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A note on sumsets of subgroups in Z∗p
by

Derrick Hart (Kansas City, MO)

For subsets A1, . . . , Ak of a group define A1 + · · ·+Ak = {a1 + · · ·+ ak :
ai ∈ Ai, 1 ≤ i ≤ k}. In the case that all the subsets are equal we will denote
the k-fold sumset of A by kA = {x1 + · · ·+ xk : xi ∈ A, 1 ≤ i ≤ k}.

Let A be a multiplicative subgroup of Z∗p. What is the smallest α > 0
such that |A| � pα implies that 2A contains Z∗p?

Conjecture 0.1. Let |A| > p1/2+ε, ε > 0. Then 2A contains Z∗p.
It is relatively simple, using exponential sum bounds, to show that if

|A| > p3/4 then 2A ⊇ Z∗p. Surprisingly, no improvement in the exponent has
been made. An alternative approach would be to consider this conjecture
from an inverse perspective. Let |A| > p1/2+ε; what is the smallest k0 such
that k0A contains Z∗p? A direct application of classical counting methods
using standard exponential sum bounds does not seem to yield any answer to
this question. For example, using the fact that maxλ6=0 |

∑
x∈A ep(xλ)| ≤ √p

one may show that if |A| > p1/2+1/(2k) then kA contains Z∗p.
Using combinatorial methods Glibichuk [1] gave the first answer to this

question showing that 8A ⊇ Z∗p for |A| ≥ 2p1/2. Using an improved ex-
ponential sum bound, Schoen and Shkredov [3, Theorem 2.6] showed that
7A ⊇ Z∗p for |A| > p1/2. There was subsequent improvement to this result
by Shkredov and Vyugin [7] followed by Schoen and Shkredov [4]. Recently,
Shkredov [5] has shown that 6A ⊇ Z∗p if |A| > p55/112+ε = p.491...+ε.

In this paper we elaborate on the methods in the above-mentioned papers
to show that 6A ⊇ Z∗p if |A| > p11/23+ε = p.478...+ε. In addition, we extend a

result of Shkredov [5] to show that |2A| � |A|8/5−ε for |A| � p5/9.

1. Statement of main results. Let A and B be subsets of Zp. Given
a set A we will denote the indicator function of A by A(·). Define the con-
volution of A and B by (A ∗B)(z) =

∑
x+y=z A(x)B(y) = |A ∩ (z −B)|.
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The additive energy between A and B is given by

E(A,B) = |{(x, y, z, w) ∈ A×B ×A×B : x+ y = z + w}|

=
∑
z

(A ∗B)2(z) =
∑
z

|A ∩ (z −B)|2

=
∑
z

(A ∗ −A)(z)(B ∗ −B)(z) =
∑
z

|Az| |Bz|;

here and throughout, we let Cz = C ∩ (C+ z) for any subset C of Zp. In the
case that A = B we will write E(A) = E(A,A). Similarly, we will denote
the rth additive energy of a subset A by Er(A) =

∑
s |As|r.

One may also consider the additive energy in the frequency domain.
Taking an exponential sum expansion, we obtain

E(A,B) = p−1
∑
s

∣∣∣∑
x∈A

ep(sx)
∣∣∣2∣∣∣∑

y∈B
ep(sy)

∣∣∣2,
where ep(x) = e2πix/p. For a subset A of Zp we define

ΦA = max
λ 6=0

∣∣∣∑
x∈A

ep(λx)
∣∣∣.

Heath-Brown and Konyagin employed Stepanov’s method in order to
give a bound on the additive energy of multiplicative subgroups of Z∗p.

Theorem 1.1 ([2]). Let A be a multiplicative subgroup of Z∗p with |A| �
p2/3. Then

E(A)� |A|5/2.

In [5] Shkredov gave the following combinatorial lemma.

Lemma 1.2 ([5, equation (1)]). Let A be a finite subset of an abelian
group. Then ∑

s

|As|2

|A+As|
� |A|−2E3(A).

Schoen and Shkredov ([3]) gave an estimate for E3(A).

Lemma 1.3 ([3, Lemma 3.3]). Let A be a multiplicative subgroup A of
Z∗p with |A| � p2/3. Then

E3(A)� |A|3 log(|A|).

Combining Lemmas 1.2 and 1.3 and noting that |A+As| ≤ |(2A)s| gives
the following lemma.
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Lemma 1.4. Let A be a multiplicative subgroup A of Z∗p with |A| � p2/3.
Then ∑

s

|As|2

|(2A)s|
� |A| log(|A|).

