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1. Introduction. Let η denote Dedekind’s function. When N > 1 is an
integer, η-quotients of the form f =

∏
d|N η(z/d)rd are functions on Γ 0(N)

when the integers rd satisfy some properties known as Newman’s Lem-
ma [13]. In other words, there exists a bivariate polynomial Φ[f ](X, J) such
that Φ[f ](f(z), j(z)) = 0 for all z, where j is the classical modular invariant.

In some cases, there exist equations of the form Φ[f ](X,G3, G2) where
Φ[f ](f(z), γ3(z), γ2(z)) = 0 for the Weber functions γ3, γ2. Kiepert was the
first to compute modular equations of this type for f = wp = η(z/p)/η(z)
for p ≤ 29 (see [10]). Weber cites some examples in [15, §72]; Antoniadis [1]
extended this to p ≤ 61.

In the present work, we study such equations for the double η-quotients
we
p1,p2 introduced in [6]. We give all parameters (p1, p2, e) leading to equa-

tions in γ2 and γ3.

Section 2 recalls known facts on Weber and η functions. Section 3 deals
with the case of wp where we introduce a faster variant of the classical
algorithm to compute the modular equation via series expansions. Section 4
proves the necessary results for wp1,p2 , gives algorithms to compute the
equations in the spirit of Section 3, and includes some numerical examples.

Notation. If u is some function, we will denote by Φ[u](X, J) the cor-
responding modular equation. If u = j(nz), we will write Φn for simplicity.

2. Preliminaries

2.1. Properties of the functions γ2 and γ3. We will use the tradi-
tional notations

T =

(
1 1

0 1

)
, S =

(
0 −1

1 0

)
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for the two generators of SL2(Z). We use the notation f ◦M to denote the
function z 7→ f(Mz). The modular invariant is j(z) = j(q) = 1/q+744+ · · ·
with q = exp(2iπz) and it is invariant under SL2(Z) (equivalently, under T
and S).

The classical Weber functions are

γ2(q) = j(q)1/3 = q−1/3(1 + 248q + 4124q2 + 34752q3 + 213126q4 +O(q5)),

γ3(q) = (j(q)− 1728)1/2 = q−1/2(1− 492 q − 22590 q3 +O(q5)).

It is known that γ2(q) ∈ q−1/3(1 + Z[[q]]) and γ3(q) ∈ q−1/2(1 + Z[[q]]).
If n is an integer, we denote ζn = exp(2πi/n). One can prove that

γ2 ◦ T = ζ−13 γ2, γ2 ◦ S = γ2,(2.1)

γ3 ◦ T = −γ3, γ3 ◦ S = −γ3.(2.2)

The following is classical (see, e.g., [3, Lemma 11.10]).

Proposition 2.1. If f is a holomorphic modular function invariant
under T and S, then f is a polynomial in j.

This can be extended as follows (see [15, §54] and also [3, Theorem 11.9]).

Theorem 2.2. Let f be a modular function.

(a) If f is invariant under T and S, then f is a rational function of j.
(b) If f ◦T = −f and f ◦S = −f , then f is equal to γ3 times a rational

function of j.
(c) If f ◦T = ζ∓13 f and f ◦S = f , then f is equal to γ±12 times a rational

function of j.
(d) If f ◦ T = −ζ∓13 f and f ◦ S = −f , then f is equal to γ3γ

±1
2 times a

rational function of j. (Note that −ζ∓13 = ζ±16 .)

We will use the preceding results as follows. Given a function f satisfy-
ing one of the conditions in Theorem 2.2, there is some g (given as above)
for which f/g is invariant under T and S, implying that f/g is a rational
function of j. Furthermore, if f/g is holomorphic, then this rational func-
tion will turn out to be a polynomial; if the expansion of f/g has integer
coefficients, then Hasse’s principle will imply that this polynomial has inte-
ger coefficients. For ease of writing, this will lead to polynomials in J , G2

(for γ2), or G3 (for γ3).
From the algorithmic point of view, we have to recognize a polynomial

with integer coefficients applied to j(q), given the first terms of a series T (q).
Note that we need the order of this series to be > 0. We proceed step by
step.

Function RecognizePolyInJ(T )
Input: a series T = cvq

v + · · · + O(q1) with integer coefficients, v ≤ 0 and
cv 6= 0.
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Output: a polynomial P (X) of degree −v such that T = P (j(q)).

1. R := T ; i := valuation(R); P := 0;
2. while i ≤ 0 do
{at this point R = riq

i + · · ·+O(q1) with ri 6= 0}
2.1. P := P + riX

−i;
2.2. R := R− rij(q)−i;
2.3. i := valuation(R);

3. return P .

Note that we can precompute the powers of j(q) whenever needed, so
that each call to the function requires O(v2) operations. In large cases,
computations can be done using results calculated modulo small primes and
reconstructed via the CRT (as done by Atkin, see [11]).

2.2. Formulas for the η-function. The following is taken from [7]
and will be our main tool in the computations of Section 4. Let Γ = SL2(Z)
denote the full modular group.

Theorem 2.3. Let M =
(
a b
c d

)
∈ Γ be normalised such that c ≥ 0, and

d > 0 if c = 0. Write c = c12
λ(c) with c1 odd; by convention, c1 = λ(c) = 1

if c = 0. Define

ε(M) =

(
a

c1

)
ζ
ab+c(d(1−a2)−a)+3c1(a−1)+ 3

2
λ(c)(a2−1)

24 .

For K ∈ N write

uKa+ vKKc = δK = gcd(a,Kc) = gcd(a,K).

Then

η

(
z

K

)
◦M = ε

((
a
δK

−vK
Kc
δK

u

))√
δK(cz + d) η

(
δKz + (uKb+ vKKd)

K
δK

)
,

where the square root is chosen with positive real part.

We can decompose the formula into several parts: ε(M) = Jac(M)ζ
E(M)
24

where we distinguish the Jacobi symbol part and the exponent of ζ24; then,
we have the square root part Q(M) and the η-part N (M). When dealing
with an η-quotient, the above formulas are applied by multiplicativity on
the different pieces η(z/d) (see below).

3. Generalized Weber functions

3.1. Definition and properties. Let N > 3 be an odd integer. For all
factorizations N = ad, let e = gcd(a, d) and consider the functions

Pc,d,a = i(a−1)/2
(
c

e

)√
d
η((c+ dz)/a)

η(z)
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for 0 ≤ c < a with gcd(c, e) = 1. These functions were introduced in [15,
§72]. It is easy to see that P0,1,N = i(N−1)/2η(z/N)/η(z) = i(N−1)/2wN (z)
where the function wN was studied in [5].

Weber proves that in all cases, P 24
c,d,a are roots of a modular equation. In

some cases, the results are better, for instance:

Theorem 3.1. If gcd(N, 6) = 1 and 12 | c, then the P 2
c,d,aγ

N−1
2 γ

(N−1)/2
3

are roots of a modular equation.

3.2. Computations in the prime order case. For a prime N =
p > 3, this setting simplifies to

x0,p,1 = p

(
η(pz)

η(z)

)2

, x12h,1,p = (−1)(p−1)/2
(
η
(
12h+z
p

)
η(z)

)2

, 0 ≤ h < p.

Theorem 3.2. The numbers xc,d,aγ2(z)
p−1γ3(z)

(p−1)/2 are roots of a
modular equation whose coefficients are rational functions of j(z). In par-
ticular, the constant term is (−1)(p−1)/2p.

Antoniadis [1] extended the results of Kiepert to p ≤ 61 and gave more
properties of the polynomials. He computed the equation by solving a linear
system in the unknown coefficients of the equation, using the q-expansion
of j(q) and the fact that x0,p,1 must be a root of the equation.

