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Constructions of digital nets using global function fields

by

Harald Niederreiter (Singapore)
and Ferruh Özbudak (Ankara)

1. Introduction. The theory of (t,m, s)-nets and (t, s)-sequences pro-
vides powerful tools for the construction of low-discrepancy point sets, re-
spectively low-discrepancy sequences, in multidimensional unit cubes. We
refer to the monograph [5, Chapter 4] and the recent survey article [6] for
general background on this theory. We follow the usual convention in the
area that a point set is a multiset in the sense of combinatorics, i.e., that
multiplicity of elements is allowed and taken into account.

Definition 1.1. For integers b ≥ 2, s ≥ 1, and 0 ≤ t ≤ m, a (t,m, s)-net
in base b is a point set P consisting of bm points in [0, 1)s such that every
subinterval of [0, 1)s of the form

s∏

i=1

[kib−hi , (ki + 1)b−hi)

with integers hi ≥ 0 and 0 ≤ ki < bhi for 1 ≤ i ≤ s and of volume bt−m

contains exactly bt points of P.

The uniformity properties of a (t,m, s)-net in base b are the better the
smaller the value of the parameter t. The integer t is often called the quality
parameter of the net.

In this paper we focus on a special but very important family of nets,
namely digital nets. These are nets obtained by the so-called digital con-
struction method. Expository accounts of the theory of digital nets can be
found in the book of Niederreiter and Xing [9, Chapter 8] and the survey
paper of Larcher [1]. We restrict the attention to the case where the finite
ring over which the digital net is constructed is a finite field Fq, where q is
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an arbitrary prime power. In this case we speak of a digital (t,m, s)-net con-
structed over Fq. A digital (t,m, s)-net constructed over Fq is, in particular,
a (t,m, s)-net in base q.

Niederreiter and Pirsic [7] introduced the new viewpoint of duality in
the theory of digital nets; see also Skriganov [11] for related work. In this
viewpoint, the problem of constructing digital (t,m, s)-nets constructed over
Fq is reduced to that of constructing certain Fq-linear subspaces of Fmsq . The
vector space Fmsq is endowed with a weight function which generalizes the
Hamming weight, and there is then a known relationship between the qual-
ity parameter t of the digital net and the minimum distance (or minimum
weight) of the corresponding Fq-linear subspace. Small values of t correspond
to large values of the minimum distance.

The appropriate weight function on Fmsq was already introduced by
Niederreiter [2] in the theory of low-discrepancy point sets. First, we de-
fine a weight function v as follows. For a positive integer m and any vector
a = (a1, . . . , am) ∈ Fmq let v(a) = 0 if a = 0 and v(a) = max{j : aj 6= 0} if
a 6= 0. Then we extend this definition to Fmsq by writing a vector A ∈ Fmsq
as the concatenation of s vectors of length m, i.e.,

A = (a(1), . . . ,a(s)) ∈ Fmsq with a(i) ∈ Fmq for 1 ≤ i ≤ s,
and putting

Vm(A) =
s∑

i=1

v(a(i)).

The following concept is crucial.

Definition 1.2. For any nonzero Fq-linear subspaceN of Fmsq we define
the minimum distance

δm(N ) = min
A∈N\{0}

Vm(A).

We apply the approach to the construction of digital nets via duality
theory in the context of a construction principle based on global function
fields. A construction of digital nets using rational places of global function
fields was recently introduced by Niederreiter and Xing [10]. We considerably
extend this construction by employing arbitrary places of global function
fields. This generalization leads to a greater flexibility and, as a consequence,
to improvements on the construction in [10]. The new general construction
principle is explained in Section 3. An auxiliary function that is needed in
Section 3 is studied in Section 2. Various refinements of the construction in
Section 3 are presented in Sections 4 and 5. It is also shown that the same
construction principles can be used to obtain so-called (d, k,m, s)-systems
over finite fields (see e.g. Theorem 3.7).
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2. An auxiliary function. In this section we prove lower bounds on
an auxiliary function which we use later in the paper. Let d1, . . . , ds, and
m be positive integers. For each i = 1, . . . , s let mi and 0 ≤ ri < di be the
unique integers satisfying m = midi + ri. For a given integer r ≥ 0 let S be
the set

S :=
{

(l1, . . . , ls) ∈ Zs :
s∑

i=1

lidi ≤ r, 0 ≤ li ≤ mi for 1 ≤ i ≤ s
}
.

We define the auxiliary function

δ∗m(d1, . . . , ds; r) := min
{ s∑

i=1

max(0,m− (li + 1)di + 1) : (l1, . . . , ls) ∈ S
}
.

