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1. Introduction. Let n denote Dedekind’s function. When N > 1 is an
integer, 7-quotients of the form f =[],y n(z/d)" are functions on I'9(N)
when the integers ry satisfy some properties known as Newman’s Lem-

a [13]. In other words, there exists a bivariate polynomial @[f](X,.J) such
that @[f](f(2),7(z)) = 0 for all z, where j is the classical modular invariant.

In some cases, there exist equations of the form &[f](X, Gs, G2) where
D[f1(f(2),73(2),72(2)) = 0 for the Weber functions 73, 2. Kiepert was the
first to compute modular equations of this type for f = o, = n(z/p)/n(2)
for p <29 (see [10]). Weber cites some examples in [15], §72]; Antoniadis [I]
extended this to p < 61.

In the present work, we study such equations for the double n-quotients
roy, ., introduced in [6]. We give all parameters (p1,p2, e) leading to equa-
tions in 2 and 7s.

Section 2 recalls known facts on Weber and 7 functions. Section 3 deals
with the case of v, where we introduce a faster variant of the classical
algorithm to compute the modular equation via series expansions. Section 4
proves the necessary results for tv,, ,,, gives algorithms to compute the
equations in the spirit of Section 3, and includes some numerical examples.

Notation. If u is some function, we will denote by @[u|(X,J) the cor-
responding modular equation. If u = j(nz), we will write @,, for simplicity.

2. Preliminaries

2.1. Properties of the functions v» and 3. We will use the tradi-

tional notations
11 0 -1
r=(y1) s=(1 )
01 1 0
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for the two generators of SLa(Z). We use the notation f o M to denote the
function z — f(Mz). The modular invariant is j(z) = j(¢) = 1/q+744+- - -
with ¢ = exp(2imz) and it is invariant under SLy(Z) (equivalently, under T’
and S).

The classical Weber functions are

Y2(q) = j(q)/3 = ¢ V3 (1 + 248¢ + 4124¢% + 34752¢° + 2131264 + O(¢%)),
v3(q) = (j(g) — 1728)/% = ¢~ 1/2(1 — 492¢q — 22590 ¢* + O(¢°)).

It is known that 72(q) € ¢~ /*(1 + Z[[q]]) and 3(q) € ¢ /*(1 + Z][q]]).
If n is an integer, we denote ¢, = exp(27i/n). One can prove that

(2.1) 20T =( e, oS =,
(2.2) 30T =—73, 308 =—s.
The following is classical (see, e.g., [3, Lemma 11.10]).

ProposiTION 2.1. If f is a holomorphic modular function invariant
under T and S, then f is a polynomial in j.

This can be extended as follows (see [15], §54] and also [3, Theorem 11.9]).
THEOREM 2.2. Let f be a modular function.

(a) If f is invariant under T' and S, then f is a rational function of j.

(b) If foT =—f and foS = —f, then f is equal to 3 times a rational
function of j.

(¢) If foT = C;lf and foS = f, then f is equal to 7211 times a rational
function of j.

(d) If foT =-— 33F1f and foS = —f, then [ is equal to fygfygd times a
rational function of j. (Note that —(F' = éﬂ.)

We will use the preceding results as follows. Given a function f satisfy-
ing one of the conditions in Theorem there is some ¢ (given as above)
for which f/g is invariant under 7" and S, implying that f/g is a rational
function of j. Furthermore, if f/g is holomorphic, then this rational func-
tion will turn out to be a polynomial; if the expansion of f/g has integer
coefficients, then Hasse’s principle will imply that this polynomial has inte-
ger coefficients. For ease of writing, this will lead to polynomials in J, G»
(for v2), or G (for 73).

From the algorithmic point of view, we have to recognize a polynomial
with integer coefficients applied to j(g), given the first terms of a series T (q).
Note that we need the order of this series to be > 0. We proceed step by
step.

Function RECOGNIZEPOLYINJ(T)
INPUT: a series T = ¢,q" + - - - + O(q') with integer coefficients, v < 0 and

¢y # 0.
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OUTPUT: a polynomial P(X) of degree —v such that 7 = P(j(q)).
1. R :=T; i := valuation(R); P := 0;
2. while 1 <0 do
{at this point R = r;¢" + - -- + O(¢') with r; # 0}

2.1. P:=P+4r X%
22. R:=R —rijlg)%
2.3. i := valuation(R);

3. return P.

Note that we can precompute the powers of j(q) whenever needed, so
that each call to the function requires O(v?) operations. In large cases,
computations can be done using results calculated modulo small primes and
reconstructed via the CRT (as done by Atkin, see [11]).

2.2. Formulas for the n-function. The following is taken from [7]
and will be our main tool in the computations of Section 4] Let I" = SLo(Z)
denote the full modular group.

THEOREM 2.3. Let M = (‘é 3) € I' be normalised such that ¢ > 0, and
d>0if c=0. Write ¢ = ¢;2M9 with ¢; odd; by convention, ¢; = Mc) = 1
if c = 0. Define

e(M) = (=)< :

( a ) ab+c(d(1—a2)—a)+3c1 (a—1)+EA(c) (a2 1)
c1

For K € N write
uga+vgKe =0 = ged(a, Ke) = ged(a, K).

Then
_a —v K
n<;>0M=€<<i§: K)) 5K(cz+d)77<6Kz+(UK£+vK d)>,
kU Ok

where the square root is chosen with positive real part.

We can decompose the formula into several parts: (M) = Jac(M )C254(M)
where we distinguish the Jacobi symbol part and the exponent of (24; then,
we have the square root part Q(M) and the n-part N (M). When dealing
with an 7n-quotient, the above formulas are applied by multiplicativity on
the different pieces 1(z/d) (see below).

3. Generalized Weber functions

3.1. Definition and properties. Let N > 3 be an odd integer. For all
factorizations N = ad, let e = ged(a, d) and consider the functions

P = i6/2 () vamter e
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for 0 < ¢ < a with ged(c,e) = 1. These functions were introduced in [15]
§72]. Tt is easy to see that Poyn = iN"D/2n(2/N)/n(z) = iV 2wy (2)
where the function ty was studied in [5].

Weber proves that in all cases, Pfﬁ ., are roots of a modular equation. In
some cases, the results are better, for instance:

THEOREM 3.1. If gcd(N,6) = 1 and 12| ¢, then the Pzdﬂ,yévfw?()N—l)/z

are Toots of a modular equation.