A standard approach (already known to Enneper [8, §52]) is to compute
the power sums of the roots of the equation, recognize them as polynomials
in our variables, and then terminate using the classical Newton relations.
Inspecting our roots, we see that the q-expansion of x0,p,1 has positive or-
der, and all x12h,1,p have negative order. So the power sums can be com-
puted using the x12h,1,p only; we can find formulas for the q-expansion of∑p−1

h=0 x
k
12h,1,p if needed.

A better approach is to look at the reciprocal polynomial, whose roots
are the 1/x0,p,1 and 1/x12h,1,p, and only the first one contributes to the power
sums. Write (p − 1)/12 = e′/δ as an irreducible fraction with 6 | δ. Noting
that

p/x0,p,1 = q(1−p)/12(1 + · · · ) = q−e
′/δ(1 + · · · ),

we can use the discussion following Theorem 2.2 to conclude that all coeffi-
cients are polynomials in J , G2 or G3.

The algorithm is:

1. Compute Sk = p/xk0,p,1 and recognize it as a polynomial in the usual
variables.

2. Use Newton’s formulas.
3. Remove the powers of p.
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Note that the largest power is (p/x0,p,1)
p+1 = q−(p

2−1)/12(1 + · · · ) where the
exponent is an integer as soon as p > 3. Therefore, we need up to (p2−1)/12
terms in the j-series.

For example, let us give some computational details in the case p = 11.
We compute

S1 = 11/x0,11,1 = q−5/6 − 2q1/6 − q7/6 + 2q13/6 +O(q19/6).

Dividing by the expansion of γ2γ3, we find 1+242q+O(q2), which must be a
polynomial in j(q), hence the constant 1. The other coefficients are given in
Table 1. We have replaced γ2 (resp. γ3) by G2 (resp. G3). The corresponding
polynomial is (after reductions between variables)

F 12 −G3G2F
11 − 242G2

2F
10 − 19965G3F

9 − 585640G2F
8

+ 159440490F 6 − 285311670611.

Taking its reciprocal and removing the spurious powers of 11 yields

Φ[−w2
11](F,G2, G3) = F 12 − 990F 6 + 440G2F

4 + 165G3F
3

+ 22G2
2F

2 +G3G2F − 11,

already computed by Weber.
Note that one drawback of this approach is the large degree and size of

the coefficients before reduction via Newton formulas. However, if compu-
tations are performed using CRT primes, this is not a problem, since we
compute the final polynomial modulo the primes.

The smallest cases are

Φ[w2
5](X,G2) = X6 + 10X3 −G2X + 5,

Φ[−w2
7](X,G3) = X8 + 14X6 + 63X4 + 70X2 +G3X − 7,

Φ[w2
13](X, J) = X14 + 26X13 + 325X12 + 2548X11 + 13832X10

+ 54340X9 + 157118X8 + 333580X7 + 509366X6

+ 534820X5 + 354536X4 + 124852X3 + 15145X2

+ (746− J)X + 13.

Remark. We concentrated here on the prime index case. The same work
can be done for composite indices. Note also that we could use resultants for
that task, in view of the following. Suppose p is prime and M is an integer
prime to p; write N = pM . Write

ws
pM (z) = (wp(z)wM (z/p))s.

On the other hand

Φ[ws1
p ](ws1

p (z), j(z)) = 0, Φ[ws2
M ](ws2

M (z/p), j(z/p)) = 0,

Φp(j(z), j(z/p)) = 0.
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Table 1. Computations for p = 11

k (11/x0,11,1)k

2 q−5/3 − 4q−2/3 + 2q1/3 + · · · = G2
2(J − 1244)

3 q−5/2 − 6q−3/2 + 9q−1/2 + 10q1/2 + · · · = G3(J2 − 1002J + 59895)

4 q−10/3 − 8q−7/3 + 20q−4/3 − 70q2/3 + · · ·
= G2(J3 − 2488J2 + 1510268J − 135655520)

5 q−25/6 − 10q−19/6 + 35q−13/6 − 30q−7/6 − 105q−1/6 + 238q5/6 + · · ·
= G3G

2
2(J3 − 2246J2 + 1287749J − 145411750)

6 q−5 − 12q−4 + 54q−3 − 88q−2 − 99q−1 + 540− 418q + · · ·
= J5 − 3732J4 + 4586706J3 − 2059075976J2

+253478654715J − 2067305393340

7 q−35/6 − 14q−29/6 + 77q−23/6 − 182q−17/6 + 924q−5/6 − 1547q1/6 + · · ·
= G3G2(J5 − 3490J4 + 4063139J3 − 1796527998J2

+247854700555J − 4740750382830)

8 q−20/3 − 16q−17/3 + 104q−14/3 − 320q−11/3 + 260q−8/3 + 1248q−5/3

−3712q−2/3 + 1664q1/3 + · · ·
= G2

2(J6 − 4976J5 + 9210680J4 − 7786404608J3

+2955697453292J2 − 418137392559040J + 12629117378938720)

9 q−15/2 − 18q−13/2 + 135q−11/2 − 510q−9/2 + 765q−7/2 + 1242q−5/2

−7038q−3/2 + 8280q−1/2 + 9180q1/2 + · · · = G3(J7 − 4734J6 + 8386065J5

−6877048710J4 + 2611195915626J3

−398512009001700J2 + 16457557949779815J − 41283301866181650)

10 q−25/3 − 20q−22/3 + 170q−19/3 − 760q−16/3 + 1615q−13/3 + 476q−10/3

−11210q−7/3 + 22440q−4/3 + 1615q−1/3 − 64600q2/3 + · · ·
= G2(J8 − 6220J7 + 15382190J6 − 19242776200J5 + 12809764457825J4

−4368737795118764J3 + 669619352632925750J2 − 33921007872189625000J

+233702090524237500000)

11 q−55/6 − 22q−49/6 + 209q−43/6 − 1078q−37/6 + 2926q−31/6 − 1672q−25/6

−15169q−19/6 + 47234q−13/6 − 31350q−7/6 − 107426q−1/6

+218680q5/6 + · · ·
= G3G

2
2(J8 − 5978J7 + 14256527J6 − 17312108670J5

+11327366012605J4 − 3889904574252522J3 + 631138185556080950J2

−38141443583282670180J + 473098671409604281800)

12 q−10 − 24q−9 + 252q−8 − 1472q−7 + 4830q−6 − 6048q−5 − 16744q−4

+84480q−3 − 113643q−2 − 115920q−1 + 534612− 370920q + · · ·
= J10 − 7464J9 + 23101236J8 − 38353325536J7 + 36913772324730J6

−20784851556729552J5 + 6580486714450069928J4

−1063011399511905159360J3 + 72005127765018136775955J2

−1322204967509387392211000J + 1424583710586688670191932
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Writing Z = ws
pM (z), X = wp(z), Y = wM (z/p), the different quantities

are related via the algebraic equations

Z = XsY s, Φ[ws1
p ](Xs1 , J) = 0, Φ[ws2

M ](Y s2 , J ′) = 0, Φp(J, J
′) = 0,

and the variables can be eliminated via resultants to get a modular equation
in Z and J , which has to be factored to get the correct polynomial.

4. Double η-quotients

4.1. Definition and statement of the result. For primes p1 and p2,
let

ws
p1,p2 =

(
η(z/p1)η(z/p2)

η(z/(p1p2))η(z)

)s
=

(
wp1(z)

wp1(z/p2)

)s
where s = 24/gcd(24, (p1 − 1)(p2 − 1)) is the smallest integer such that sr
is an integer, where r = (p1 − 1)(p2 − 1)/24. Note that s | 24; and s | 6 when
p1 and p2 are odd primes. It is shown in [7] that the function ws

p1,p2 is a

function on Γ 0(p1p2); conjugates of ws
p1,p2 are also computed, leading to

properties of the modular equation Φ[ws
p1,p2 ](X, J). This polynomial has

X-degree (p1 + 1)(p2 + 1) for p1 6= p2 (resp. p21 + p1 if p1 = p2).