Shkredov used this inequality in [5] to give the following estimate on the
additive energy.

Theorem 1.5 ([5, Theorem 30]). Let A be a multiplicative subgroup of
Z∗p such that |A| � p2/3. If E(A)� |A|3/2√p log(|A|) then

E(A)� |A|4/3|2A|2/3 log(|A|).
In addition, using different methods he proved an energy estimate inde-

pendent of the size of the sumset.

Theorem 1.6 ([5, Theorem 34]). Let A be a multiplicative subgroup of
Z∗p such that |A| � p2/3. Then

E(A)� max{|A|22/9 log(|A|), |A|3p−1/3 log4/3(|A|)}.
Combining Theorems 1.5 and 1.6 and applying the trivial estimate |2A|

≥ |A|4E−1(A) gives the following sumset estimate.

Theorem 1.7. Let A be a multiplicative subgroup of Z∗p with |A| � p2/3.
Then

|2A| �


|A|8/5 log−3/5(|A|) if |A| � p9/17,

|A|14/9 log−1(|A|) if |A| � p3/5 log3/5(|A|),
|A|p1/3 log−4/3(|A|) if |A| � p3/5 log3/5(|A|).

Here we give the following energy estimate.

Theorem 1.8. Let A be a multiplicative subgroup of Z∗p with |A| � p2/3.
Then

E(A)� max{|A|4/3|2A|2/3 log1/2(|A|), |A| |2A|2p−1 log(|A|)}.
This allows us to improve Shkredov’s sumset result in some ranges.

Theorem 1.9. Let A be a multiplicative subgroup of Z∗p with |A| � p2/3.
Then

|2A| �

{
|A|8/5 log−3/10(|A|) if |A| � p5/9 log−1/18(|A|),
|A|p1/3 log−1/3(|A|) if |A| � p5/9 log−1/18(|A|).

Using the Plancherel identity or orthogonality one can very quickly prove
that ΦA �

√
p for a multiplicative subgroup A with |A| � p1/2. This is only

non-trivial when |A| > p1/2. Shparlinski [6] improved this result in some
ranges with the bound ΦA � |A|7/12p1/6 for p2/5 � |A| � p4/7. Heath-
Brown and Konyagin [2] used the energy estimate of Theorem 1.1 to obtain
the following improvement.
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Theorem 1.10. Let A be a multiplicative subgroup. Then

ΦA �


√
p if p2/3 � |A| ≤ p,

p1/4|A|−1/4E1/4(A)� p1/4|A|3/8 if p1/2 � |A| � p2/3,

p1/8E1/4(A)� p1/8|A|5/8 if p1/3 � |A| � p1/2.

Using Shkredov’s energy estimate, one may improve this result in some
ranges when the sumset is small. Let |A| � p1/2; then

ΦA � p1/8|A|1/3|2A|1/6 log1/4(|A|).
Using the same methods employed to prove Lemma 1.3 one may obtain

E3/2(A)� |A|9/4. If the sumset is small we are able to significantly improve
this bound.

Lemma 1.11. Let A be a multiplicative subgroup with |A| � p1/2. Then

E3/2(A)� |A|1/2|2A| log7/4 |A|.
This lemma allows us to obtain the following exponential sum bound

which is an improvement of the result of Shkredov as long as |2A| � |A|7/4−ε.
Lemma 1.12. Let A be a multiplicative subgroup with |A| � p1/2.Then

ΦA � p1/8|A|−1/8|2A|1/4E1/8(|A|) log7/16(|A|).
In particular, applying Theorem 1.8 we have

ΦA � p1/8|A|1/24|2A|1/3 log1/2(|A|).
With Lemma 1.12 in tow, we may now prove our main result.

Theorem 1.13. Let A be a multiplicative subgroup of Z∗p with |A| �
p11/23 log12/23(|A|). Then

6A ⊇ Z∗p.

Proof. Fix a in Z∗p. We may assume that |A| � p1/2 as the result is

already known in the range |A| � p1/2.

Let N be the number of solutions to the equation

x1 + x2 + y1 + y2 = ay3

with x1, x2 ∈ 2A and y1, y2, y3 ∈ A. Taking an exponential sum expansion,
we obtain

N =
|2A|2|A|3

p
+

1

p

∑
λ 6=0

( ∑
x∈2A

ep(λx)
)2(∑

y∈A
ep(λy)

)2(∑
z∈A

ep(−λza)
)
,

which by the Plancherel identity implies N > 0 as long as |2A| |A|3 > pΦ3
A.