3.2. Computations in the prime order case. For a prime N =
p > 3, this setting simplifies to

n(p2)\? - n(12ht2) 2
— =(—1 p=1)/2( 2 P 7 < .
Zo,p1 p( () ) , Tion1py = (—1) < (2) ) ,0<h<p

THEOREM 3.2. The numbers xcyd,ayg(z)p_lvg(z)(p_l)ﬂ are Toots of a
modular equation whose coefficients are rational functions of j(z). In par-
ticular, the constant term is (—1)P~D/2p,

Antoniadis [1] extended the results of Kiepert to p < 61 and gave more
properties of the polynomials. He computed the equation by solving a linear
system in the unknown coefficients of the equation, using the g-expansion
of j(¢) and the fact that x(, 1 must be a root of the equation.

A standard approach (already known to Enneper [8, §52]) is to compute
the power sums of the roots of the equation, recognize them as polynomials
in our variables, and then terminate using the classical Newton relations.
Inspecting our roots, we see that the g-expansion of xg, 1 has positive or-
der, and all z124,1, have negative order. So the power sums can be com-
puted using the 1251, only; we can find formulas for the g-expansion of

f;é IL‘]f2h71,p if needed.

A better approach is to look at the reciprocal polynomial, whose roots
are the 1/z¢ 1 and 1/219p, 1 ,, and only the first one contributes to the power
sums. Write (p — 1)/12 = €’/§ as an irreducible fraction with 6|d. Noting
that

p/Top1 = P2 ) =1+,

we can use the discussion following Theorem to conclude that all coefhi-
cients are polynomials in J, G2 or Gs.
The algorithm is:

1. Compute Si = p/ a:’g%l and recognize it as a polynomial in the usual
variables.

2. Use Newton’s formulas.

3. Remove the powers of p.
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Note that the largest power is (p/z¢1)P T = g~ P*=D/12(1 ... ) where the
exponent is an integer as soon as p > 3. Therefore, we need up to (p2 —1)/12
terms in the j-series.

For example, let us give some computational details in the case p = 11.
We compute

Sy = 11/z0111 = q5/6 — 2q1/6 _ ¢TI0 1 9413/6 4 O(q19/6).
Dividing by the expansion of yoy3, we find 14242¢+0(q?), which must be a
polynomial in j(q), hence the constant 1. The other coefficients are given in
Table[l] We have replaced 72 (resp. v3) by G2 (resp. G3). The corresponding
polynomial is (after reductions between variables)

F'2 — G3GoFM — 242G2F'0 — 19965G3FY — 585640G o F®

+ 159440490 F° — 285311670611.
Taking its reciprocal and removing the spurious powers of 11 yields
O[—12,|(F, Ga, G3) = F12 — 990F° 4 440G F* + 165G F3
+ 22G3F? + G3GoF — 11,

already computed by Weber.

Note that one drawback of this approach is the large degree and size of
the coefficients before reduction via Newton formulas. However, if compu-
tations are performed using CRT primes, this is not a problem, since we

compute the final polynomial modulo the primes.
The smallest cases are

P[2](X,Go) = X0 +10X3 — Go X + 5,
H[—12](X,G3) = X8 +14X° 4 63X* + 70X + G3X — 7,
Pty (X, J) = XM + 26X + 325X 1% + 2548 XM + 13832X 10
+ 543407 + 157118X% + 333580.X 7 + 509366.X °
+ 534820X° + 354536 X * + 124852X + 15145X2
+ (746 — J)X + 13.

REMARK. We concentrated here on the prime index case. The same work
can be done for composite indices. Note also that we could use resultants for
that task, in view of the following. Suppose p is prime and M is an integer
prime to p; write N = pM. Write

Wy (2) = (wp(2)war(2/p))”
On the other hand
Pl (3! (2),(2))
Py(i(2),5(2/p))

0, Pfwyi] (w33 (z/p),j(2/p)) =0,
0.
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Table 1. Computations for p = 11

(11/wo,11,1)"

=W N

10

11

12

g% —4q7YB £ 2¢" P = GE(J — 1244)

g% — 6732 +9¢712 £10¢" % + .- = G3(J? — 1002J + 59895)

q710/3 _ 8q77/3 + 20q74/3 _ 70q2/3 4o

= Go(J® — 2488J% 4 1510268J — 135655520)

qus/e _ 1Oq719/6 + 35(1713/6 _ 3Oq77/6 _ 105(]71/6 + 238q5/6 4o

= G3G3(J% — 2246J% + 1287749.J — 145411750)

q % —12¢ 4 4+ 5472 —88¢72 —99¢~ ' + 540 — 418q + - - -

= J% — 3732J% 4 4586706.J° — 2059075976.J2
+253478654715.J — 2067305393340

q—35/6 _ 14q—29/6 + 77q—23/6 _ 182q—17/6 + 924q—5/6 _ 1547q1/6 I

= G3G2(J° — 3490J* 4 4063139J3 — 1796527998.J>
+247854700555. — 4740750382830)

q720/3 _ 16q717/3 + 104q714/3 _ 320(1711/3 + 260(178/3 + 1248q75/3
—3712¢%/3 +1664¢/3 + - -

= G3(J® — 4976J° + 9210680J* — 7786404608.J°
+2955697453292.J% — 418137392559040.J + 12629117378938720)

q %2 —18¢7 132 £ 135¢ 12 — 510¢7%/2 + 765¢~ /% + 1242¢75/2
—7038¢73/2 4+ 8280¢7 /% 4+ 9180¢ /2 + - - = G3(J7 — 4734J° + 8386065.J°
—6877048710J* + 2611195915626
—398512009001700.J + 16457557949779815J — 41283301866181650)

q—25/3 _ 20q_22/3 + 170q—19/3 _ 760q—16/3 + 1615q_13/3 + 476q—10/3
—11210¢~7/3 4 22440¢=*/3 4+ 1615¢~ /3 — 64600¢*/> + - - -

= G2(J® — 6220J7 + 1538219075 — 19242776200.J° + 12809764457825.7*
—4368737795118764J° + 669619352632925750.J% — 33921007872189625000.]
+233702090524237500000)

q755/6 _ 22q—49/6 + 209(]743/6 _ 1078(1737/6 + 2926(1731/6 _ 1672(]725/6
—15169¢ %76 4+ 47234¢~ 3/ — 313504~ 7/ — 1074264 '/°
+218680¢°/¢ + - - -