We can now state the result that we will prove in this section. More
precise results are given along the proof.

Theorem 4.1. Let p1, p2 be two primes,

N = p1p2, s = 24/gcd(24, (p1 − 1)(p2 − 1)),

e 6= s a divisor of s and δ = s/e. If N ≡ 1 mod δ and the parameters are
chosen in Table 2, then there exists a modular equation Φ[(−1)δ+1we

p1,p2 ](X)

Table 2. Values of p1 and p2 leading to a modular equation Φ[(−1)δ+1wep1,p2 ](X)

p1 p2 s e δ

2 2 24 8 3

2 5 mod 12 6 2 3

2 11 mod 12 12 4 3

3 3 6 3 2

3 7 mod 12 2 1 2

3 11 mod 12 6 3 2

5 mod 12 5 mod 12 3 1 3

5 mod 12 11 mod 12 3 1 3

7 mod 12 7 mod 12 2 1 2

7 mod 12 11 mod 12 2 1 2

11 mod 12 11 mod 12 6 1 6
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whose coefficients are polynomials in γ3, γ2, and which has the same X-
degree as Φ[ws

p1,p2 ](X, J).

The following lemma is used in the proof of the theorem.

Lemma 4.2. Let δ ∈ {2, 3, 6} be as above and suppose N = p1p2 ≡
1 mod δ. Then pi ≡ −1 mod δ.

Proof. For δ = 2, N ≡ 1 mod 2 gives the conclusion. When 3 | δ, we
cannot have pi = 3 since N ≡ 1 mod δ. For δ equal to 3 (resp. 6), surely we
cannot have pi ≡ 1 mod 3 (resp. 6). This leaves pi ≡ −1 mod 3 (resp. 6).

The proof of the theorem will use several intermediate results that we
will present in a form as compact as possible. When p1 6= p2, we will make
the convention that p1 is odd (so that we may have p2 = 2). Moreover, we
let u and v be two integers such that up1+vp2 = 1. To simplify the proof, we
will be mostly looking at properties using p2, this case being complicated
when p2 = 2. Reciprocally, using p1 and p2 supposes that p1 6= p2. The
results and proofs are of course symmetric under exchanging p1 and p2. In
case of equality, we will write p1 = p2 = p.

4.2. The conjugates of wp1,p2. In [7] are given the conjugates of ws
p1,p2

(with some minor typos). Here, we need the precise expansions of wp1,p2 . In
view of Theorem 2.3, the value of wp1,p2 ◦M can be written as

wp1,p2 ◦M = Jac(M)ζ
E(M)
24 Q(M)N (M)

where the first part cumulates Jacobi symbols, the second the exponents
of ζ24, the third is the product of the square roots and the last one the

η-quotient. To ease notations, we also put φ = ζ24r24 = ζ
(p1−1)(p2−1)
24 . We use

the notations and philosophy of computations from [7].

Proposition 4.3. Let p1 and p2 be two primes. In all cases, we have the
N + 1 conjugate functions of Table 3. The remaining p1 + p2 conjugates are
found in Table 4, where in the case of C2,ν , we set ν ≡ −(µp1)

−1 mod p2,
v2 = (1 + p1µν)/p2 for µ 6= 0 (equivalently ν 6= 0; µ = 0 corresponds to
ν = 0). When ν > 0, we get

θ2(ν) =

{
µ((p2 + 1)v2 + 1) + ν if p2 6= 2,

(3p1 + 2)(ν + 1)/2 if p2 = 2.

Moreover

θ2(0) =

{
uv(p2 + 1) + u− 1 if p2 6= 2,

(3u+ 2)(u− 1)/2 if p2 = 2.
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Table 3. Conjugate functions for any N

M wp1,p2 ◦M ord l

T ν =

(
1 ν

0 1

)
Aν(z) =

η
(
z+ν
p1

)
η
(
z+ν
p2

)
η(z+ν)η

(
z+ν
p1p2

) − r
p1p2

ζ−νrN

= wp1,p2(z + ν), 0 ≤ ν < N

S =

(
0 −1

1 0

)
B(z) = η(p1z)η(p2z)

η(z)η(p1p2z)
= wp1,p2(Nz) −r 1

Table 4. Conjugates for p1 6= p2

M wp1,p2 ◦M

M1,µ =
( µp2 −1

1 0

)
C1,ν(z) = φθ1(ν)ε1

η
(
z+ν
p1

)
η(p2(z+ν))

η(z+ν)η
(
p2(z+ν)
p1

) , 0 ≤ ν < p1

M1,0 =
( vp2 −up1

1 1

)
M2,µ =

( µp1 −1

1 0

)
C2,ν(z) = φθ2(ν)ε2

η(p1(z+ν))η(
z+ν
p2

)

η(z+ν)η
(
p1(z+ν)
p2

) , 0 ≤ ν < p2

M2,0 =
( up1 −vp2

1 1

)

Also,

ε2 =


(
p1

p2

)
if p2 6= 2,

1 if p2 = 2.

For i∈{1, 2}, the functions Ci,ν have order r/pi and leading term φθi(ν)εiζ
νr
pi .

When p1 = p2 = p, we must consider the following p − 1 conjugate
functions:

matrix wp,p ◦M

Mµ =
( µp −1

1 0

)
Cν(z) =

√
p ε(ν)ζ

θ(ν)
24

η(pz)2

η(z)η(z + ν/p)
, 1 ≤ ν < p

where 1 = −µν + vp, ε(ν) =
(−ν
p

)
if p is odd (resp. 1 when p = 2) and

θ(ν) =

{
pν(1− µ2) + (−3p+ 2 + v)µ− 3 + 3p if p is odd,

0 if p = 2.

Moreover, Cν(z) has order (p− 1)/12 and leading coefficient
√
p ε(ν)ζ

pθ(ν)−ν
24p .

Proof. The cases of the Aν matrices and of B are treated without dif-
ficulty, as in [7]. The value of Q(M) is 1, unless we are dealing with the
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case p1 = p2 = p. The computations for the C matrices involve non-zero
exponents for ζ24.

Case p1 6=p2. Following [7], we first prove the result for C2,ν when ν>0.
Iterate over 1 ≤ µ < p2 and define ν = −(µp1)

−1 mod p2 ∈ {1, . . . , p2 − 1},
v2 = (1+µνp1)/p2. Note that ν 7→ µ is an involution and the corresponding
v2’s are equal. Moreover, iterating over 1 ≤ µ < p2 is the same as iterating
over 1 ≤ ν < p2. We find

N (M2,µ) =
η(p1z)η((z + ν)/p2)

η(z)η(p1(z + ν)/p2)
= ζ

ν(1−p1)
24

η(p1(z + ν))η((z + ν)/p2)

η(z + ν)η(p1(z + ν)/p2)
.

(a) Assume first p2 6= 2. We compute Jac(M2,µ) =
(p1
p2

)
, and the total

exponent of ζ24 is

ν(1− p1) + E(M2,µ)

= (p1 − 1)(p2νp1µ
2 + p2ν + 2µp2 − µv2 − ν − µ)

= (p1 − 1)
(
(p2 − 1)(νµ2p1 + ν + 2µ) + µ(1− v2 + µνp1)

)
= (p1 − 1)(p2 − 1)(νµ2p1 + ν + 2µ+ µv2)

= (p1 − 1)(p2 − 1)
(
µ((p2 + 1)v2 + 1) + ν

)
where we have used p2v2 = 1 + µνp1 twice.