We will establish lower bounds on δ∗m(d1, . . . , ds; r). The first bound is an
immediate consequence of the definition.

Lemma 2.1. For any positive integers d1, . . . , ds and m, and any integer
r ≥ 0, we have

δ∗m(d1, . . . , ds; r) ≥ ms− r −
s∑

i=1

(di − 1).

Proof. For any (l1, . . . , ls) ∈ S we have
s∑

i=1

max(0,m− (li + 1)di + 1) ≥
s∑

i=1

(m− (li + 1)di + 1)

= ms−
s∑

i=1

lidi −
s∑

i=1

(di − 1)

and also
∑s

i=1 lidi ≤ r. This implies the desired bound.

Lemma 2.2. With the above notation we have δ∗m(d1, . . . , ds; r) ≥ 1 if
and only if r < ms−∑s

i=1 ri.

Proof. If r < ms −∑s
i=1 ri =

∑s
i=1midi, then for any (l1, . . . , ls) ∈ S

we have lj ≤ mj − 1 for at least one j with 1 ≤ j ≤ s. Hence
s∑

i=1

max(0,m− (li + 1)di + 1) ≥ max(0,m− (lj + 1)dj + 1) ≥ 1,

and so δ∗m(d1, . . . , ds; r) ≥ 1. If r ≥ ms − ∑s
i=1 ri =

∑s
i=1midi, then

(m1, . . . ,ms) ∈ S, hence

δ∗m(d1, . . . , ds; r) ≤
s∑

i=1

max(0,m− (mi + 1)di + 1) = 0,

and so δ∗m(d1, . . . , ds; r) = 0.
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Now we establish a lower bound on δ∗m(d1, . . . , ds; r) which is at least as
good as and in many cases better than that in Lemma 2.1. For I ⊆ {1, . . . , s}
we write I ′ for the complement of I in {1, . . . , s}. Using the same notation
as in the beginning of this section, we put

M1 :=
{
I ⊆ {1, . . . , s} :

∑

i∈I′
(m− ri) ≤ r,

∑

i∈I
di ≥ ms− r −

s∑

i=1

ri

}
,

M2 :=
{
I ⊆ {1, . . . , s} :

∑

i∈I′
(m− ri) ≤ r,

∑

i∈I
di < ms− r −

s∑

i=1

ri

}
.

Furthermore, we set

M1 := min
I∈M1

∑

i∈I
(ri + 1),

M2 := ms− r −
s∑

i=1

(di − 1) + min
I∈M2

∑

i∈I′
(di − 1− ri),

where Mj = ∞ if Mj is the empty set (j = 1, 2). In view of Lemma 2.2,
we can assume r < ms−∑s

i=1 ri in the following result, since otherwise we
know that δ∗m(d1, . . . , ds; r) = 0.

Proposition 2.3. Let d1, . . . , ds and m be positive integers and for each
i = 1, . . . , s let ri be the least residue of m modulo di. Then for any integer
r with 0 ≤ r < ms−∑s

i=1 ri we have

δ∗m(d1, . . . , ds; r) ≥ min(M1,M2),

where M1 and M2 are defined above.

Proof. For every nonempty subset I of {1, . . . , s} we put

SI :=
{

(l1, . . . , ls) ∈ Zs :
s∑

i=1

lidi ≤ r, li = mi for i ∈ I ′,

0 ≤ li < mi for i ∈ I
}
.

Then we have

(2.1) δ∗m(d1, . . . , ds; r)

= min
I

min
{∑

i∈I
(m− (li + 1)di + 1) : (l1, . . . , ls) ∈ SI

}
,

where the outer minimum is over all nonempty subsets I of {1, . . . , s} for
which SI is nonempty. Note that SI is nonempty if and only if (k1, . . . , ks) ∈
SI with ki = mi for i ∈ I ′ and ki = 0 for i ∈ I, that is, if and only if∑

i∈I′(m− ri) ≤ r.
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Now we consider the inner minimum in (2.1) for a fixed I. We have

min
{∑

i∈I
(m− (li + 1)di + 1) : (l1, . . . , ls) ∈ SI

}

= (m+ 1)|I| −
∑

i∈I
di −max

{∑

i∈I
lidi : (l1, . . . , ls) ∈ SI

}
.

Note that (l1, . . . , ls) ∈ SI if and only if (li)i∈I ∈ Z|I| satisfies 0 ≤ li < mi

for i ∈ I and ∑

i∈I
lidi +

∑

i∈I′
midi ≤ r.