= G3G3(J® — 5978J7 + 14256527J° — 17312108670J°
+11327366012605.J* — 3889904574252522.J° + 631138185556080950.J2
—38141443583282670180.J + 473098671409604281800)

g 10— 24¢7° + 252¢7% — 1472¢7" 4 4830¢7° — 6048¢7° — 16744¢™*
+84480¢ 2 — 113643¢~2 — 115920¢ % + 534612 — 370920q + - - -

= J' — 7464.J° 4 23101236.J% — 38353325536.J7 4 36913772324730.7°
—20784851556729552.J° + 6580486714450069928.J*
—1063011399511905159360.J° 4 72005127765018136775955.J>
—1322204967509387392211000.J + 1424583710586688670191932
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Writing Z = wy,,(2), X = w,(2), Y = wa(z/p), the different quantities
are related via the algebraic equations

Z =XV, QX" ) =0, P](Y=2J)=0, @,(J,J)=0,

and the variables can be eliminated via resultants to get a modular equation
in Z and J, which has to be factored to get the correct polynomial.

4. Double 7-quotients

4.1. Definition and statement of the result. For primes p; and po,

let

s (n(Z/pl)n(Z/pz) ) _ ( oy, (2) )

Pep A\ n(z/(pip2))n(2) wp, (2/p2)
where s = 24/gcd (24, (p1 — 1)(p2 — 1)) is the smallest integer such that sr
is an integer, where r = (p; — 1)(p2 — 1)/24. Note that s|24; and s|6 when
p1 and po are odd primes. It is shown in [7] that the function w, o, IS a
function on I'°(pips); conjugates of oy ., are also computed, leading to
properties of the modular equation @[w,  ](X,.J). This polynomial has
X-degree (p1 + 1)(p2 + 1) for p1 # py (resp. pt + p1 if p1 = pa2).

We can now state the result that we will prove in this section. More

precise results are given along the proof.

THEOREM 4.1. Let p1, pa be two primes,
N =pipe, s=24/ged(24,(p1 —1)(p2 — 1)),

e # s a divisor of s and § = s/e. If N = 1 mod § and the parameters are
chosen in Table then there exists a modular equation @[(—1)6+1m;17p2](X)

Table 2. Values of p1 and p» leading to a modular equation &[(—1)°" g . ](X)

p1 P2 s e 1)
2 2 24 8 3
2 5 mod 12 6 2 3
2 11 mod 12 12 4 3
3 3 6 3 2
3 7 mod 12 2 1 2
3 11 mod 12 6 3 2
5 mod 12 5 mod 12 3 1 3
5 mod 12 11 mod 12 3 1 3
7 mod 12 7 mod 12 2 1 2
7 mod 12 11 mod 12 2 1 2
11 mod 12 11 mod 12 6 1 6
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whose coefficients are polynomials in ~3,v2, and which has the same X-

degree as @wy, . 1(X,J).
The following lemma is used in the proof of the theorem.

LEMMA 4.2. Let 6 € {2,3,6} be as above and suppose N = pips =
1 modd. Then p; = —1 mod 6.

Proof. For 6 = 2, N = 1mod 2 gives the conclusion. When 3|4, we
cannot have p; = 3 since N = 1 mod §. For 0 equal to 3 (resp. 6), surely we
cannot have p; = 1 mod 3 (resp. 6). This leaves p; = —1 mod 3 (resp. 6). =

The proof of the theorem will use several intermediate results that we
will present in a form as compact as possible. When p; # po, we will make
the convention that p; is odd (so that we may have ps = 2). Moreover, we
let u and v be two integers such that up; +vps = 1. To simplify the proof, we
will be mostly looking at properties using ps, this case being complicated
when ps = 2. Reciprocally, using p; and p2 supposes that p; # pa. The
results and proofs are of course symmetric under exchanging p; and ps. In
case of equality, we will write p; = pa = p.

4.2. The conjugates of w,, ;,,. In [7] are given the conjugates of v,

(with some minor typos). Here, we need the precise expansions of to,, ,,. In
view of Theorem the value of wy, ,, o M can be written as

0, 0 M = Jac(M)(A™ QM)N (M)

where the first part cumulates Jacobi symbols, the second the exponents
of (24, the third is the product of the square roots and the last one the

n-quotient. To ease notations, we also put ¢ = (3{" = Céil_l)(pz_l). We use
the notations and philosophy of computations from [7].

PROPOSITION 4.3. Let p1 and p2 be two primes. In all cases, we have the
N +1 conjugate functions of Table[3] The remaining p1 + p2 conjugates are
found in Table |4, where in the case of Ca,, we set v = —(up1)~! mod pa,
ve = (1 4+ prpv)/pe for u # 0 (equivalently v # 0; p = 0 corresponds to
v =20). When v >0, we get

Or(v) = {M((p2+1)1}2+1)+7/ if p2 # 2,
2 Bpr+2)(v+1)/2  if pp=2.

Moreover

Q(O)Z{UU(P2+1)+U—1 if p2 # 2,
? Bu+2)(u—1)/2 if pp=2.
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Table 3. Conjugate functions for any N

M Wy, .py © M ord l
Lg— Lv — ”7(%)"](%) __r —vr
T = (0 1) Ay(z) = 77(2+V)77(;1t,"2) D102 Cn

=1pypy (2 +7),0 <V <N

0 -1
S = ( ) B(z) = n(p1z)n(p2z) _ Wy, po (N2) —r 1

n(z)n(p1p22)

Table 4. Conjugates for p1 # p2

M W, ,py © M
pp2 —1 01(v) n(i)n(pz(hw))
M :( ) Cio(z) =" W22 — —— 0<v<
G 1 0 1w(2) = ¢ 1n(2+U)n(7p2(p1+ )) - b1
v —u;
M= ()
M _(upl —1) Can(2) = %2 n(p1(z4+1))n(5EL) 0<v<
= 20(2) = 2 oo (AETy DS VS P
U —v
Mo = (7 7P)

Also,
P )
<_> Zf b2 7& 27
€2 = p2
1 if po = 2.

