3)) is con-

tained in D0
2.

Proof. We proceed in a similar manner to Lemma 5.1. The graph (V, E)
is given by 21 vertices and 30 edges:

(1, 0), (0, 1), (−1, 0), (0,−1), (−1,−1), (0, 0), (1, 1), (−1, 1), (1,−1),
(−1,−2), (1, 2), (−2,−1), (−2, 0), (2, 0), (2, 1), (0,−2), (0, 2), (−2,−2),
(2, 2), (−2, 1), (2,−1);

(−2,−2) → (−2, 0), (−2,−2) → (−2, 1), (−2,−1) → (−1, 1),
(−2, 0) → (0, 1), (−2, 0) → (0, 2), (−2, 1) → (1, 2), (−1,−2) → (−2, 0),
(−1,−1) → (−1, 0), (−1,−1) → (−1, 1), (−1, 0) → (0, 1),
(−1, 1) → (1, 1), (−1, 1) → (1, 2), (0,−2) → (−2,−1), (0,−2) → (−2, 0),
(0,−1) → (−1, 0), (0, 0) → (0, 0), (0, 1) → (1, 1), (0, 2) → (2, 1),
(0, 2) → (2, 2), (1,−1) → (−1,−1), (1, 0) → (0, 0), (1, 1) → (1, 0),
(1, 2) → (2, 0), (1, 2) → (2, 1), (2,−1) → (−1,−2), (2,−1) → (−1,−1),
(2, 0) → (0,−1), (2, 1) → (1,−1), (2, 1) → (1, 0), (2, 2) → (2, 0).

In view of Lemma 3.2 we are only interested in the non-trivial cycles of this
graph. Remove the trivial edge (0, 0) → (0, 0) and take the essential sub-
graph (12) by successive removal of stranded vertices. Then we get the graph

(2, 1) // (1,−1) // (−1,−1) // (−1, 1) // (1, 2)ii

Fig. 7. The essential subgraph for Lemma 5.2

drawn in Figure 7, which is just the cycle (2, 1);−1,−1, 1 of length 5. The as-
sociated cutout polygon P ((2, 1);−1,−1, 1) is given by (3.3). It is easy to see
that P ((2, 1);−1,−1, 1) ∩ ∆((1/2,−1/2), (2/3,−1/3), (2/3,−2/3)) = ∅. An
application of Lemma 3.2 proves the present lemma. Note that (2/3,−1/3)
is on the boundary of P ((2, 1);−1,−1, 1) but not in P ((2, 1);−1,−1, 1).

In the following we again use the constants γq defined in Section 4.1.

Lemma 5.3. The convex hull H given by the four points (γ3
1 , 1),

(γ1γ2, γ1 + γ2), (2/3, 1), (2/3, 2/(3γ2) + γ2) is contained in D0
2.

Proof. The whole set H is too large; an application of Lemma 3.2 is not
possible for the whole set, because the construction of the set V does not

(12) The maximum subgraph with the property that each vertex has at least one
incoming edge and at least one outgoing edge.
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seem to converge. Thus we are forced to subdivide H into six triangles:

∆1 = ∆((γ3
1 , 1), (γ1γ2, γ1 + γ2), (γ1γ2, 5/4)),

∆2 = ∆((γ3
1 , 1), (γ1γ2, 5/4), (2/3, 1)),

∆3 = ∆((γ1γ2, 5/4), (2/3, 1), (2/3, 5/4)),

∆4 = ∆((γ1γ2, 5/4), (2/3, γ1 + γ2), (2/3, 5/4)),

∆5 = ∆((γ1γ2, 5/4), (2/3, γ1 + γ2), (γ1γ2, γ1 + γ2)),

∆6 = ∆((2/3, 2/(3γ2) + γ2), (2/3, γ1 + γ2), (γ1γ2, γ1 + γ2)).