The last condition is equivalent to
∑

i∈I
lidi ≤ r −

∑

i∈I′
(m− ri).

Therefore we obtain

max
{∑

i∈I
lidi : (l1, . . . , ls) ∈ SI

}

= max
{∑

i∈I
lidi : (li)i∈I ∈ Z|I|,

∑

i∈I
lidi ≤ r −

∑

i∈I′
(m− ri),

0 ≤ li < mi for i ∈ I
}

≤ min
(
r −

∑

i∈I′
(m− ri),

∑

i∈I
(mi − 1)di

)
.

Note that every nonempty subset I of {1, . . . , s} for which SI is nonempty
belongs to either M1 or M2. If I ∈ M1, then

∑

i∈I
(mi − 1)di =

∑

i∈I
(m− ri)−

∑

i∈I
di

≤
∑

i∈I
(m− ri)−ms+ r +

s∑

i=1

ri

=
∑

i∈I
(m− ri) + r −

s∑

i=1

(m− ri) = r −
∑

i∈I′
(m− ri),

and so

max
{∑

i∈I
lidi : (l1, . . . , ls) ∈ SI

}
≤
∑

i∈I
(mi − 1)di.

It follows that
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min
{∑

i∈I
(m− (li + 1)di + 1) : (l1, . . . , ls) ∈ SI

}

≥ (m+ 1)|I| −
∑

i∈I
di −

∑

i∈I
(mi − 1)di

= (m+ 1)|I| −
∑

i∈I
(m− ri) =

∑

i∈I
(ri + 1)

for all I ∈M1, and so

min
I∈M1

min
{∑

i∈I
(m− (li + 1)di + 1) : (l1, . . . , ls) ∈ SI

}
≥M1.(2.2)

If I ∈M2, then as above we see that
∑

i∈I
(mi − 1)di > r −

∑

i∈I′
(m− ri).

Therefore

max
{∑

i∈I
lidi : (l1, . . . , ls) ∈ SI

}
≤ r −

∑

i∈I′
(m− ri).

It follows that

min
{∑

i∈I
(m− (li + 1)di + 1) : (l1, . . . , ls) ∈ SI

}

≥ (m+ 1)|I| −
∑

i∈I
di − r +

∑

i∈I′
(m− ri)

= ms− r −
∑

i∈I
(di − 1)−

∑

i∈I′
ri

= ms− r −
s∑

i=1

(di − 1) +
∑

i∈I′
(di − 1− ri)

for all I ∈M2, and so

min
I∈M2

min
{∑

i∈I
(m− (li + 1)di + 1) : (l1, . . . , ls) ∈ SI

}
≥M2.(2.3)

By combining (2.1)–(2.3), we obtain the desired result.

Remark 2.4. It is clear that M2 ≥ ms− r−
∑s

i=1(di − 1). For I ∈M1
we have

∑

i∈I
(ri + 1) =

s∑

i=1

(ri + 1)−
∑

i∈I′
(ri + 1)

≥ ms− r −
∑

i∈I
di + s−

∑

i∈I′
(ri + 1)
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≥ ms− r −
∑

i∈I
di + s−

∑

i∈I′
di = ms− r −

s∑

i=1

(di − 1),

and so M1 ≥ ms− r −
∑s

i=1(di − 1). Therefore

min(M1,M2) ≥ ms− r −
s∑

i=1

(di − 1),

and so the lower bound in Proposition 2.3 is at least as good as that in
Lemma 2.1.

Remark 2.5. If m ≥ di for 1 ≤ i ≤ s, then the condition
∑

i∈I′
(m− ri) ≤ r

in the definition of M1 is not needed. The reason is that then mi ≥ 1 for
1 ≤ i ≤ s, and so in view of the inequality

∑

i∈I
(mi − 1)di ≤ r −

∑

i∈I′
(m− ri)

for I ∈ M1, which follows from the second condition in the definition ofM1
(see the proof of Proposition 2.3), we obtain

∑
i∈I′(m− ri) ≤ r.

Example 2.6. It is easy to construct examples in which the lower bound
in Proposition 2.3 is better than that in Lemma 2.1. For instance, let s = 10,
m = 2, r = 17, d1 = d2 = 2, and di = 1 for 3 ≤ i ≤ 10. Then M1 = 2,
M2 = 3, and so δ∗2(2, 2, 1, 1, 1, 1, 1, 1, 1, 1; 17) ≥ 2 by Proposition 2.3, whereas
Lemma 2.1 yields the lower bound 1. If s = 5, m = 6, r = 17, d1 = d2 = 6,
d3 = 3, d4 = 2, d5 = 1, then M1 = 3, M2 = 5, and so δ∗6(6, 6, 3, 2, 1; 17) ≥ 3
by Proposition 2.3, whereas Lemma 2.1 yields the lower bound 0. In both
examples it is easily seen that the lower bound in Proposition 2.3 yields the
exact value of δ∗m(d1, . . . , ds; r).