Forie{1,2}, the functions C;,, have order r/p; and leading term gbgi(”)aiﬁ’”z?".
When p1 = pa = p, we must consider the following p — 1 conjugate

functions:
matrix w,, oM
MH:(‘M‘D 71) Cu(z) = /pe(v) 294(1”)77(1)72)2,1§V<p
1 0 n(z)n(z + v/p)

where 1 = —pv + vp, e(v) = (_TV) if p is odd (resp. 1 when p = 2) and
prv(1—p?) + (=3p+2+v)u—3+3p if pis odd,
0(v) = .
0 if p=2.
Moreover, Cy,(z) has order (p — 1)/12 and leading coefficient
VRIS

Proof. The cases of the A, matrices and of B are treated without dif-
ficulty, as in [7]. The value of Q(M) is 1, unless we are dealing with the



310 F. Morain

case p; = p2 = p. The computations for the C' matrices involve non-zero
exponents for (o4.

CASE p; #p2. Following [7], we first prove the result for C3,, when v >0.
Iterate over 1 < p < po and define v = —(up1) ! mod p2 € {1,...,p2 — 1},
vy = (1+ pvpy)/p2. Note that v +— p is an involution and the corresponding
vo’s are equal. Moreover, iterating over 1 < p < py is the same as iterating
over 1 < v < py. We find

N(Ms,) = n(prz)n((z +v)/p2) _ _ =) N(P1(z + v))0((2 + v)/p2)
n(z)n(p1(z +v)/p2) n(z +v)n(p1(z +v)/p2)
(a) Assume first po # 2. We compute Jac(M ) = (z—;), and the total
exponent of (o4 is
V(L =p1) +E(Myy)
= (pl — 1)(povp1pt® + pov + 2ups — pwa — v — 1)
(p1 = D((p2 = D)(wplpr + v+ 2) + p(1 = v2 + pvpr))
= (p1 — 1)(p2 = D(wpPpr + v+ 20+ pvg)
= (p1 — 1)(p2 — 1) (w((p2 + D2 + 1) + v)

where we have used pavo = 1 + uvp; twice.
When py = 2, we find Jac(Ma ;) = 1 and the total exponent of (a4 is

v(1=p1) +E(Mzy) = (p1 — 1) (3p1p®(v + 1) + p(3u — 1) +v) /2.
Since v is odd, we have u = 1 and the exponent reduces to

(p1 = 1)Bp1 +2)(v +1)/2.

(b) For 0270,

iz +))n(z/p2)  pi—1m(z/p2)n(p12)
N (Mzo) = n(z+n(piz/p2) 2 n(z)n(piz/p2)

Assume first py # 2. Then Jac(Ms) = (p—;) and the exponent of (o4 is

p1—1+EMag) = —(p1 — 1)((p2 — D)(pu® — 2u+ 1) + u(pru+v — 1))
= —24r(pru® — 2u+ 1 —uv) = 24r(uv(ps + 1) +u — 1).
When py = 2, we find Jac(Mz ) = 1 and the total exponent of (o4 is
(p1 — 1)(3u+2)(u —1)/2.
CASE p1 = po = p. In all cases,

_ n(pz)*
M =G

where 1 = —puv + vp.
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When p # 2, we find Jac(M,) = (%) and the exponent given by 6(v).

When p = 2, Jac(M,,) = 1 and the exponent given by v —1=0. m

4.3. Action of T and S. This section is devoted to the proofs of the
actions of T" and S on our basic functions as stated in the following two
propositions.

PROPOSITION 4.4.

(i) BoT =¢'B.
(i) For 0 <v < N—1, we have A, oT = A,,1 and Ay_10T = ¢~ 1 Ap.
(ili) For 0 < v < py—1,Cop 0T = ¢92(V)—92(1/+1)C2’V+1; moreover,
Copy_10T = g2 1)=0:00+1¢,
(iv) For1<v<p, C,oT =(272C,.

Proof. (i), (ii) and (iv) are direct applications of Theorem
(iii) For 0 < v < pa — 1, one has Cy, o T = ¢92(V)*92(”+1)Cg7,,+1. For
v=p2—1,

— ¢92(p2—1)€2 %Z‘N—pl—m 7](:,72)77(1712)
n(z)n (%)
— ¢1+92(P2—1)—92(0)C270. .

PROPOSITION 4.5. For all primes p1 and ps, one has:

(i) (Ao, B) oS = (B,A).
(ii) When 0 < v < p1p2 and ged(v, p1p2) = 1,

A, 08 = ¢ A,
where 1 = —wv + vi2(p1p2) and

—wv? —2wHw+3+rvu if pa#£2,
w + v(viz(1 - 2p1) + 2) if p2 =2.

) = {
Suppose from now on that py # pa. The following hold:
(iii) When 0 < v = p1p < p1p2,

A 0S8 = ¢94(p)027w
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where 1 = —wv + wpsa, and

0(p) = { —b2(@) + p(w(pz +1) +1) + @ Z:f p2 # 2,
—03(w) + 3%/}2 +pBw—2)+w if po=2.
(iv) When 0 < v < pa, we have = —1/(vp1) mod py and
Corp0S=A,,.
(v) We have
¢~2(0 if p2#2,

U008 =C1 X { ¢_01(0)+(u2p1(P1+1)/2+(1_“)/2) if p2 =2.

Proof. (i) We first get
y v —1
Wpy py © (TV 05) = wp, p, © (1 0 )

and the case v = 0 yields immediately Ag o S = B. On the other hand, we
also have the reassuring result that

BoS =1y, p,(—N/z) =10p, p,(2) = Ao(2).
(i1) When ged(v, p1p2) = 1, we write 1 = —wv + v12(p1p2), and find
n((z +w)/p1)n((z + w)/p2)
N MQ OS = == Cw Aw.
Moo ) = Ol + ) orp))
When py # 2, Jac(Ms,, 0 S) =1 and the total exponent of (a4 is
w + g(Mqu o S)
= —w(24r — 1) + v(—48r + 14+ vi2(1 — p1 — p2)) + 24r(w + 3)
= 2Ur(—w? — 2w +w+3)+ v(wv +1+vi2(1 — p1r — p2))
= 24r(—wv?® — 2U 4+ w + 3 + vurg) = 24r03(v).

When py = 2, we also have Jac(Ms, o S) = 1 and the exponent of (a4
becomes

(p1 — 1) (w + v(vi2(1 = 2p1) + 2)).

Similar computations show that the result also holds for p; = ps = 2.

(iii) Suppose now that v = pp1, 1 < p < pe. We write 1 = —wv + wps.
In all cases
n(p12)n((z + @)/p2)
n(2)n(p1(z + @)/p2)
_ —p1W+w77(p1(z —+ w))n((z + w)/p2)

2 n(z + @)n(p1(z + @) /p2)
_ C2*4p1erw<¢—02(w)52027w).