Now we can apply Lemma 3.2 to each of these triangles. Table 2 gives the
number of vertices and edges of the graphs (V, E) related to ∆i (i = 1, . . . , 6)
after removing the trivial cycle 0 → 0. Apart from ∆4, the graphs are acyclic.

Table 2. Size of the graphs (V, E)

i Vertices Edges

1 123 267

2 27 45

3 27 39

4 39 53

5 135 267

6 407 1040

As in the proof of Lemma 5.1 this shows that ∆i ⊂ D0
2 for i ∈ {1, 2, 3, 5, 6}.

(−3, 3) // (3,−2) // (−2, 1) // (1, 1) // (1,−2) // (−2, 3) //
uu

(3,−3)kk

Fig. 8. The essential subgraph of ∆4 in Lemma 5.3

The essential subgraph of ∆4 is given in Figure 8. It contains two prim-
itive cycles: (1,−2); 3,−3, 3,−2, 1 and (1,−2); 3,−2, 1. The corresponding
cutouts are

P ((1,−2); 3,−3, 3,−2, 1)

= {(x, y) | y < 2x, 2x/3 + 1 ≤ y, x + 2/3 < y < −x + 3}
and

P ((1,−2); 3,−2, 1) = {(x, y) | x/2 + 1 < y < 2x, 3x/2 < y < 2x/3 + 1}.
It is easy to see that P ((1,−2); 3,−3, 3,−2, 1) ∪ P ((1,−2); 3,−2, 1) has no
intersection with ∆4. Note that the point (2/3, 4/3) is on the boundary of
P ((1,−2); 3,−2, 1) but it is not contained in P ((1,−2); 3,−2, 1).
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Summing up we have shown the following characterization result for D0
2.

Theorem 5.4. {(x, y) | 0 ≤ x ≤ 2/3, y < x + 1, y ≥ −x} is contained

in D0
2.

Proof. The assertion is the combination of Corollary 3.6, Theorems 4.6
and 4.8 with q = 2, and Lemmas 5.1–5.3.

Note that the range for x cannot go beyond 2/3 since (2/3,−1/3) and
(2/3, 4/3) are on the boundary of a cutout polygon.

5.2. Computational results near to the boundary of D2. The nearer we
approach ∂D2 the more extensive calculations are necessary in order to
perform the algorithm given in Lemma 3.2. Here are two examples.

Lemma 5.5.The convex hull H of the four points (2/3,−1/3), (2/3,−2/3),
(29/30,−14/15), (29/30,−29/30) is contained in D0

2 apart from the line

connecting (2/3,−1/3) and (29/30,−14/15).

Proof. Define two triangles

∆n,m := ∆((1 − 1/n, 2/n − 1), (1 − 1/n, 1/n − 1), (1 − 1/m, 2/m − 1)),

∆′
n,m := ∆((1 − 1/n, 1/n − 1), (1 − 1/m, 2/m − 1), (1 − 1/m, 1/m − 1)).

Subdivide H into 12 triangles: ∆3,5, ∆
′
3,5, ∆5,10, ∆

′
5,10, ∆10,15, ∆

′
10,15, ∆15,20,

∆′
15,20, ∆20,25, ∆

′
20,25, ∆25,30, ∆

′
25,30 for example (13). Then for each invariant

graph, apart from the trivial cycle there exists only the cycle (2, 1);−1,−1, 1.
This cycle already appeared in the proof of Lemma 5.2 and P ((2, 1);−1,−1, 1)
intersects H only along the line connecting (2/3,−1/3) and (29/30,−14/15).

Putting together Theorem 4.27, Lemma 5.5, Lemma 5.2, Theorem 3.3
and Theorem 3.4 we arrive at the following result.

Theorem 5.6. We have

{(x, y) | x > 0, −x ≤ y < 1 − 2x} ⊂ D0
2.

Lemma 5.7. The convex hull H of the four points (2/3, 1), (2/3, 4/3),
(29/30, 1), (29/30, 31/30) is contained in D0

2.