3. The basic construction. In this section we give our basic con-
struction of Fq-linear subspaces N of Fmsq with large minimum distance
δm(N ). This construction will then be applied to digital nets and so-called
(d, k,m, s)-systems.

Let F/Fq be a global function field with full constant field Fq. Let
P1, . . . , Ps be s ≥ 1 distinct places of F with degrees d1, . . . , ds, respec-
tively. For each i = 1, . . . , s let νPi be the normalized discrete valuation of F
corresponding to Pi and let ti be a local parameter at Pi. Moreover, for each
i = 1, . . . , s let FPi be the residue class field of Pi and let ψi : FPi → Fdiq be
an Fq-linear vector space isomorphism. Choose an arbitrary divisor G of F
and define

ai := νPi(G) for 1 ≤ i ≤ s.
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Let m be an arbitrary positive integer. For each i = 1, . . . , s we will define
an Fq-linear map

θi : L(G)→ Fmq
on the Riemann–Roch space

L(G) := {f ∈ F ∗ : div(f) +G ≥ 0} ∪ {0},
where div(f) denotes the principal divisor of f ∈ F ∗. We fix i and repeat
the following definitions related to θi for each i = 1, . . . , s.

Note that for f ∈ L(G) we have νPi(f) ≥ −ai, and so the local expansion
of f at Pi has the form

f =
∞∑

j=−ai
ci,jt

j
i ,

where all ci,j ∈ FPi . We denote ci,j by f (j)(Pi). Hence we have

νPi

(
f −

w∑

j=−ai
f (j)(Pi)t

j
i

)
≥ w + 1(3.1)

for any integer w ≥ −ai. Let mi ≥ 0 and 0 ≤ ri < di be the unique integers
satisfying m = midi + ri. For f ∈ L(G), the image of f under θi is defined
as

c(i)
f := θi(f) = (0, . . . , 0, ψi(f (−ai+mi−1)(Pi)), . . . , ψi(f (−ai)(Pi))) ∈ Fmq ,

where we add the ri-dimensional zero vector (0, . . . , 0) ∈ Friq in the begin-
ning.

Now we set
cf := (c(1)

f , . . . , c(s)
f ) ∈ Fmsq

and define the Fq-linear map

θ : L(G)→ Fmsq , f 7→ cf .

The image of θ is denoted by Cm(P1, . . . , Ps;G). Note that, in general,
the vector space Cm(P1, . . . , Ps;G) depends also on the choice of the lo-
cal parameters t1, . . . , ts and on the choice of the Fq-linear isomorphisms
ψ1, . . . , ψs, but we suppress this dependence in the notation for the sake of
simplicity.

We estimate now the dimension and the minimum distance (see Defini-
tion 1.2) of the vector space Cm(P1, . . . , Ps;G).

Theorem 3.1. Let G be a divisor of the global function field F/Fq with
dim(L(G)) ≥ 1 and deg(G) < ms −∑s

i=1 ri. Then the Fq-linear subspace
N := Cm(P1, . . . , Ps;G) of Fmsq has the parameters

dim(N ) = dim(L(G)) ≥ deg(G) + 1− g,
δm(N ) ≥ δ∗m(d1, . . . , ds; deg(G)),

where g is the genus of F .
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Proof. For f ∈ L(G) \ {0} put

li(f) := min(mi, νPi(f) + ai) ≥ 0

for each i = 1, . . . , s. Then νPi(f) ≥ −ai + li(f) and hence

f ∈ L
(
G−

s∑

i=1

li(f)Pi
)
.

Since f 6= 0, we get

0 ≤ deg
(
G−

s∑

i=1

li(f)Pi
)

= deg(G)−
s∑

i=1

li(f) deg(Pi)

= deg(G)−
s∑

i=1

li(f)di.

Thus, the s-tuple (l1(f), . . . , ls(f)) belongs to the set

S =
{

(l1, . . . , ls) ∈ Zs :
s∑

i=1

lidi ≤ deg(G), 0 ≤ li ≤ mi for 1 ≤ i ≤ s
}
.