When p2 = 2, we find Jac(M2,µ) = 1 and the total exponent of ζ24 is

ν(1− p1) + E(M2,µ) = (p1 − 1)
(
3p1µ

2(ν + 1) + µ(3µ− 1) + ν
)
/2.

Since ν is odd, we have µ = 1 and the exponent reduces to

(p1 − 1)(3p1 + 2)(ν + 1)/2.

(b) For C2,0,

N (M2,0) =
η(p1(z + 1))η(z/p2)

η(z + 1)η(p1z/p2)
= ζp1−124

η(z/p2)η(p1z)

η(z)η(p1z/p2)
.

Assume first p2 6= 2. Then Jac(M2,0) =
(p1
p2

)
and the exponent of ζ24 is

p1 − 1 + E(M2,0) = −(p1 − 1)
(
(p2 − 1)(p1u

2 − 2u+ 1) + u(p1u+ v − 1)
)

= −24r(p1u
2 − 2u+ 1− uv) = 24r(uv(p2 + 1) + u− 1).

When p2 = 2, we find Jac(M2,0) = 1 and the total exponent of ζ24 is

(p1 − 1)(3u+ 2)(u− 1)/2.

Case p1 = p2 = p. In all cases,

N (Mµ) =
√
p

η(pz)2

η(z)η(z + ν/p)

where 1 = −µν + vp.
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When p 6= 2, we find Jac(Mµ) =
(µ
p

)
and the exponent given by θ(ν).

When p = 2, Jac(Mµ) = 1 and the exponent given by v − 1 = 0.

4.3. Action of T and S. This section is devoted to the proofs of the
actions of T and S on our basic functions as stated in the following two
propositions.

Proposition 4.4.

(i) B ◦ T = φ−1B.
(ii) For 0 ≤ ν < N−1, we have Aν ◦T = Aν+1 and AN−1◦T = φ−1A0.

(iii) For 0 ≤ ν < p2 − 1, C2,ν ◦ T = φθ2(ν)−θ2(ν+1)C2,ν+1; moreover,

C2,p2−1 ◦ T = φθ2(p2−1)−θ2(0)+1C2,0.

(iv) For 1 ≤ ν < p, Cν ◦ T = ζ2p−224 Cν .

Proof. (i), (ii) and (iv) are direct applications of Theorem 2.3.

(iii) For 0 ≤ ν < p2 − 1, one has C2,ν ◦ T = φθ2(ν)−θ2(ν+1)C2,ν+1. For
ν = p2 − 1,

C2,p2−1 ◦ T = φθ2(p2−1)ε2
η
( z+p2

p2

)
η(p1(z + p2))

η(z + p2)η
(p1(z+p2)

p2

)
= φθ2(p2−1)ε2

η
(
z
p2

+ 1
)
η(p1z +N)

η(z + p2)η
(p1z
p2

+ p1
)

= φθ2(p2−1)ε2ζ
1+N−p1−p2
24

η
(
z
p2

)
η(p1z)

η(z)η
(p1z
p2

)
= φ1+θ2(p2−1)−θ2(0)C2,0.

Proposition 4.5. For all primes p1 and p2, one has:

(i) (A0, B) ◦ S = (B,A0).
(ii) When 0 < ν < p1p2 and gcd(ν, p1p2) = 1,

Aν ◦ S = φθ3(ν)Aω

where 1 = −ων + v12(p1p2) and

θ3(ν) =

{
−ων2 − 2ν + ω + 3 + νv12 if p2 6= 2,

ω + ν(v12(1− 2p1) + 2) if p2 = 2.

Suppose from now on that p1 6= p2. The following hold:

(iii) When 0 < ν = p1ρ < p1p2,

Aν ◦ S = φθ4(ρ)C2,$
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where 1 = −$ν + wp2, and

θ4(ρ) =

{
−θ2($) + ρ(w(p2 + 1) + 1) +$ if p2 6= 2,

−θ2($) + 3p1+1
2 ρ2 + ρ(3w − 2) +$ if p2 = 2.

(iv) When 0 < ν < p2, we have µ ≡ −1/(νp1) mod p2 and

C2,ν ◦ S = Aµp1 .

(v) We have

C2,0 ◦ S = C1,0 ×

{
φ−2θ1(0) if p2 6= 2,

φ−θ1(0)+(u2p1(p1+1)/2+(1−u)/2) if p2 = 2.

Proof. (i) We first get

wp1,p2 ◦ (T ν ◦ S) = wp1,p2 ◦
(
ν −1

1 0

)
and the case ν = 0 yields immediately A0 ◦ S = B. On the other hand, we
also have the reassuring result that

B ◦ S = wp1,p2(−N/z) = wp1,p2(z) = A0(z).

(ii) When gcd(ν, p1p2) = 1, we write 1 = −ων + v12(p1p2), and find

N (M2,µ ◦ S) =
η((z + ω)/p1)η((z + ω)/p2)

η(z)η((z + ω)/(p1p2))
= ζω24Aω.

When p2 6= 2, Jac(M2,µ ◦ S) = 1 and the total exponent of ζ24 is

ω + E(M2,µ ◦ S)

= −ων2(24r − 1) + ν
(
−48r + 1 + v12(1− p1 − p2)

)
+ 24r(ω + 3)

= 24r(−ων2 − 2ν + ω + 3) + ν
(
ων + 1 + v12(1− p1 − p2)

)
= 24r(−ων2 − 2ν + ω + 3 + νv12) = 24rθ3(ν).

When p2 = 2, we also have Jac(M2,µ ◦ S) = 1 and the exponent of ζ24
becomes

(p1 − 1)
(
ω + ν(v12(1− 2p1) + 2)

)
.

Similar computations show that the result also holds for p1 = p2 = 2.
(iii) Suppose now that ν = ρp1, 1 ≤ ρ < p2. We write 1 = −$ν + wp2.

In all cases

N (M2,µ ◦ S) =
η(p1z)η((z +$)/p2)

η(z)η(p1(z +$)/p2)

= ζ−p1$+$
24

η(p1(z +$))η((z +$)/p2)

η(z +$)η(p1(z +$)/p2)

= ζ−p1$+$
24 (φ−θ2($)ε2C2,$).
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Assume p2 6= 2. We get Jac(M2,µ ◦ S) =
(p1
p2

)
. The partial exponent is given

by

−$(p1 − 1) + E(M2,µ ◦ S)

= (p1 − 1)
(
p2p1$ρ

2 + (−w + 2p2 − 1)ρ+ (p2 − 1)$
)

= (p1 − 1)
(
p2ρ(p1ρ$) + (−w + 2p2 − 1)ρ+ (p2 − 1)$

)
= (p1 − 1)

(
p2ρ(wp2 − 1) + (−w + 2p2 − 1)ρ+ (p2 − 1)$

)
= (p1 − 1)(p2 − 1)

(
ρ(w(p2 + 1) + 1) +$

)
,

yielding the final result.

When p2 = 2, we find Jac(M2,µ ◦ S) = 1 and

−$(p1 − 1) + E(M2,µ ◦ S) = (p1 − 1)

(
ρ(3w − 2) + 3

p1 + 1

2
ρ2 +$

)
.

(iv) For 1 ≤ ν < p2, we compute µ ≡ −1/(νp1) mod p2 and

C2,ν ◦ S = wp1,p2 ◦
(
µp1 −1

1 0

)
◦ S

=
η((z + p1µ)/p1)η((z + p1µ)/p2)

η(z + p1µ)η((z + p1µ)/(p1p2))
= Ap1µ.

(v) In all cases, we compute

Jac(M ◦ S)N (M ◦ S) =

(
p2

p1

)
η(z/p1)η(p2z − p2)
η(z − 1)η(p2z/p1)

=

(
p2

p1

)
ζ1−p224

η(z/p1)η(p2z)

η(z)η(p2z/p1)
.