N(MZ,,LL () S) —
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Assume py # 2. We get Jac(My, 0 5) = (i—;). The partial exponent is given
by

—w(pr —1) +E(May 0 S)
(papr@p? + (—w + 2p2 — V)p+ (p2 — 1))

)
= (p1 — 1) (p2p(prp@) + (—w + 2p2 = )p + (p2 — V)w)
(p1 — 1) (p2p(wpz — 1) + (—w +2p2 — 1)p + (p2 — 1)w)
= (p1 — 1) (p2 — 1) (p(w(p2 + 1) + 1) + @),

yielding the final result.
When py = 2, we find Jac(Msz,, 0S) =1 and

2
(iv) For 1 < v < pa, we compute u = —1/(vp1) mod pa and

-1
Co, 08 =1y, p, © <'uf1 0 ) oS

_ n((z+pip)/pr)n((z + prp) /p2) _

n(z + prw)n((z + p1p)/(p1p2))
(v) In all cases, we compute

_ (P2 n(z/p1)n(p2z — p2)

Jac(M o SYN(M o S) = (m) (e — Dnlpaz/o)
_ (@) 1 1(2/P1)10(P22)
p1)* n(2)n(pez/m)

—w(pr — 1) +E(Mayu0S) = (p1 — 1)<p(3w —9) +3p1 + 1p2 +w).

pip-

When ps # 2, this yields
Jac(M o S)N' (M 0 S) = (3, 2¢Oy .
The exponent of (o4 is
L—po+E(MoS)=(ps—1)(pip2v* + (u+1—2p1)v+p; — 1)
=(p1—D(p2— 1) (~w(p +1) —v+1)
=24r( —wv(p1 + 1) — v+ 1) = —24r6,(0),

so that Co g0 S = ¢~ 2010y .
When ps = 2, the exponent of (34 becomes

1 1-
—14+&EMoS)=(p1— 1)<u2p1p1 + + u>7

2 2
so that the final value is

501 O+ (pr+1)/24(1—0)/2) 0
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PROPOSITION 4.6. Suppose that p1 = pa = p. Then:

(i) Whenv=pp, 1 <p<p, set1l=—wp+wp. Then A, oS = Cy.
(ii) For all p, and all 1 < v < p, one has C, 0 S = Ay, where p =
—1/v mod p.

Proof. (i) When p # 2,

P ﬁ(pz)2 —p2pow+(—3p+2+w) p+pw—3+3p
A, 08 =p(L
° ﬁ<p> 1 + =)

—w —Uw —p?pro+(— w T —
- ﬁ(?)((l/\/ﬁ)g(w)ng( )Cw) 24pp +(=3p+2+w)p+pw—3+3p

. —p2pw+(—3p+2+w)p+pw—3+3p—0(w)C e
— 524 w T w

using 0(w) = pw(l — p?) + (=3p + 2+ w)p — 3 + 3p.
When p = 2, we have p = 1, implying w = w = 1 and

_ 22)? —0(2
Moo= vaeu—t_ N _ e o
e TRy
(ii) In all cases, we get

n((z +pu)/p)*

C,o

:n@+pmmw+pmn%:”%”'

4.4. Finding invariant functions. The idea is simple. Using the ex-
plicit actions given above, we need to find suitable modifications of the
functions B, A,, C1,, Ca, such that the action of 7" and S on any power
sum coincides with the action on 79, v3 or the product v27v3, as given in

Section [£.3l

Note that B® o T = (;,**"*B°. Write re = t/§ and observe that this
fraction is irreducible (s being prime to ¢ implies 0 is). This leads to setting
X =6 =GP = (5", a primitive 6th root of unity.

The aim of this section is to prove the following theorem from which
Theorem K] will follow.

THEOREM 4.7. Under the assumptions of Theorem [L.1], define the func-
tions

Afj = x"TAL, B' = B¢,
O, =Xy, G, =TS,
C), = x"C¢,
where p = —1/v mod p and
1 ifé=2
g = 0 Zf 0= 3,
3 if 6=6,
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making x*° = (—1)%t! = x=® = x =3, Then, for all integers k, the quantity
p1—1 p2—1

N—
Sk=B*+ Y AF+> CF + >, = B"+Sak+Soik + Sk
= v=0 v=0

satisfies S o (T, S) = (x*, x*F)S.
With these notations, we have
ProOPOSITION 4.8. The following hold:
(a) B'oT = xB'.
(b) {AL}y 0T = {xA,}».
(C) {C'L{,V}V ol = {XCZ{,V}V'
(d) For allv, C/,oT = xC,.
Proof. (a) and (c) follow easily from Proposition
(b) We first obtain A% _, oT = xA§. Let us explain where the choice A,

comes from. For some function a to be specified later, set A/, = x*) A€, so
that

A oT =W AL, | = oWyl

AtN—l o — Xa(N—l)XAS _ Xa(N_1)+1_a(O)A6.
We must find « such that

a)—a(v+1)=1modd, O0<v<N-1,
and

a(N —1) — a(0)+1 =1 mod 6.
The first set of equations gives us a(v) = @(0) — ¥ mod ¢ and the second
a(0) — (N — 1) = «(0) mod 0, which is possible only when N = 1 mod J.
Setting cg = «(0) yields the result.
(d) Proposition gives us C!, o T = C24 >=1) C/ A glance at Table

shows that p? — 1 = 0 mod (24/e), which implies 2e(p — 1) = —(p — 1)%e
mod 24 and therefore C2e(p D= =X. =

The actual value of « is in fact dictated by the other invariance properties
that follow.

REMARK. This proposition shows at the same time that we cannot ex-
pect any nice T-action when N % 1 mod 9.

Let us turn our attention to the S-action on our candidate functions,
using the notations of Proposition

PRroroOSITION 4.9.

() (B, Ap) oS = x* (A, B)).
(i) When ged(v,pips) = 1, Al 0 S = x20 AL,
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(i) Forv=pip, Al,08 = x*C}.
(iv) For 1 <v <py, p=—1/(vp1) mod py and Cy, 08 = xA .
v) Cyp08 =x"C1.
(vi) Forv =pp, 1 < p < p, set 1 = —wp + wp. For all p, A, 0 S =
X*C.

(vii) For 1 <wv <p, setting p = —1/v mod p, we have C}, 0.8 = x* A}, .