If νPi(f) + ai < mi, then li(f) ≤ mi− 1 and νPi(f) = −ai + li(f), and so by
(3.1) we get

f (−ai+h)(Pi)
{

= 0 for 0 ≤ h < li(f),
6= 0 for h = li(f).

Since ψi is an isomorphism, this implies

ψi(f (−ai+h)(Pi))
{

= 0 ∈ Fdiq for 0 ≤ h < li(f),
6= 0 ∈ Fdiq for h = li(f).

It follows that

v(c(i)
f ) ≥ (mi − li(f)− 1)di + ri + 1 = m− (li(f) + 1)di + 1.

If νPi(f) + ai ≥ mi, then li(f) = mi and c(i)
f = 0 ∈ Fmq , and so v(c(i)

f ) = 0.
In all cases we have

v(c(i)
f ) ≥ max(0,m− (li(f) + 1)di + 1).

By the definition of cf we obtain

Vm(cf ) ≥
s∑

i=1

max(0,m− (li(f) + 1)di + 1).

Moreover (l1(f), . . . , ls(f)) ∈ S, and hence we get

Vm(cf ) ≥ min
{ s∑

i=1

max(0,m− (li + 1)di + 1) : (l1, . . . , ls) ∈ S
}

= δ∗m(d1, . . . , ds; deg(G)) ≥ 1
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by Lemma 2.2 and the condition on deg(G). Therefore the linear map θ is
injective and

dim(N ) = dim(L(G)) ≥ deg(G) + 1− g
by the Riemann–Roch theorem. The lower bound on δm(N ) is immediate
from the above.

Now we use Theorem 3.1 and the duality theory for digital nets in [7]
to derive digital (t,m, s)-nets constructed over Fq. We can assume s ≥ 2 to
avoid the trivial one-dimensional case.

Theorem 3.2. Let F/Fq be a global function field of genus g. For s ≥ 2
let P1, . . . , Ps be distinct places of F with degrees d1, . . . , ds, respectively. Let
m be a positive integer and for i = 1, . . . , s let ri be the least residue of m
modulo di. Assume that

m ≥ g +
s∑

i=1

ri.

Then we can obtain a digital (t,m, s)-net constructed over Fq with

t ≤ m+ 1− δ∗m(d1, . . . , ds;ms−m+ g − 1).

Proof. We choose a divisor G of F with deg(G) = ms − m + g − 1.
Then deg(G) < ms −∑s

i=1 ri by the given lower bound on m, and also
dim(L(G)) ≥ deg(G) + 1 − g ≥ 1 since s ≥ 2. Therefore we can apply
Theorem 3.1 and this yields an Fq-linear subspace N of Fmsq with

dim(N ) ≥ ms−m, δm(N ) ≥ δ∗m(d1, . . . , ds;ms−m+ g − 1).

Now we consider the dual space C = N⊥ of N in Fmsq . Then

dim(C) = ms− dim(N ) ≤ m,
and so C can be viewed as the row space of a suitable m×ms matrix C over
Fq. Finally, we consider the digital net P with overall generating matrix C
(compare with [7, p. 177]). Then [7, Corollary 1] shows that P is a digital
(t,m, s)-net constructed over Fq with

t = m+ 1− δm(C⊥) = m+ 1− δm(N )

≤ m+ 1− δ∗m(d1, . . . , ds;ms−m+ g − 1),

which completes the proof.

Corollary 3.3. Under the conditions of Theorem 3.2, we can obtain a
digital (t,m, s)-net constructed over Fq with

t ≤ g +
s∑

i=1

(di − 1).

Proof. Combine Theorem 3.2 and Lemma 2.1.
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Remark 3.4. In the special case d1 = . . . = ds = 1, the construction
leading to Corollary 3.3 was already described in [10]. Since

δ∗m(1, . . . , 1; r) = ms− r for 0 ≤ r ≤ ms,
Theorem 3.2 yields no improvement on Corollary 3.3 in this case.

Remark 3.5. We compare the construction of digital nets in this section
with a construction in [15] (see also [9, Section 8.4]). In the latter construc-
tion we choose s + 1 distinct places P1, . . . , Ps, P∞ of the global function
field F/Fq with deg(Pi) = di for 1 ≤ i ≤ s and deg(P∞) = 1. In this way we
get a digital (t, s)-sequence constructed over Fq with

t = g +
s∑

i=1

(di − 1).

By a standard principle (see [9, Lemma 8.2.13]), we obtain then digital
(t,m, s+ 1)-nets constructed over Fq with

t = g +
s∑

i=1

(di − 1), m ≥ max
(

1, g +
s∑

i=1

(di − 1)
)
.