Applying Lemma 1.12 gives the condition

|2A| |A|3 � p11/8|2A| |A|1/8 log3/2(|A|),
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which in turn leads to

|A| � p11/23 log12/23(|A|).

2. A few preliminary lemmas. We begin with a lemma of Shkredov
and Vyugin [7, Corollary 5.1] which is a generalization of a result of Heath-
Brown and Konyagin [2]. We say that a subset S 6= {0} is A-invariant if
SA = {sa : s ∈ S, a ∈ A} = S, that is, S is a union of cosets of A and
possibly {0}.

Lemma 2.1 (Shkredov and Vyugin [7, Corollary 5.1]). Let A be a mul-
tiplicative subgroup of Zp and let S1, S2, S3 be A-invariant sets such that
|S1 \ {0}| |S2 \ {0}| |S3 \ {0}| � min{|A|5, p3|A|−1}. Then∑

z∈S3

(S1 ∗ S2)(z)� |A|−1/3(|S1| |S2| |S3|)2/3.

Remark. The above lemma has been modified slightly from its original
form in order to allow S1, S2, S3 to contain the zero element. One may check
that the additional terms in

∑
z∈S3

(S1 ∗ S2)(z) allowing S1, S2 to contain
the zero element only affect the implied constant.

We can now give a variant of a result of Shkredov [5].

Lemma 2.2 ([5, Corollary 18]). Let k � 1 and S1, S2 be A-invariant sets
and let M be any A-invariant subset of the set {z : (S1 ∗ S2)(z) ≥ k}. If
|S1| |S2| |M | |A| � min{|A|6, p3} then∑

z∈M
(S1 ∗ S2)r(z)� |S1|2|S2|2|A|−1kr−3 for 1 ≤ r < 3,∑

z∈M
(S1 ∗ S2)3(z)� |S1|2|S2|2|A|−1 log(|S1|2|S2|2|A|−2k−3).

Proof. Let li = (S1 ∗ S2)(zi), zi 6= 0, where l1 ≥ l2 ≥ · · · are arranged
in decreasing order. For each z in the coset aA = {aa′ : a′ ∈ A}, a ∈ Zp,
note that (S1 ∗ S2)(z) = (S1 ∗ S2)(a). By the coset aiA we will mean the
coset on which li = (S1 ∗ S2)(ai). Let M be any A-invariant subset of the
set {z : (S1 ∗ S2)(z) ≥ k} and Mi =

⋃i
j=1 ajA ⊆ M . From Lemma 2.1 we

have

li|A|i ≤
i∑

j=1

|A|lj ≤
∑
z∈Mi

(S1 ∗ S2)(z)� i2/3|A|1/3|S1|2/3|S2|2/3,

as long as i|A| |S1| |S2| � |M | |S1| |S2| � min{|A|5, p3|A|−1}. Now,
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z∈M

(S1 ∗ S2)r(z) ≤ |A|
∑

i�|S1|2|S2|2|A|−2k−3

lri

� |A|
∑

i�|S1|2|S2|2|A|−2k−3

(i−1/3|A|−2/3|S1|2/3|S2|2/3)r.

3. Additive energy bound: Proof of Theorem 1.8. We may assume
that

E(A)� max{|A|4/3|2A|2/3 log1/2(|A|), |A| |2A|2p−1 log(|A|)}.

Combining this with the energy estimate from Theorem 1.1 we may also
assume that

|2A| � max{|A|7/4 log−3/4(|A|), |A|3/4p1/2 log−1/2(|A|)}.

Write

E(A) =
∑
s

|As|2 �
∑
s∈M1

|As|2,

where M1 = {s : |As| � k1 := |A|−2E(A)}. Note that we have the trivial
estimate |M1| � |A|2k−11 = |A|4E−1(|A|). Now Lemma 1.4 gives

E(A) =
∑
s

|As|2 �
E(A)

|A| log(A)

∑
s∈Mc

2

|As|2

|(2A)s|
+
∑
s∈M2

|As|2 �
∑
s∈M2

|As|2,

where M2 = {s : s ∈M1, |(2A)s| � k2 := |A|−1 log−1(|A|)E(A)}.
By Lemma 2.1 we have k2|M2| � |A|−1/3|2A|4/3|M2|2/3, yielding |M2| �

|2A|4|A|−1k−32 as long as |2A|2|M2| � min{|A|5, p3|A|−1}. In order to see
that the first bound holds, one may note that |M2| � |M1| combined with
our assumptions on the size of energy and sumset. To show that |2A|2|M2| �
p3|A|−1 we use an exponential sum expansion,

|M2|k2 �
∑
s∈M
|(2A)s| �

1

p

∑
m

∣∣∣ ∑
x∈2A

ep(xm)
∣∣∣2( ∑

x∈M2

ep(xm)
)
,

together with the bound maxm 6=0 |
∑

x∈M2
ep(xm)| � p1/2|M2|1/2|A|−1/2, to

deduce

|M2|k2 � max{p−1|2A|2|M2|, p1/2|2A| |M2|1/2|A|−1/2}.