Proof. (i) We have B'o S = x~ 0 A[ and A0S = x* B’, and the result
follows from x~“° = xap.

(ii) Proposition can be rewritten

—v—0
Al o8 =y vt g
and we simplify the exponent using 1 = —wv + v12 mod §, which leads to
-3 .f 2
XI/(73+U12(2})171)) lf p2 — 2

When py # 2, we use x 3 = x*. The case pa = 2 can occur only for § = 3,
in which case p;1 = —1 mod 3 and the exponent of y is 0.

(iii) For v = pp; we use 1 = —wv + wps to get

9
Alej (o) S = X 4(p)C§7w7
so that
XfaOJrVA;/ oS = X704(P)Xw*92(w)Cé o
and we simplify:
—04(p) — b2(w) + ap + @ — 1.

Using the definition of 84, we get
yeo—p((p2+wtpi+1) if py # 2,

Xao—p((3”1; L) ptp1+3w—2)

A0 = Cha
’ ifp2:2,

and we conclude using p; = —1 mod 6.
iv) For 1 < v < p9, we compute = —1/(vp1) mod py an
iv) For 1 < te u=—1 d d
Cy0 8 =XV AL, = xR AL
Simplifying the exponent gives

Chuos =t {

where for ps = 2, we used v = u = 1. We conclude as in (iii).
(v) When py # 2, we start from

Cze,o 05 = Xzel(o)cio,

X—a0+u((p2+1)v2+p1+1) lf p2 # 2,

X_a0+4p1+1 lf D2 = 27

which yields
X200 08 =00,
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so
Cé,o 0§ = (Ot (O)C{ 0

)
’

and the exponent is
w(pr +p2+2)+u+v—2.

This quantity is = v + v — 2 mod ¢ since p; = —1 mod §. Moreover 1 =
p1(u+v) mod § and finally the exponent is —3 mod ¢.
When ps = 2, we have

p1+1

X_HQ(O)Cé,o 0§ = X—(u2p1 3 ‘*‘I_Tu)oi,()’

SO
, _ (P34p1-3)u? -3 ,
Copo0S=x 2 Ch o
and this is x since this can only happen when ¢ = 3.
(vi) Since 1 = —wp + wp, we can write

Al 0§ = yrovr=@ !
and the result comes from the definition of .
(vii) We have Cj o S = A7, so that
! o —ao+ /
Cl/ o) S — XN(V)X @ MpAup?
and we conclude as in (vi). =

4.5. Properties of the modular equation. From the preceding sec-
tions, we see that

N-1 p1—1 p2—1
o(F)=(F-B)[[(F-4) [[F-ci) [] F-cs,)
v=0 v=0 v=0

is a modular equation whose coefficients can be expressed in terms of j, vo
or 3 depending on the value of §. Before doing this, we may express these
coefficients as Puiseux series.

PROPOSITION 4.10. With the usual notations:

(a) the coefficient of smallest order of ® is q~2"¢;
(b) the trace has order re;
(c) when p1 # p2, (0) =1;
(d) when p1 = py = p, B(0) = (=p)°*P~V/2 when p is odd and 2* when
p=2.
Proof. (a) The coefficient of smallest order comes from the coefficient of
FY(N)=N=1 which has the order of B’ ]_[N:_O1 Al that is,

v
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When p1 # p2, $(N) = N —1 = p1 + pp; when p; = py = p, thisis p — 1.
Note that all other terms have orders strictly less than this bound.

As an example, when s = e, the degree of the equation in J is 2rs and
the corresponding term is J2s F¥(N)—=N—1,

Moreover

N-1 N-1
B H A;, _ (H Xao_,,>C;[reN(Nfl)/2q—2re(1 4. )
v=0 v=0
_ XNaO—N(N—1)/2<2*4337"6N(N*1)/2q—2r6(1 + ... )
= y 0" N(N=1)/2~2reN(N=1)/2 —are() 4 ...y,
using N = 1 mod . When N is odd, this reduces to

Xao—N(N—l)/2+(N—1)/2q—2re(1 +o) = ono—(N—l)Q/?q—Qre(l +o).

(b) The dominant term in the sum of the conjugates is that of B’, namely
q—'re'
(c) For p1 # pa,
p2—1 p2—1

I ¢, = T x™@x=@es¢ireqr/P2(1+ - )
v=0 v=0
— X*pz(prl)/2ggzegg2ep2(pz*1)/2q€7"(1 +-0).

Multiplying all together, we find the norm to be of valuation 0, hence a
constant
_ —N(N—-1)/2 ~—24reN(N—1)/2
9 =y NIN=1)/ Coun
. X—pl(pl—l)/%ll”leg;lem(p1—1)/2X—p2(pz—l)/2512026<;2ep2(m—l)/2

= (5?[’1512’2)exao—N(N—l)/Q—pl(pl—l)/Q—m (p2—1)/2<2—4337"3N((N—1)/2—(P1+p2—2)/2) )

When py = 2 (with p; odd), we have § = 3 always, meaning ap = 0 and

N =1 mod 3. Therefore, noting that e is always even,

2\P1 1 oareN(m—1)/2 _ _(pi+1)/2
V= P—l X 624N =X =1

since p; = —1 mod 3.

When ps # 2, both p; being odd, we may use the quadratic reciprocity
law to find

9 = (_1)€(P1*1)(pzfl)/‘lXQO*N(N*l)/?*pl(plfl)/2*172(p2*1)/2

_ ~—24reN((N—1)/2—(p1+p2—2)/2)
24N )
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Since p; 4+ p2 — 2 is even, we obtain

9 = C2424’”€ ap—N(N—1)/2—p1(p1—1)/2—p2(p2—1)/24+(N—1)/2—(p1+p2—2) /2
= 03 N(N-1)/2-=p1(p1—1)/2—p2(p2—1)/2+(N—1)/2—(p1+p2—2)/2
=y NWV=D/2=p1(p1=1)/2=p2(p2=1)/2+(N=1)/2=(p1+p2=2)/2

and by inspection, this is always 1.
(d) When py = p2 = p, we get

p—1 p—1
H Cz// _ H XH(V)pe/Qe(V)eCSZ(V)Cil;yqe(p_l)/12(1 +-0)
p—1
_ Xp(p—l)/2pe(p—1)/2<H 8(1/ > ezu 19 CQ ep(p—1) /2q2er(1 4. )
v=1
The quantity [[’Z} e(v) is 1 for p = 2; when p is odd,

v~ () (3)

using Wilson’s theorem.
When p=2,e=38, d =3, we find

@ —24re - e(p— P10(v) —ep(p—
Y =y~ N(N /262433 N(N 1)/2Xp(p 1)/24,e(p 1)/2542,,,1 ()C24pp(p 1)/2