On the other hand, by using the same places P1, . . . , Ps, P∞ in the construc-
tion of digital nets described in this section, we obtain digital (t,m, s+1)-nets
constructed over Fq with

t ≤ m+ 1− δ∗m(d1, . . . , ds, 1;ms+ g − 1) ≤ g +
s∑

i=1

(di − 1)

and

m ≥ max
(

1, g +
s∑

i=1

ri

)
.

Thus, the construction in this section is at least as good as that in [15].
In fact, it is easy to construct examples from Theorem 3.2 which cannot be
obtained from [15]. For instance, let q = 3 and let F be the rational function
field over F3. Choose the three places of F of degree 2 and the four rational
places of F in Theorem 3.2, so that s = 7. Furthermore, put m = 4 and
note that from the definition it is easily seen that δ∗4(2, 2, 2, 1, 1, 1, 1; 23) = 3.
Thus, Theorem 3.2 yields a digital (t, 4, 7)-net constructed over F3 with
t ≤ 2. On the other hand, from the construction in [15] using the rational
function field F over F3, the best we can get by any choice of places of F is
a digital (3, 4, 7)-net constructed over F3.

The construction in this section also yields so-called (d, k,m, s)-systems.
These systems were considered in Niederreiter [3, Section 7], [4] and Nieder-
reiter and Pirsic [7] and are connected with digital nets. For instance, these
systems are used in the Kronecker product construction for digital nets
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described in [8]. We recall the definition of a (d, k,m, s)-system from [7,
Definition 3].

Definition 3.6. Let k, m, s be positive integers and let d be an integer
with 0 ≤ d ≤ min(k,ms). The system

{c(i)
j ∈ Fkq : 1 ≤ j ≤ m, 1 ≤ i ≤ s}

of ms vectors is called a (d, k,m, s)-system over Fq if for any integers h1,
. . . , hs with 0 ≤ hi ≤ m for 1 ≤ i ≤ s and

∑s
i=1 hi = d the system

{c(i)
j ∈ Fkq : 1 ≤ j ≤ hi, 1 ≤ i ≤ s} is linearly independent over Fq (the

empty system is considered linearly independent).

It is clear that the value of d depends, in particular, on the specific way
in which the ms vectors are arranged into an s × m array. An important
aim in the theory of (d, k,m, s)-systems is to construct, for given q, k, m,
and s, a (d, k,m, s)-system over Fq with d as large as possible. Note that for
k ≥ ms it is trivial to construct a (d, k,m, s)-system over Fq with the largest
possible value d = ms: just take any ms linearly independent vectors from
Fkq and arrange them in an arbitrary way. Thus, we can assume k < ms in
the following. We note that it is also easy to construct a (d, k,m, s)-system
over Fq with d = k = ms− 1: let e1, . . . , ek be a basis of Fkq and arrange the
ms vectors e1, . . . , ek,

∑k
b=1 eb in an arbitrary way.

Theorem 3.7. Let F/Fq be a global function field of genus g. For s ≥ 1
let P1, . . . , Ps be distinct places of F with degrees d1, . . . , ds, respectively. Let
m be a positive integer and for i = 1, . . . , s let ri be the least residue of m
modulo di. Let k be an integer with

max
(

1, g +
s∑

i=1

ri

)
≤ k < ms.

Then we can construct a (d, k,m, s)-system over Fq with

d = δ∗m(d1, . . . , ds;ms− k + g − 1)− 1 ≥ k − g −
s∑

i=1

(di − 1).

Proof. We choose a divisor G of F with

deg(G) = ms− k + g − 1.

The bounds on k imply that deg(G) < ms − ∑s
i=1 ri and dim(L(G)) ≥

deg(G) + 1 − g ≥ 1. Then Theorem 3.1 yields an Fq-linear subspace N of
Fmsq with

dim(N ) ≥ deg(G) + 1− g = ms− k,
δm(N ) ≥ δ∗m(d1, . . . , ds;ms− k + g − 1).
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Now we consider the dual space C = N⊥ of N in Fmsq . Then

dim(C) = ms− dim(N ) ≤ k,
and so C can be viewed as the row space of a suitable k×ms matrix C over
Fq. We write

C = (C1|C2| . . . |Cs),
where each submatrix Ci, 1 ≤ i ≤ s, is a k × m matrix over Fq. Let

c(i)
1 , . . . , c(i)

m ∈ Fkq be the column vectors of Ci. In this way we arrive at
the system

{c(i)
j ∈ Fkq : 1 ≤ j ≤ m, 1 ≤ i ≤ s}.