If the first of these two bounds holds then E(A) � |A| |2A|2p−1 log(|A|).
We may then assume that |M2| � p|2A|2|A|−1k−22 , which implies that
|2A|2|M2| � p|2A|4|A| log2(|A|)E−2(A)� p3|A|−1.

Therefore, for |A| � p2/3, we have |M2| � |2A|4|A|−1k−32 . Using this
fact we may again reduce the number of terms:
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E(A) =
∑
s

|As|2 � k23|M2|+
∑
s∈M3

|As|2 �
∑
s∈M3

|As|2,

where M3 = {s : s ∈M2, |As| � k3 := |2A|−2|A|−1 log−3/2(|A|)E2(A)}.
Finally, applying Lemma 2.2 we have

E(A)� |A|4|2A|2 log3/2(|A|)E−2(|A|),

as long as |A|2|M3| � |2A|2|M2| � min{|A|5, p3|A|−1}.

4. E3/2(A): Proof of Lemma 1.11. Let li = |Azi |, zi 6= 0, where
l1 ≥ l2 ≥ · · · are arranged in decreasing order. For each z in the coset
aA = {aa′ : a′ ∈ A}, a ∈ Zp, note that |Az| = |Aa|. By the coset aiA we will
mean the coset on which li = |Aai |. Let M be any A-invariant subset of the
set {z : |Az| ≥ k}, and Mi =

⋃i
j=1 ajA ⊆M . Set k = |2A|2|A|−3.

We have

li|A|i ≤
i∑

j=1

|A|lj ≤
∑
z∈Mi

|Az|.

Now∑
z∈Mi

|Az| =
∑
z∈Mi

|Az|
|(2A)z|1/2

|(2A)z|1/2 ≤
(∑

z

|Az|2

|2Az|

)1/2( ∑
z∈Mi

|2Az|
)1/2

.

Therefore, by Lemma 1.4,

l2i |A|2i2 � |A| log(|A|)
∑
z∈Mi

|2Az|.

Noting that |Mi| � |A|2k−1 we have |Mi| |2A|2 � |A|5. Hence we can apply
Lemma 2.1 to get

l2i |A|2i2 � |2A|4/3i2/3|A|4/3 log |A|.

This implies

li � |2A|2/3i−2/3|A|−1/3 log1/2 |A|

for i� |A−A| |A|−1 ≤ |A|. Finally∑
z

|Az|3/2 � k1/2|A|2 + |A|
∑
i�|A|

|li|3/2

� k1/2|A|2 + |A|1/2|2A| log7/4(|A|),

giving the desired result.
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5. Exponential sum bound: Proof of Lemma 1.12. We begin by
expanding the sum below and performing a basic substitution:

|A|
∣∣∣∑
x∈A

ep(λx)
∣∣∣2 =

∑
y∈A

∣∣∣∑
x∈A

ep(λyx)
∣∣∣2

=
∑

x1,x2∈A

∑
y∈A

ep(λy(x1 − x2)) =
∑
s

|As|
∑
y∈A

ep(λys).

Now we may take absolute values and estimate from above:

|A|Φ2
A ≤

∑
s

|As|
∣∣∣∑
y∈A

ep(λys)
∣∣∣.

Applying Hölder’s inequality we have

|A|Φ2
A �

(∑
s

|As|4/3
)3/4(∑

s

∣∣∣∑
y∈A

ep(λys)
∣∣∣4)1/4,

which by the Plancherel identity gives

(5.1) |A|Φ2
A �

(∑
s

|As|4/3
)3/4

p1/4E1/4(A).

Another application of Hölder’s inequality shows that∑
s

|As|4/3 =
∑
s

|As| |As|1/3 �
(∑

s

|As|3/2
)2/3
|A|2/3,

and by Lemma 1.11,∑
s

|As|4/3 � |A|2/3(|A|1/2|2A| log7/4(|A|))2/3 � |A| |2A|2/3 log7/6(|A|).

Putting this estimate into (5.1) gives the stated result.
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