When p2 6= 2, this yields

Jac(M ◦ S)N (M ◦ S) = ζ1−p224 φ−θ1(0)C1,0.

The exponent of ζ24 is

1− p2 + E(M ◦ S) = (p2 − 1)
(
p1p2v

2 + (u+ 1− 2p1)v + p1 − 1
)

= (p1 − 1)(p2 − 1)
(
−uv(p1 + 1)− v + 1

)
= 24r

(
− uv(p1 + 1)− v + 1

)
= −24rθ1(0),

so that C2,0 ◦ S = φ−2θ1(0)C1,0.

When p2 = 2, the exponent of ζ24 becomes

−1 + E(M ◦ S) = (p1 − 1)

(
u2p1

p1 + 1

2
+

1− u
2

)
,

so that the final value is

φ−θ1(0)+(u2p1(p1+1)/2+(1−u)/2)C1,0.
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Proposition 4.6. Suppose that p1 = p2 = p. Then:

(i) When ν = ρp, 1 ≤ ρ < p, set 1 = −$ρ+ wp. Then Aν ◦ S = C$.
(ii) For all p, and all 1 ≤ ν < p, one has Cν ◦ S = Aµp where µ ≡
−1/ν mod p.

Proof. (i) When p 6= 2,

Aν ◦ S =
√
p

(
ρ

p

)
η(pz)2

η(z)η(z +$/p)
ζ
−ρ2p$+(−3p+2+w)ρ+p$−3+3p
24

=
√
p

(
−$
p

)((
1/
√
p
)
ε($)ζ

−θ($)
24 C$

)
ζ
−ρ2p$+(−3p+2+w)ρ+p$−3+3p
24

= ζ
−ρ2p$+(−3p+2+w)ρ+p$−3+3p−θ($)
24 C$ = C$

using θ($) = p$(1− ρ2) + (−3p+ 2 + w)ρ− 3 + 3p.
When p = 2, we have ρ = 1, implying $ = w = 1 and

A2 ◦ S =
√

2 ζw−124

η(2z)2

η(z)η(z +$/2)
= ζ

−θ(2)
24 C1 = C1.

(ii) In all cases, we get

Cν ◦ S =
η((z + pµ)/p)2

η(z + pµ)η((z + pµ)/p2)
= Aµp.

4.4. Finding invariant functions. The idea is simple. Using the ex-
plicit actions given above, we need to find suitable modifications of the
functions B, Aν , C1,ν , C2,ν such that the action of T and S on any power
sum coincides with the action on γ2, γ3 or the product γ2γ3, as given in
Section 4.3.

Note that Be ◦ T = ζ−24re24 Be. Write re = t/δ and observe that this
fraction is irreducible (s being prime to t implies δ is). This leads to setting
χ = φ−e = ζ−24re24 = ζ−tδ , a primitive δth root of unity.

The aim of this section is to prove the following theorem from which
Theorem 4.1 will follow.

Theorem 4.7. Under the assumptions of Theorem 4.1, define the func-
tions

A′ν = χα0−νAeν , B′ = Be;

C ′1,ν = χθ1(ν)−νCe1,ν , C ′2,ν = χθ2(ν)−νCe2,ν ;

C ′ν = χµCeν ,

where µ ≡ −1/ν mod p and

α0 =


1 if δ = 2,

0 if δ = 3,

3 if δ = 6,
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making χα0 = (−1)δ+1 = χ−α0 = χ−3. Then, for all integers k, the quantity

Sk = B′k +

N−1∑
ν=0

A′kν +

p1−1∑
ν=0

C ′k1,ν +

p2−1∑
ν=0

C ′k2,ν = B′k + SA,k + SC1,k + SC2,k

satisfies Sk ◦ (T, S) = (χk, χα0k)Sk.

With these notations, we have

Proposition 4.8. The following hold:

(a) B′ ◦ T = χB′.
(b) {A′ν}ν ◦ T = {χA′ν}ν .
(c) {C ′i,ν}ν ◦ T = {χC ′i,ν}ν .
(d) For all ν, C ′ν ◦ T = χC ′ν .

Proof. (a) and (c) follow easily from Proposition 4.4.
(b) We first obtain AeN−1 ◦T = χAe0. Let us explain where the choice A′ν

comes from. For some function α to be specified later, set A′ν = χα(ν)Aeν , so
that

A′ν ◦ T = χα(ν)Aeν+1 = χα(ν)−α(ν+1)A′ν+1,

A′N−1 ◦ T = χα(N−1)χAe0 = χα(N−1)+1−α(0)A′0.

We must find α such that

α(ν)− α(ν + 1) ≡ 1 mod δ, 0 ≤ ν < N − 1,

and
α(N − 1)− α(0) + 1 ≡ 1 mod δ.

The first set of equations gives us α(ν) ≡ α(0) − ν mod δ and the second
α(0) − (N − 1) ≡ α(0) mod δ, which is possible only when N ≡ 1 mod δ.
Setting α0 = α(0) yields the result.

(d) Proposition 4.4 gives us C ′ν ◦ T = ζ
2e(p−1)
24 C ′ν . A glance at Table 2

shows that p2 − 1 ≡ 0 mod (24/e), which implies 2e(p − 1) ≡ −(p − 1)2e

mod 24 and therefore ζ
2e(p−1)
24 = χ.

The actual value of α is in fact dictated by the other invariance properties
that follow.

Remark. This proposition shows at the same time that we cannot ex-
pect any nice T -action when N 6≡ 1 mod δ.

Let us turn our attention to the S-action on our candidate functions,
using the notations of Proposition 4.5.

Proposition 4.9.

(i) (B′, A′0) ◦ S = χα0(A′0, B
′).

(ii) When gcd(ν, p1p2) = 1, A′ν ◦ S = χα0A′ω.
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(iii) For ν = p1ρ, A′ν ◦ S = χα0C ′2,$.
(iv) For 1 ≤ ν < p2, µ ≡ −1/(νp1) mod p2 and C ′2,ν ◦ S = χα0A′µp1.
(v) C ′2,0 ◦ S = χα0C ′1,0.

(vi) For ν = ρp, 1 ≤ ρ < p, set 1 = −$ρ + wp. For all p, A′ν ◦ S =
χα0C ′$.

(vii) For 1 ≤ ν < p, setting µ ≡ −1/ν mod p, we have C ′ν ◦S = χα0A′µp.

Proof. (i) We have B′ ◦S = χ−α0A′0 and A′0 ◦S = χα0B′, and the result
follows from χ−α0 = χα0.

(ii) Proposition 4.5 can be rewritten

A′ν ◦ S = χω−ν−θ3(ν)A′ω

and we simplify the exponent using 1 = −ων + v12 mod δ, which leads to

A′ν ◦ S = A′ω

{
χ−3 if p2 6= 2,

χν(−3+v12(2p1−1)) if p2 = 2.

When p2 6= 2, we use χ−3 = χα0 . The case p2 = 2 can occur only for δ = 3,
in which case p1 ≡ −1 mod 3 and the exponent of χ is 0.

(iii) For ν = ρp1 we use 1 = −$ν + wp2 to get

Aeν ◦ S = χ−θ4(ρ)Ce2,$,

so that
χ−α0+νA′ν ◦ S = χ−θ4(ρ)χ$−θ2($)C ′2,$,

and we simplify:
−θ4(ρ)− θ2($) + α0 +$ − ν.