The fact that this is a (d, k,m, s)-system over Fq with

d = δ∗m(d1, . . . , ds;ms− k + g − 1)− 1

follows now from [7, Theorem 1], by using C⊥ = N and the lower bound on
δm(N ) given above. The lower bound on d is then obtained from Lemma
2.1.

Remark 3.8. From any (d, k,m, s)-system {c(i)
j ∈ Fkq : 1 ≤ j ≤ m, 1 ≤

i ≤ s} over Fq we can obtain a (d, k,m′, s)-system over Fq for any integer

1 ≤ m′ ≤ m− 1 satisfying d ≤ m′s, by removing the vectors c(i)
j , m′ + 1 ≤

j ≤ m, 1 ≤ i ≤ s, from the system. Similarly, from any (d, k,m, s)-system
{c(i)
j ∈ Fkq : 1 ≤ j ≤ m, 1 ≤ i ≤ s} over Fq with d ≤ m we can obtain a

(d, k,m′, s)-system over Fq for any integer m′ ≥ m+ 1, by adding arbitrary

vectors c(i)
j , m+ 1 ≤ j ≤ m′, 1 ≤ i ≤ s, to the system.

Example 3.9. For any finite field Fq, it is well known that there exists
an elliptic function field E over Fq with s = q + ε+ b2√qc rational places,
where ε = 0 or 1 depending on the form of q (see [9, p. 118]). Let m ≥ 1
and 1 ≤ k < ms be integers. Then, using all rational places of E, we get
a (k − 1, k,m, s)-system over Fq by Theorem 3.7. The special case k = m
corresponds to digital (1,m, q + ε+ b2√qc)-nets constructed over Fq.

Example 3.10. For q = 8 consider the function field F = F8(x, y) de-
fined by

y7 = x(x+ 1)(x2 + x+ 1)2 = x6 + x5 + x4 + x3 + x2 + x.

Then F has genus 9 by [12, Corollary III.7.4] and 45 rational places. Fur-
thermore, F has at least one place of degree 2 since x2 + x + 1 is totally
ramified in the extension F/F8(x). Let m ≥ 1 and 10 ≤ k < 46m be in-
tegers. Then, using all rational places of F and a place of F of degree 2,
we get a (k− 10, k,m, 46)-system over F8 by Theorem 3.7. The special case
k = m corresponds to digital (10,m, 46)-nets constructed over F8 for all
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m ≥ 10. At present, the smallest known genus among the genera of function
fields over F8 having at least 46 rational places is 11 (see [13]). Hence, using
only rational places in the construction in this section, we can get a digital
(t,m, 46)-net constructed over F8 only for t ≥ 11 and m ≥ 11, no matter
which known function field F1 over F8 with at least 46 rational places we
take. Moreover, for any such function field F1, if g is its genus, h its di-
visor class number, and m is so large that

(46+m−g
45

)
≥ h, then we cannot

use the improved construction in [10, Section 3] to get digital (t,m, 46)-nets
constructed over F8 with t ≤ 10.

4. An improvement using special Fq-linear isomorphisms. We
keep the notation of Section 3. In this section we give an improvement of
the construction in Theorem 3.1 by using special Fq-linear isomorphisms ψi
in the definition of Cm(P1, . . . , Ps;G).

First we prove a lemma. For u ≥ 1 let e1, . . . , eu ≥ 2 be integers and
define the set

U := {(ϕ1, . . . , ϕu) : ϕi is an Fq-linear automorphism of Feiq
for i = 1, . . . , u}.

Lemma 4.1. Let T ⊆∏u
i=1(Feiq \{0}) be a subset of the direct product of

the sets Feiq \ {0} and |T | = µ. Consider the set

U = {(ϕ1, . . . , ϕu) ∈ U : for each (a1, . . . ,au) ∈ T there exists

i ∈ {1, . . . , u} such that ϕi(ai) 6∈ 〈(1, 0, . . . , 0)〉 ⊆ Feiq }.
Then

|U | ≥
u∏

i=1

[(qei − q)(qei − q2) . . . (qei − qei−1)](q − 1)u

×
[ u∏

i=1

(1 + q + . . .+ qei−1)− µ
]
.