_X C —84-3/2 124(8 _ 4'
When p is odd,
Y = <__1> eXOéo*N(N*1)/2+p(1071)/2p€(1071)/2
P
—24reN(N— 1)/2Ce< (p=1)/2+ 32521 6(v))

24N
Now,
p—1
> 0(v) Zpl/l— (=3p+2+v)u—3+3p
v=1
p—1
=(p-3p+2)So+3(p—1)°+>_ —prp’ +vp
v=1
where Sy = Zﬁ;i v. Using 1 = —uv + vp, the sum becomes
p—1 p—1

Zpu(l —up) +op = Zu(p — vp? +v) = pSp mod 24
v=1 v=1
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in all cases: when p > 3, p?> = 1 mod 24; when p =3, v =1 (resp. v = —1)
leads to p = —1, v = 0 (resp. u = 1, v = 0). Therefore, the exponent of (a4
is

= e(—(p - 1)/24+ (—p+2)So+ 3(p — 1)2) =—e(p—T7)(p— 1)2/2 mod 24,
so that

9 = (_?1) epe(p—l)/%;jéreN (Nfl)/zxao_N(N_1)/2+p(p_1) /2 C2*4€(p71)2(p77)/2

_ <—_1> /2, (V1) 2N (N-1)/24p(p1)/24(pT)2
p
= <__1> ep@(Pfl)/QXao*(p473p278)/2‘
p
For instance, when p =3, e = 3, § = 2, we find ¥ = (—1)33(-1) 73! = —33.
More generally, as soon as p > 3,

—1\° —1\°
9 = (_> pe(pfl)/2xaof3 _ <_> pe(pfl)/2
p p
since p? = 1 mod 24 and the fact already used that Y = y™3. m

4.6. Computing the modular equations using series expansions.
There are a variety of methods to compute modular equations. For large
computations, it is possible to use suitably modified versions of [4] or [2].
Also, we can use resultants in the same spirit as in the remark at the end
of Section 3} noting that w3 = (W, (2)/10p, (2/p2))°.

Here, we content ourselves with the use of series expansions and nice
formulas that can help us for small cases. Also, this will add new properties
to our equations.

Looking carefully at the expression for Sy, we see that the terms in
C1, Cy or C cannot contribute to the modular equation, since they have
positive order. Therefore, we need only consider the expansions of B’ * and
Sa,k- Doing this, we see that the useful terms for Sy, are for j < —ktN'/N.
Since B'* = ¢7™*(1 +-..) and 1 < k < ¥(N), we need at least rey(N)
terms in the last coefficient. Since B’ is the product and quotient of very
sparse series, it might be worthwhile to compute its powers by successive
applications of special routines handling this kind of computations. It is
possible to compute nice formulas for the S4 , in the spirit of the ones to
come, but we do not need them.

A second algorithm consists in grouping

(F) = Pp(F)Pa(F)Pc,(F)Pc,(F)

and to compute P4 (resp. P, and Pg,) via its power sums that are given
in the preceding propositions.
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Inspired by the approach of Section [3.2] the third algorithm uses the
reciprocal polynomial, whose power sums will depend on the CLV and Cé,z/

only:
Y p2—1 p1—1

Ek:Z /k+z /k’

which is a process involving p; + po. We W111 prove two useful results (Propo-
sitions and below) to help us compute these quantities.

PROPOSITION 4.11. For all integers k # 0,
SC’z,k = p26§eqkt/6 Z Ck,jp2—ktp), qj’
J>ktph /p2
where (p2 +1)/0 = p5 and the ci; are explicitly given in the proof.

Proof. Put w = ¢'/P2, ¢ = Cp, and write

77(2912)77(]0%) _ (wp1p2/24(1 4 22021 aiwp1p2i))(w1/24(l + Zfil aiwi))

n(z)n(pplTZ) wp2/24(1 —|— Z;)il aiwpﬂ)wpl/24(]_ + Z;.il aiwpll)

= chlg(w)

with Ci2(q) = 1+ --- € Z[[q]] (which is symmetrical in p; and p3), which
yields

Tl = XX g Y Cra )"

p2—1
SCQ,k — 8]26‘6 kre Z kauckrellcm(wcu)ek
v=0
Writing Cra(w)® = 3°5°, ¢ ;w® (note this is valid irrespective of the sign
of k), the inner sum becomes
p2—1 ‘
ch ' Z kgkre-i-z)u’
v=0
in which the root of umty is

—k ~kre __ ~24kre ~kre __ 24krepa+24kre __ 24kre(p2+1)
X ¢ =05 C —C24p2 C24p2

Now, we use the fact that po = —1 mod 0, so that re(ps + 1) = tp, where
ph = (p2 +1)/d. The above sum is now

P2~ 1 o0
ktpl,+iv __ i
§ craw' > (¢FP = py > Ch W
v=0 i=—ktp}, mod pa
—ktpl, j
= p2w P2 E ck,jpz—ktpéq]7
J>ktpy/p2

leading to the result. m
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PROPOSITION 4.12. In case py = ps = p, for all k # 0,

ek
Sox € (q1/24"ff(’22) Zlql] = ¢ zlq),

where all series are specified in the proof.