Using the definition of θ4, we get

A′ν ◦ S = C ′2,$

{
χα0−ρ((p2+1)w+p1+1) if p2 6= 2,

χα0−ρ((3 p1+1
2

)ρ+p1+3w−2) if p2 = 2,

and we conclude using pi ≡ −1 mod δ.
(iv) For 1 ≤ ν < p2, we compute µ ≡ −1/(νp1) mod p2 and

C ′2,ν ◦ S = χθ2(ν)−νAeµp1 = χθ2(ν)−ν−α0+µp1A′µp1 .

Simplifying the exponent gives

C ′2,ν ◦ S = A′µp1

{
χ−α0+µ((p2+1)v2+p1+1) if p2 6= 2,

χ−α0+4p1+1 if p2 = 2,

where for p2 = 2, we used ν = µ = 1. We conclude as in (iii).
(v) When p2 6= 2, we start from

Ce2,0 ◦ S = χ2θ1(0)Ce1,0,

which yields
χ−θ2(0)C ′2,0 ◦ S = χθ1(0)C ′1,0,
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so
C ′2,0 ◦ S = χθ1(0)+θ2(0)C ′1,0,

and the exponent is

uv(p1 + p2 + 2) + u+ v − 2.

This quantity is ≡ u + v − 2 mod δ since pi ≡ −1 mod δ. Moreover 1 ≡
p1(u+ v) mod δ and finally the exponent is −3 mod δ.

When p2 = 2, we have

χ−θ2(0)C ′2,0 ◦ S = χ−(u
2p1

p1+1
2

+ 1−u
2

)C ′1,0,

so

C ′2,0 ◦ S = χ−
(p21+p1−3)u2−3

2 C ′1,0,

and this is χ0 since this can only happen when δ = 3.
(vi) Since 1 = −$ρ+ wp, we can write

A′ν ◦ S = χα0−ν−κ($)C ′$,

and the result comes from the definition of κ.
(vii) We have Ceν ◦ S = Aeµp, so that

C ′ν ◦ S = χκ(ν)χ−α0+µpA′µp,

and we conclude as in (vi).

4.5. Properties of the modular equation. From the preceding sec-
tions, we see that

Φ(F ) = (F −B′)
N−1∏
ν=0

(F −A′ν)

p1−1∏
ν=0

(F − C ′1,ν)

p2−1∏
ν=0

(F − C ′2,ν)

is a modular equation whose coefficients can be expressed in terms of j, γ2
or γ3 depending on the value of δ. Before doing this, we may express these
coefficients as Puiseux series.

Proposition 4.10. With the usual notations:

(a) the coefficient of smallest order of Φ is q−2re;
(b) the trace has order re;
(c) when p1 6= p2, Φ(0) = 1;
(d) when p1 = p2 = p, Φ(0) = (−p)e(p−1)/2 when p is odd and 24 when

p = 2.

Proof. (a) The coefficient of smallest order comes from the coefficient of

Fψ(N)−N−1 which has the order of B′
∏N−1
ν=0 A

′
ν , that is,

−re+

N−1∑
ν=0

−re
N

= −2re.
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When p1 6= p2, ψ(N) − N − 1 = p1 + p2; when p1 = p2 = p, this is p − 1.
Note that all other terms have orders strictly less than this bound.

As an example, when s = e, the degree of the equation in J is 2rs and
the corresponding term is J2rsFψ(N)−N−1.

Moreover

B′
N−1∏
ν=0

A′ν =
(N−1∏
ν=0

χα0−ν
)
ζ
−reN(N−1)/2
N q−2re(1 + · · · )

= χNα0−N(N−1)/2ζ
−24reN(N−1)/2
24N q−2re(1 + · · · )

= χα0−N(N−1)/2ζ
−24reN(N−1)/2
24N q−2re(1 + · · · ),

using N ≡ 1 mod δ. When N is odd, this reduces to

χα0−N(N−1)/2+(N−1)/2q−2re(1 + · · · ) = χα0−(N−1)2/2q−2re(1 + · · · ).

(b) The dominant term in the sum of the conjugates is that of B′, namely
q−re.

(c) For p1 6= p2,

p2−1∏
ν=0

C ′2,ν =

p2−1∏
ν=0

χθ2(ν)−νχ−θ2(ν)εe2ζ
νre
p2 qer/p2(1 + · · · )

= χ−p2(p2−1)/2εp2e2 ζrep2(p2−1)/2p2 qer(1 + · · · ).

Multiplying all together, we find the norm to be of valuation 0, hence a
constant

ϑ = χα0−N(N−1)/2ζ
−24reN(N−1)/2
24N

· χ−p1(p1−1)/2εp1e1 ζrep1(p1−1)/2p1 χ−p2(p2−1)/2εp2e2 ζrep2(p2−1)/2p2

= (εp11 ε
p2
2 )eχα0−N(N−1)/2−p1(p1−1)/2−p2(p2−1)/2ζ

−24reN((N−1)/2−(p1+p2−2)/2)
24N .

When p2 = 2 (with p1 odd), we have δ = 3 always, meaning α0 = 0 and
N ≡ 1 mod 3. Therefore, noting that e is always even,

ϑ =

(
2

p1

)p1e
χ1ζ

−24reN(p1−1)/2
24N = χ(p1+1)/2 = 1

since p1 ≡ −1 mod 3.

When p2 6= 2, both pi being odd, we may use the quadratic reciprocity
law to find

ϑ = (−1)e(p1−1)(p2−1)/4χα0−N(N−1)/2−p1(p1−1)/2−p2(p2−1)/2

· ζ−24reN((N−1)/2−(p1+p2−2)/2)
24N .
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Since p1 + p2 − 2 is even, we obtain

ϑ = ζ
3(24re)
24 χα0−N(N−1)/2−p1(p1−1)/2−p2(p2−1)/2+(N−1)/2−(p1+p2−2)/2

= χα0−3−N(N−1)/2−p1(p1−1)/2−p2(p2−1)/2+(N−1)/2−(p1+p2−2)/2

= χ−N(N−1)/2−p1(p1−1)/2−p2(p2−1)/2+(N−1)/2−(p1+p2−2)/2,

and by inspection, this is always 1.

(d) When p1 = p2 = p, we get

p−1∏
ν=1

C ′ν =

p−1∏
ν=1

χκ(ν)pe/2ε(ν)eζ
eθ(ν)
24 ζ−eν24p q

e(p−1)/12(1 + · · · )

= χp(p−1)/2pe(p−1)/2
(p−1∏
ν=1

ε(ν)
)e
ζ
e
∑p−1
ν=1 θ(ν)

24 ζ
−ep(p−1)/2
24p q2er(1 + · · · ).

The quantity
∏p−1
ν=1 ε(ν) is 1 for p = 2; when p is odd,

p−1∏
ν=1

ε(ν) =

(
(−1)p−1(p− 1)!

p

)
=

(
−1

p

)
using Wilson’s theorem.

When p = 2, e = 8, δ = 3, we find

ϑ = χα0−N(N−1)/2ζ
−24reN(N−1)/2
24N χp(p−1)/2pe(p−1)/2ζ

e
∑p−1
ν=1 θ(ν)

24 ζ
−ep(p−1)/2
24p

= χ0−6ζ
−8·4·3/2
96 χ124ζ−848 = 24.

When p is odd,

ϑ =

(
−1

p

)e
χα0−N(N−1)/2+p(p−1)/2pe(p−1)/2

· ζ−24reN(N−1)/2
24N ζ

e(−(p−1)/2+
∑p−1
ν=1 θ(ν))

24 .