Proof. In this case we subdivide H in the following way. Let

∆n :=

((

1 − 1

n
, 1

)

,

(

1 − 1

n
, 1 +

1

n

)

,

(

1 − 1

n + 1
, 1 +

1

n + 1

))

,

∆′
n :=

((

1 − 1

n
, 1

)

,

(

1 − 1

n + 1
, 1 +

1

n + 1

)

,

(

1 − 1

n + 1
, 1

))

.

Then we subdivide H into the 54 triangles ∆3, . . . , ∆29, ∆′
3, . . . , ∆

′
29. The

corresponding invariant graphs are acyclic in most cases after removing the

(13) Finer subdivision would give smaller graphs.
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trivial cycle. However, the two non-trivial cycles (2, 0);−1, 2,−2, 1, 1,−2 and
(2, 0);−1, 2,−2 appear when we consider the triangle ∆3. Both cycles give
the same cutout point (1, 3/2).

5.3. Complete characterization of D0
2 for 2/3 ≤ x ≤ 5/6. In this subsec-

tion Lemma 3.2 is applied in order to characterize the set D0
d completely

in the strip 2/3 ≤ x ≤ 5/6. We do not give all the details. Our aim is just
to give the subdivision of this strip that is needed to apply Lemma 3.2 in
all its subregions which have not yet been characterized in former results.
Together with Theorem 5.4 this will lead to the following result.

Theorem 5.8. Let E1, E2 and E4 be given as in Proposition 3.7 and

define

L = {(x, y) | 0 ≤ x ≤ 5/6, y < x + 1, y ≥ −x}.
Then

D0
2 ∩ L = L \ (E1 ∪ E2 ∪ E4).

This is a complete characterization of D0
2 for x < 5/6.

The characterization of L ∩ {(x, y) | 0 < x < 2/3} is already contained
in Theorem 5.4. Thus we may confine ourselves to the characterization of

L′ := L ∩ {(x, y) | 2/3 ≤ x ≤ 5/6}.
In what follows γ2 > 5/6 is defined as in Section 4.1. We already characterized
certain subsets of L′ in previous theorems. These results are given in Table 3.

Table 3. Results on the SRS in L′ that have been proved already

Region Characterized in Contained in D0

2

L′ ∩ {(x, y) | x/γ2 + γ2 < y < x + 1} Theorem 4.8 for κ = γ2 yes

L′ ∩ {(x, y) | 1 + x/2 < y < 2x} Proposition 3.7 (E1 and E2) no

L′ ∩ {(x, y) | x ≤ y ≤ 2 − x} Lemma 5.7 and Corollary 3.6 yes

L′ ∩ {(x, y) | −1 + x ≤ y ≤ 1 − x} Corollary 3.6 yes

L′ ∩ {(x, y) | 1 − 2x ≤ y < −x/2} Proposition 3.7 (E4) no

L′ ∩ {(x, y) | −x ≤ y < 1 − 2x} Theorem 5.6 yes

Thus in order to prove Theorem 5.8 it remains to characterize the regions
which are treated in the following four lemmas.

Lemma 5.9. Let

A1 := {(x, y) | 2/3 ≤ x ≤ 5/6, 2x ≤ y ≤ x/γ2 + γ2}.
Then A1 ⊂ D0

2.
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Proof. This lemma is proved with the help of the algorithm in Lemma 3.2.
For this we need to cover A1 with small regions. These are the convex hulls
of the following sets of points:

{(3/4, 2/(3γ2) + γ2), (2/3, 2/(3γ2) + γ2), (3/4, 8/5)},
{(3/4, 2/(3γ2) + γ2), (2/3, 2/(3γ2) + γ2), (3/4, 3/(4γ2) + γ2)},

{(4/5, 2/(3γ2) + γ2), (3/4, 2/(3γ2) + γ2), (4/5, 8/5)},
{(4/5, 2/(3γ2) + γ2), (3/4, 2/(3γ2) + γ2), (4/5, 3/(4γ2) + γ2)},