Proof. One uses ¢ = (p in

ek p—1 w(v) ~ekf(v
Sck = pek/2<77(pz)2) € (V)ek: Xk ( )C24 )
’ nz) ) = n(z +v/p)*
ek p—1 w(v) ~ekb(v
ek/2<77(pz)2> pz:é_(y)ekq—ek/%tc—eku/ml Xk ( )C24 ( )
nz) ) = (1422320 aig'¢™)er
ek/2 71/2477(])2’)2 k- ek kr(v) ~ek0(v) -—ekv /24 vyek
=p q e(v)™x YIS C(q¢”)
n(z) =
where
1
C(q)

1+ > ey aigt

Writing C(q)¢* = 3°3°, ck.i¢' (same remark on the sign of k), the inner sum
of the preceding relation is now

1

(4.1) e(v) xR G RN ¢ (¢
1 =0

fe'e) p—1
= it Y ()RR (e Ay
=0 v=1

Let us treat the case p = 2 first, with e = 8. We get

—1/24 2\ 8k 0 ) )
— otk <qn(Z§2Z)> D enid (GFG)
i=0

8k 0o
= (=24 <q1/24 n(22)2> S eu(—a)'

1(2) =

=
|

N
Il

For p odd, the root of unity in the inner sum of (4.1f) is

ek ~ek(p(—(p—1)2k(v)+0(v))—v iy
the exponent Of C24p being

p(=(p—1)p+pr(l —p?) + (=3p+2+v)u—3+3p) —v.
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When p = 3 and e = 3, we find
k(—32u+8v—8vp?+18)  —16u+4v—4vp2+9\k _ (3 -k
Ca4 = (¢r2 )" = (C4¢5)",

leading to

1B\ S s
Sc = 33k/2C2k< —1/24"1\9<) ) > Z z+k

1=0

When £ is even, this boils down to

Scp = (—3)3/2 <q—1/24 77(?()232)% (2 Z crid’ — Z Ck,iqi)
)

i=—kmod 3 iZ—kmod 3
3k/2( —1/247\9%)" n(3z 2 i - i
= (73) q (Z) (3 Z Ck‘,iq - Z Ck,iq )
i=—kmod 3 =0

When £k is odd,

sk o123 2\ & (citky
Sck =3¢ ¢ chlq Z

n(2)

and
i v i 2(i+k
S )Gy = gt U

_{O if 4+ k=0 mod 3,
| (1) R med3 /T3 btherwise,

which yields
_ 3z 2\ 3k > . .
Se = (—3)BkHD/2 <q 1/2477((Z; ) S (1) HRmedsey i
n i+k#Z0mod 3
When p > 3, we get
—(p-1)? v(1=p?)+(— v)H— e —e 1\v
(424(17 D)2 ptpr(1—p2)+(=3p+2+v)u 3+3p) k(C24pk+24)

_ ( §Z7Vu2*u+3)p+lw*3)ek(<2 ek+24z)1/’

using p? = 1 mod 24. We simplify this as

v+3)—3\ek/ —e N ek(p—1) , ~ek(p?—1)+24i\p
(Cgi +3) ) k<C24p/€+24) _ Cg (» )(C241(;p )+ ) )

Write p2 —1= 24p' to obtain
ek(p—1) / ~ekp’ +ivw
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When £k is even, this gives

e — _ z 2\ ¢k 2
Scon :pek/2C8k(p 1) <q 1/2477(19 ; ) chmq Z ekp’ H v
=0
ehl(p— B p 2\ ek
_ pek/2¢eko-D) <q 1/241(p2) )
n(z)

' ((P —-1) i Chiq — Z Ck,z'qZ)

i+ekp’=0mod p i+ekp’#£0 mod p

eky2 ek(p—1) [ —1/241(p2)* ok . N
= p/2(g g VP (p > kg Zcmq)-
i=0

77(2) i+ekp’=0mod p
When k is odd, noting that e is always odd from Table [2] the sum is

ek(p— _ Z i+e
SC’,k :pek/QCSk(P 1) (q 1/2477 p ) ch iq Z C+ kp

But Y2771 e(v)( i+eke'yv — (0 when i + ekp’ = 0 mod p since there are the
same number of quadratic residues and quadratic non-residues modulo p.

3
—~
N

When i+ ekp’ # 0 mod p, ;rekp "isa primitive pth root of unity. Remember
that [9] Ch. 6]

-1
I S
x residue z non-residue p

Let g be a generator of (Z/pZ)*. If u is an integer, then

S o@r- Xo@r=con(F)e
x residue z non-residue p
When i + ekp’ # 0mod p, we set 2(i + ekp’) = w such that g% = i +
ekp’ mod p. Then

_1 _1 . _ B > 2 ek
Se = (_> (_) CR=1) ek 41)/2 <q 1/24m(P2) )
p p n(2)

[e.9]

Z (_I)Q(i+ekp’)ck7iqi‘

1=0, i+ekp’#0 mod p

Whenp = 1 mod 4, the first terms simplify to C;k(pfl)/zl = (=1)®=1/4; when

= 3 mod 4, we get —(gTFP — _TREDZ _ (_q)Biek(p-1)/2)/2,

As a last point, the domlnant term of Sc, is ¢Fe®P=D/12 When p = 2
and e = 8, this is 2k/3, whereas re = 1/3; when p = 3, e = 3, we get k/2,
whereas re = 1/2. For p > 3, we have e = 1 and we compare (p —1)/12 and
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re=(p—1)/2-(p—1)/12. Looking at the valuation of 2 and 3, we deduce
that re =t/d and (p—1)/12=1p'/5. =
4.7. Tables of equations for double 7-quotients. We compute
B3] (X, J) = X® + (—J + 624) X° + (96J + 129840) X*
+ (—2352.J + 9018880) X 4 (104957 + 2077440) X2
+ (J? — 1488 + 159744) X + 4096,
whereas
B[ o] (F, G2) = F® — GoF® + 208F® + 31Go F? + G3F + 16.
More examples are
P[] 5](F, G3) = F'? — GaF'' — 522F10 4+ 27G3F? — 10557F® — 162G F”
— 14076 F% — 18G3F® — 9801 F* + 163G3F3
+ (486 — G2)F? — 9G3F — 21,
®[w37|(F,G3) = F3% — G3F3! — 514F3 + 21G3F?° — 12585 F2®
— 147G3F?" — 25158F %0 1 322G3F?® — 5103F*
+ 378G F?3 + 80556 F2 — 1638G3F2! — 21994 F2°
— 28136 F® + 1620G3F7 + 25650F 10 — 252G 3 F1°
— 3944 F1 — 322G F13 — 14938F'2 422G FH!
— (G% — 2940)F'° — 10G3F® + 1953F® 4+ G3F”
— 462F5 + 7G3F® + 15F* — G3F3 — 10F? + 1.

5. Conclusion. We have studied modular equations involving ~5 and
~3 for double n-quotients. As a result, more compact modular equations
can be stored and used, with application to the SEA algorithm (see for in-
stance [11]), or CM computations, as motivated for instance by [14] (see [12]).

It seems natural to conjecture that more general functions can exhibit
the same properties. Experiments can be conducted on Newman functions,
using for instance the resultant approach, leading to new instances of the
theorems. This will be described in another article.

Acknowledgements. The author wishes to thank the referee for
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