Now,

p−1∑
ν=1

θ(ν) =

p−1∑
ν=1

pν(1− µ2) + (−3p+ 2 + v)µ− 3 + 3p

= (p− 3p+ 2)S0 + 3(p− 1)2 +

p−1∑
ν=1

−pνµ2 + vµ

where S0 =
∑p−1

ν=1 ν. Using 1 = −µν + vp, the sum becomes

p−1∑
ν=1

pµ(1− vp) + vµ =

p−1∑
ν=1

µ(p− vp2 + v) ≡ pS0 mod 24
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in all cases: when p > 3, p2 ≡ 1 mod 24; when p = 3, ν = 1 (resp. ν = −1)
leads to µ = −1, v = 0 (resp. µ = 1, v = 0). Therefore, the exponent of ζ24
is

≡ e
(
−(p− 1)/2 + (−p+ 2)S0 + 3(p− 1)2

)
≡ −e(p− 7)(p− 1)2/2 mod 24,

so that

ϑ =

(
−1

p

)e
pe(p−1)/2ζ

−24reN(N−1)/2
24N χα0−N(N−1)/2+p(p−1)/2ζ

−e(p−1)2(p−7)/2
24

=

(
−1

p

)e
pe(p−1)/2χα0+(N−1)/2−N(N−1)/2+p(p−1)/2+(p−7)/2

=

(
−1

p

)e
pe(p−1)/2χα0−(p4−3p2−8)/2.

For instance, when p = 3, e = 3, δ = 2, we find ϑ = (−1)33(−1)1−31 = −33.
More generally, as soon as p > 3,

ϑ =

(
−1

p

)e
pe(p−1)/2χα0−3 =

(
−1

p

)e
pe(p−1)/2

since p2 ≡ 1 mod 24 and the fact already used that χα0 = χ−3.

4.6. Computing the modular equations using series expansions.
There are a variety of methods to compute modular equations. For large
computations, it is possible to use suitably modified versions of [4] or [2].
Also, we can use resultants in the same spirit as in the remark at the end
of Section 3, noting that ws

p1,p2 = (wp1(z)/wp1(z/p2))
s.

Here, we content ourselves with the use of series expansions and nice
formulas that can help us for small cases. Also, this will add new properties
to our equations.

Looking carefully at the expression for Sk, we see that the terms in
C1, C2 or C cannot contribute to the modular equation, since they have
positive order. Therefore, we need only consider the expansions of B′k and
SA,k. Doing this, we see that the useful terms for SA,k are for j ≤ −ktN ′/N .

Since B′k = q−rek(1 + · · · ) and 1 ≤ k ≤ ψ(N), we need at least reψ(N)
terms in the last coefficient. Since B′ is the product and quotient of very
sparse series, it might be worthwhile to compute its powers by successive
applications of special routines handling this kind of computations. It is
possible to compute nice formulas for the SA,k, in the spirit of the ones to
come, but we do not need them.

A second algorithm consists in grouping

Φ(F ) = PB(F )PA(F )PC1(F )PC2(F )

and to compute PA (resp. PC1 and PC2) via its power sums that are given
in the preceding propositions.
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Inspired by the approach of Section 3.2, the third algorithm uses the
reciprocal polynomial, whose power sums will depend on the C ′1,ν and C ′2,ν
only:

Σk =

p2−1∑
ν=0

1

C ′k2,ν
+

p1−1∑
ν=0

1

C ′k1,ν
,

which is a process involving p1+p2. We will prove two useful results (Propo-
sitions 4.11 and 4.12 below) to help us compute these quantities.

Proposition 4.11. For all integers k 6= 0,

SC2,k = p2ε
ke
2 q

kt/δ
∑

j≥ktp′2/p2

ck,jp2−ktp′2q
j ,

where (p2 + 1)/δ = p′2 and the ck,i are explicitly given in the proof.

Proof. Put w = q1/p2 , ζ = ζp2 and write

η(p1z)η
(
z
p2

)
η(z)η

(p1z
p2

) =
(wp1p2/24(1 +

∑∞
i=1 aiw

p1p2i))(w1/24(1 +
∑∞

i=1 aiw
i))

wp2/24(1 +
∑∞

i=1 aiw
p2i)wp1/24(1 +

∑∞
i=1 aiw

p1i)

= wrC12(w)

with C12(q) = 1 + · · · ∈ Z[[q]] (which is symmetrical in p1 and p2), which
yields

C ′2,ν = χθ2(ν)−νχ−θ2(ν)εe2(wζ
ν)reC12(wζν)e,

SC2,k = εke2 w
kre

p2−1∑
ν=0

χ−kνζkreνC12(wζν)ek.

Writing C12(w)ek =
∑∞

i=0 ck,iw
i (note this is valid irrespective of the sign

of k), the inner sum becomes

∞∑
i=0

ck,iw
i
p2−1∑
ν=0

(χ−kζkre+i)ν ,

in which the root of unity is

χ−kζkre = ζ24kre24 ζkre = ζ24krep2+24kre
24p2

= ζ
24kre(p2+1)
24p2

.

Now, we use the fact that p2 ≡ −1 mod δ, so that re(p2 + 1) = tp′2 where
p′2 = (p2 + 1)/δ. The above sum is now

∞∑
i=0

ck,iw
i
p2−1∑
ν=0

(ζktp
′
2+i)ν = p2

∞∑
i≡−ktp′2 mod p2

ck,iw
i

= p2w
−ktp′2

∑
j≥ktp′2/p2

ck,jp2−ktp′2q
j ,

leading to the result.
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Proposition 4.12. In case p1 = p2 = p, for all k 6= 0,

SC,k ∈
(
q−1/24

η(pz)2

η(z)

)ek
Z[[q]] = qKk/δZ[[q]],

where all series are specified in the proof.

Proof. One uses ζ = ζp in

SC,k = pek/2
(
η(pz)2

η(z)

)ek p−1∑
ν=1

ε(ν)ek
χkκ(ν)ζ

ekθ(ν)
24

η(z + ν/p)ek

= pek/2
(
η(pz)2

η(z)

)ek p−1∑
ν=1

ε(ν)ekq−ek/24ζ−ekν/24
χkκ(ν)ζ

ekθ(ν)
24

(1 +
∑∞

i=1 aiq
iζiν)ek

= pek/2
(
q−1/24

η(pz)2

η(z)

)ek p−1∑
ν=1

ε(ν)ekχkκ(ν)ζ
ekθ(ν)
24 ζ−ekν/24C(qζν)ek

where

C(q) =
1

1 +
∑∞

i=1 aiq
i
.

Writing C(q)ek =
∑∞

i=0 ck,iq
i (same remark on the sign of k), the inner sum

of the preceding relation is now

(4.1)

p−1∑
ν=1

ε(ν)ekχkκ(ν)ζ
ekθ(ν)
24 ζ−ekν/24

∞∑
i=0

ck,i(qζ
ν)i

=
∞∑
i=0

ck,iq
i
p−1∑
ν=1

ε(ν)ekχkκ(ν)ζ
ekθ(ν)
24 (ζ−ek/24ζi)ν .

Let us treat the case p = 2 first, with e = 8. We get

SC,k = 24k
(
q−1/24η(2z)2

η(z)

)8k ∞∑
i=0

ck,iq
i(ζ−k2 ζi2)

= (−24)k
(
q−1/24

η(2z)2

η(z)

)8k ∞∑
i=0

ck,i(−q)i.

For p odd, the root of unity in the inner sum of (4.1) is

ε(ν)ekζ
ek(p(−(p−1)2κ(ν)+θ(ν))−ν)
24p (ζi)ν ,

the exponent of ζ24p being

p
(
−(p− 1)2µ+ pν(1− µ2) + (−3p+ 2 + v)µ− 3 + 3p

)
− ν.
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When p = 3 and e = 3, we find

ζ
k(−32µ+8ν−8νµ2+18)
24 = (ζ−16µ+4ν−4νµ2+9

12 )k = (ζ34ζ
ν
3 )k,

leading to

SC,k = 33k/2ζ3k4

(
q−1/24

η(3z)2

η(z)

)3k ∞∑
i=0

ck,iq
i

2∑
ν=1

ε(ν)k(ζi+k3 )ν .