{(3/4, 3/(4γ2) + γ2), (3/4, 2/(3γ2) + γ2), (4/5, 3/(4γ2) + γ2)},
{(3/4, 3/(4γ2) + γ2), (4/5, 4/(5γ2) + γ2), (4/5, 3/(4γ2) + γ2)},

{(4/5, 8/5), (5/6, 5/3), (4/5, 5/3)},
{(4/5, 31/18), (5/6, 4/(5γ2) + γ2), (5/6, 31/18)},

{(4/5, 31/18), (4/5, 4/(5γ2) + γ2), (5/6, 4/(5γ2) + γ2)},
{(9/11, 4/(5γ2) + γ2), (4/5, 4/(5γ2) + γ2), (9/11, 9/(11γ2) + γ2)},

{(9/11, 4/(5γ2) + γ2), (5/6, 4/(5γ2) + γ2), (5/6, 9/(11γ2) + γ2)},
{(9/11, 4/(5γ2) + γ2), (5/6, 9/(11γ2) + γ2), (9/11, 9/(11γ2) + γ2)},

{(5/6, 5/(6γ2) + γ2), (5/6, 19/(23γ2) + γ2), (19/23, 19/(23γ2) + γ2)},
{(19/23, 19/(23γ2)+γ2), (5/6, 19/(23γ2)+γ2), (19/23, 9/(11γ2)+γ2)},

{(5/6, 19/(23γ2) + γ2), (5/6, 9/(11γ2) + γ2), (19/23, 9/(11γ2) + γ2)},
{(19/23, 19/(23γ2)+γ2), (9/11, 9/(11γ2)+γ2), (19/23, 9/(11γ2)+γ2)},

{(2/3, 3/2), (2/3, 4/3), (3/4, 3/2)},
{(2/3, 3/2), (2/3, 2/(3γ2) + γ2), (3/4, 3/2)},

{(3/4, 3/2), (2/3, 2/(3γ2) + γ2), (3/4, 8/5)},
{(3/4, 3/2), (3/4, 2/(3γ2) + γ2), (4/5, 8/5)},

{(4/5, 5/3), (4/5, 31/18), (5/6, 31/18), (5/6, 5/3)}.

For each of these convex hulls the graph constructed with the help of
Lemma 3.2 is either acyclic or contains cycles corresponding to empty cutout
polygons. This proves the lemma.

Lemma 5.10. Let

A2 := {(x, y) | 2/3 ≤ x ≤ 5/6, 2 − x ≤ y ≤ 1 + x/2}.

Then A2 ⊂ D0
2.

Proof. This lemma is proved with the help of the algorithm in Lemma 3.2.
To this end we need to cover A2 with small regions. These are the convex
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hulls of the following sets of points:

{(4/5, 7/5), (4/5, 6/5), (2/3, 4/3)},
{(4/5, 5/4), (4/5, 6/5), (5/6, 7/6), (5/6, 5/4)},

{(4/5, 7/5), (4/5, 5/4), (5/6, 5/4), (5/6, 17/12)}.
For each of these convex hulls the graph constructed with the help of
Lemma 3.2 is either acyclic or contains cycles corresponding to empty cutout
polygons. This proves the lemma.

Lemma 5.11. Let

A3 := {(x, y) | 2/3 ≤ x ≤ 5/6, 1 − x ≤ y ≤ x}.
Then A3 ⊂ D0

2.