When k is even, this boils down to

SC,k = (−3)3k/2
(
q−1/24

η(3z)2

η(z)

)3k(
2

∑
i≡−kmod 3

ck,iq
i −

∑
i 6≡−kmod 3

ck,iq
i
)

= (−3)3k/2
(
q−1/24

η(3z)2

η(z)

)3k(
3

∑
i≡−kmod 3

ck,iq
i −

∞∑
i=0

ck,iq
i
)
.

When k is odd,

SC,k = 33k/2ζ3k4

(
q−1/24

η(3z)2

η(z)

)3k ∞∑
i=0

ck,iq
i

2∑
ν=1

ε(ν)k(ζi+k3 )ν

and
2∑

ν=1

ε(ν)k(ζi+k3 )ν = −ζi+k3 + ζ
2(i+k)
3

=

{
0 if i+ k ≡ 0 mod 3,

(−1)(i+k)mod 3
√
−3 otherwise,

which yields

SC,k = (−3)(3k+1)/2

(
q−1/24

η(3z)2

η(z)

)3k ∞∑
i+k 6≡0mod 3

(−1)(i+k)mod 3ck,iq
i.

When p > 3, we get

(ζ
−(p−1)2µ+pν(1−µ2)+(−3p+2+v)µ−3+3p
24 )ek(ζ−ek+24i

24p )ν

= (ζ
(ν−νµ2−µ+3)p+µv−3
24 )ek(ζ−ek+24i

24p )ν ,

using p2 ≡ 1 mod 24. We simplify this as

(ζ
p(ν+3)−3
24 )ek(ζ−ek+24i

24p )ν = ζ
ek(p−1)
8 (ζ

ek(p2−1)+24i
24p )ν .

Write p2 − 1 = 24p′ to obtain

ζ
ek(p−1)
8 (ζekp

′+i
p )ν .
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When k is even, this gives

SC,k = pek/2ζ
ek(p−1)
8

(
q−1/24

η(pz)2

η(z)

)ek ∞∑
i=0

ck,iq
i
p−1∑
ν=1

(ζekp
′+i

p )ν

= pek/2ζ
ek(p−1)
8

(
q−1/24

η(pz)2

η(z)

)ek
·
(

(p− 1)
∞∑

i+ekp′≡0mod p

ck,iq
i −

∑
i+ekp′ 6≡0mod p

ck,iq
i
)

= pek/2ζ
ek(p−1)
8

(
q−1/24

η(pz)2

η(z)

)ek(
p

∞∑
i+ekp′≡0mod p

ck,iq
i −

∞∑
i=0

ck,iq
i
)
.

When k is odd, noting that e is always odd from Table 2, the sum is

SC,k = pek/2ζ
ek(p−1)
8

(
q−1/24

η(pz)2

η(z)

)ek ∞∑
i=0

ck,iq
i
p−1∑
ν=1

ε(ν)(ζi+ekp
′

p )ν .

But
∑p−1

ν=1 ε(ν)(ζi+ekp
′

p )ν = 0 when i + ekp′ ≡ 0 mod p since there are the
same number of quadratic residues and quadratic non-residues modulo p.

When i+ekp′ 6≡ 0 mod p, ζi+ekp
′

p is a primitive pth root of unity. Remember
that [9, Ch. 6] ∑

x residue

ζxp −
∑

xnon-residue

ζxp =

√(
−1

p

)
p.

Let g be a generator of (Z/pZ)∗. If u is an integer, then∑
x residue

(ζg
u

p )x −
∑

xnon-residue

(ζg
u

p )x = (−1)u

√(
−1

p

)
p.

When i + ekp′ 6≡ 0 mod p, we set Ω(i + ekp′) = u such that gu ≡ i +
ekp′ mod p. Then

SC,k =

(
−1

p

)√(
−1

p

)
ζ
ek(p−1)
8 p(ek+1)/2

(
q−1/24

η(pz)2

η(z)

)ek
·

∞∑
i=0, i+ekp′ 6≡0mod p

(−1)Ω(i+ekp′)ck,iq
i.

When p ≡ 1 mod 4, the first terms simplify to ζ
ek(p−1)/4
2 = (−1)(p−1)/4; when

p ≡ 3 mod 4, we get −ζ2+ek(p−1)8 = −ζ1+ek(p−1)/24 = (−1)(3+ek(p−1)/2)/2.
As a last point, the dominant term of SC,k is qke(p−1)/12. When p = 2

and e = 8, this is 2k/3, whereas re = 1/3; when p = 3, e = 3, we get k/2,
whereas re = 1/2. For p > 3, we have e = 1 and we compare (p− 1)/12 and
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re = (p− 1)/2 · (p− 1)/12. Looking at the valuation of 2 and 3, we deduce
that re = t/δ and (p− 1)/12 = p′/δ.

4.7. Tables of equations for double η-quotients. We compute

Φ[w24
2,2](X, J) = X6 + (−J + 624)X5 + (96J + 129840)X4

+ (−2352J + 9018880)X3 + (10495J + 2077440)X2

+ (J2 − 1488J + 159744)X + 4096,

whereas

Φ[w8
2,2](F,G2) = F 6 −G2F

5 + 208F 3 + 31G2F
2 +G2

2F + 16.

More examples are

Φ[w3
3,3](F,G3) = F 12 −G3F

11 − 522F 10 + 27G3F
9 − 10557F 8 − 162G3F

7

− 14076F 6 − 18G3F
5 − 9801F 4 + 163G3F

3

+ (486−G2
3)F

2 − 9G3F − 27,

Φ[w3,7](F,G3) = F 32 −G3F
31 − 514F 30 + 21G3F

29 − 12585F 28

− 147G3F
27 − 25158F 26 + 322G3F

25 − 5103F 24

+ 378G3F
23 + 80556F 22 − 1638G3F

21 − 21994F 20

− 28136F 18 + 1620G3F
17 + 25650F 16 − 252G3F

15

− 3944F 14 − 322G3F
13 − 14938F 12 + 22G3F

11

− (G2
3 − 2940)F 10 − 10G3F

9 + 1953F 8 +G3F
7

− 462F 6 + 7G3F
5 + 15F 4 −G3F

3 − 10F 2 + 1.

5. Conclusion. We have studied modular equations involving γ2 and
γ3 for double η-quotients. As a result, more compact modular equations
can be stored and used, with application to the SEA algorithm (see for in-
stance [11]), or CM computations, as motivated for instance by [14] (see [12]).

It seems natural to conjecture that more general functions can exhibit
the same properties. Experiments can be conducted on Newman functions,
using for instance the resultant approach, leading to new instances of the
theorems. This will be described in another article.

Acknowledgements. The author wishes to thank the referee for
his/her precise remarks that made the article clearer.
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[2] R. Bröker, K. Lauter, and A. V. Sutherland, Modular polynomials via isogeny vol-
canoes, Math. Comp. 81 (2012), 1201–1231.

[3] D. A. Cox, Primes of the Form x2 + ny2, Wiley, 1989.
[4] A. Enge, Computing modular polynomials in quasi-linear time, Math. Comp. 78

(2009), 1809–1824.
[5] A. Enge and F. Morain, Generalized Weber functions, http://hal.inria.fr/inria-

00385608/, 2009.
[6] A. Enge and R. Schertz, Constructing elliptic curves over finite fields using double
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[10] L. Kiepert, Über Theilung und Transformation der elliptischen Funktionen, Math.

Ann. 26 (1886), 369–454.
[11] F. Morain, Calcul du nombre de points sur une courbe elliptique dans un corps fini:
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