Proof. This lemma is proved with the help of the algorithm in Lemma 3.2.
For this we need to cover A3 with small regions. These are the convex hulls
of the following sets of points:

{(2/3, 2/3), (2/3, 1/3), (4/5, 1/2)},
{(2/3, 2/3), (4/5, 1/2), (4/5, 4/5)},

{(4/5, 4/5), (5/6, 4/5), (5/6, 5/6)},
{(4/5, 4/5), (4/5, 3/5), (5/6, 3/5), (5/6, 4/5)},

{(4/5, 1/2), (4/5, 3/5), (5/6, 3/5), (5/6, 1/2)},
{(4/5, 1/5), (4/5, 1/3), (5/6, 1/3), (5/6, 1/5)},

{(4/5, 1/5), (5/6, 1/6), (5/6, 1/5)},
{(4/5, 1/5), (2/3, 1/3), (4/5, 1/2)},

{(4/5, 1/2), (4/5, 1/3), (5/6, 1/3), (5/6, 1/2)}.
For each of these convex hulls the graph constructed with the help of
Lemma 3.2 is either acyclic or contains cycles corresponding to empty cutout
polygons. This proves the lemma.

Lemma 5.12. Let

A4 := {(x, y) | 2/3 ≤ x ≤ 5/6, −x/2 ≤ y ≤ −1 + x}.
Then A4 ⊂ D0

2.

Proof. This lemma is proved with the help of the algorithm in Lemma 3.2.
To this end we need to cover A4 with small regions. These are the convex
hulls of the following sets of points:

{(2/3,−1/3), (4/5,−2/5), (4/5,−1/5)},
{(4/5,−1/5), (4/5,−1/3), (5/6,−1/3), (5/6,−1/6)},

{(4/5,−1/3), (4/5,−2/5), (5/6,−5/12), (5/6,−1/3)}.
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For the first two convex hulls the graph constructedwith the help of Lemma3.2
is either acyclic or contains cycles corresponding to empty cutout polygons.
The last convex hull gives rise to a graph having a cycle which leads to the
cutout polygon P ((2,−1);−2, 1, 3, 1,−2,−1, 2). This is the polygon causing
the cutout E3 of Proposition 3.7. Since E3∩A4 = ∅ this cutout is not relevant
for the characterization of the SRS in A4. This proves the lemma.

Summing up we have finished the proof of Theorem 5.8.

6. Some conjectures

Conjecture 6.1. D2 coincides with the set D defined in Theorem 2.1.
In particular, what remains to be proved in view of that theorem is

{(1, y) | |y| < 2} ⊂ D2.

In other words, let |λ| < 2 and let (an)∞n=1 be a sequence which satisfies

0 ≤ an + λan+1 + an+2 < 1 (n ∈ N).

Then (an)∞n=1 is periodic.

The reader will find partial results concerning this conjecture in [5]. In
particular, we prove that it is true for λ = (1 +

√
5)/2.

Conjecture 6.2. The interior of the region defined by the convex hull
of the set of points

{(1, 1), (29/30, 1), (29/30, 31/30)}
is contained in D0

2. This is the region on the right hand side of the quadrangle
characterized by Lemma 5.7 in Figure 1.

The interior of the triangle defined by the convex hull of

{(1, 2), (5/6, 11/6), (5/6, 10/6)}
is contained in D0

2. This is the light grey region beyond E1 in Figure 1.

Conjecture 6.3. The number of critical points of Dd is finite. D2 has
only two critical points. These are the points (1, 0) and (1, 1).

In the first part of this series of papers we showed that the set of weak
critical points is compact.

In an earlier version of the present paper we also conjectured: Let M be
a positive integer and set

N(d, M) = |{(p1, . . . , pd−1) ∈ Z
d−1 | (M, p1, . . . , pd−1) ∈ Cd}|,

N0(d, M) = |{(p1, . . . , pd−1) ∈ Z
d−1 | (M, p1, . . . , pd−1) ∈ C0

d}|.
Then

lim
M→∞

N(d + 1, M)

Md
= λd(Dd), lim

M→∞

N0(d + 1, M)

Md
= λd(D0

d),
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where λd denotes the d-dimensional Lebesgue measure (the Lebesgue mea-
surability of Dd and D0

d is proved in [4, Theorem 4.10]). In the meantime we
proved both assertions and the result will appear in part III of this series of
papers.
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