In particular , if µ <
∏u
i=1(1 + q + . . . + qei−1), then there exists a u-tuple

(ϕ1, . . . , ϕu) ∈ U such that for any (a1, . . . ,au) ∈ T there is at least one
i ∈ {1, . . . , u} with

ϕi(ai) 6∈ 〈(1, 0, . . . , 0)〉 ⊆ Feiq .
Proof. We first observe that the cardinality of the set U is

|U| =
u∏

i=1

|{ϕi : ϕi is an Fq-linear automorphism of Feiq }|

=
u∏

i=1

[(qei − 1)(qei − q) . . . (qei − qei−1)].
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We will consider the complement U ′ of U in U . For each A = (a1, . . . ,au) ∈
T let

U ′A := {(ϕ1, . . . , ϕu) ∈ U : ϕi(ai) ∈ 〈(1, 0, . . . , 0)〉 for i = 1, . . . , u}.
For any A = (a1, . . . ,au) ∈ T , since ai 6= 0 ∈ Feiq for i = 1, . . . , u, we have

|U ′A| =
u∏

i=1

[(q − 1)(qei − q) . . . (qei − qei−1)].

Moreover, U ′ =
⋃

A∈T U
′
A by definition and hence

|U ′| ≤
∑

A∈T
|U ′A| = µ

u∏

i=1

[(q − 1)(qei − q) . . . (qei − qei−1)].

Therefore

|U | = |U| − |U ′|

≥
u∏

i=1

[(qei − 1) . . . (qei − qei−1)]− µ
u∏

i=1

[(q − 1)(qei − q) . . . (qei − qei−1)]

=
u∏

i=1

[(qei − q) . . . (qei − qei−1)](q − 1)u
[ u∏

i=1

(1 + q + . . .+ qei−1)− µ
]
.

This finishes the proof.

Remark 4.2. We show that the upper bound on |T | in the second part
of Lemma 4.1 cannot be improved in general. We will define a subset T ⊆∏u
i=1(Feiq \ {0}) with T =

∏u
i=1(1 + q + . . . + qei−1) such that there is

no u-tuple (ϕ1, . . . , ϕu) ∈ U having the property in the conclusion of the
second part of the lemma. For each i = 1, . . . , u we define Bi ⊆ Feiq \ {0}
with |Bi| = 1+q+. . .+qei−1 as follows. The number of lines passing through
the origin in the affine space Feiq is 1 + q + . . . + qei−1. For each such line
L, we choose a point p ∈ L distinct from the origin. Then Bi is the set
consisting of these points. Let T = {(a1, . . . ,au) : ai ∈ Bi for i = 1, . . . , u}
and hence |T | = ∏u

i=1 |Bi| =
∏u
i=1(1 + q+ . . .+ qei−1). Let (ϕ1, . . . , ϕu) ∈ U

be arbitrary. For each i = 1, . . . , u there exists a unique element bi ∈ Bi
such that ϕi(bi) ∈ 〈(1, 0, . . . , 0)〉 ⊆ Feiq by the definition of Bi. Then for
(b1, . . . ,bu) ∈ T we have ϕi(bi) ∈ 〈(1, 0, . . . , 0)〉 ⊆ Feiq for i = 1, . . . , u.
Hence for this subset T , the property in the conclusion of the second part
of the lemma is not satisfied.

Recall from Section 2 that

S =
{

(l1, . . . , ls) ∈ Zs :
s∑

i=1

lidi ≤ r, 0 ≤ li ≤ mi for 1 ≤ i ≤ s
}
.
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As in Section 3 we let r = deg(G) and we now define a “minimal” subset
Smin of S as

Smin :=
{

(l1, . . . , ls) ∈ S :
s∑

i=1

max(0,m− (li + 1)di + 1)

= δ∗m(d1, . . . , ds; deg(G))
}
.

First, for simplicity, we assume that for any (l1, . . . , ls) ∈ Smin we have∑s
i=1 lidi = deg(G). Moreover, we also assume that for any (l1, . . . , ls) ∈

Smin and any i ∈ {1, . . . , s}, if di ≥ 2, then li < mi. For some interesting
cases these assumptions are valid.

Theorem 4.3. Under the notation and the assumptions as above, if

|Smin| <
s∏

i=1

(1 + q + . . .+ qdi−1),

then there exist Fq-linear isomorphisms ψ̃i : FPi → Fdiq for i = 1, . . . , s
such that , using these Fq-linear isomorphisms in the definition of θ, for the
resulting vector space N = Cm(P1, . . . , Ps;G) we have

δm(N ) ≥ δ∗m(d1, . . . , ds; deg(G)) + 1.

Proof. Let Dmin be the set of the divisors of F corresponding to Smin,
defined as

Dmin := {l1P1 + . . .+ lsPs : (l1, . . . , ls) ∈ Smin}.
In view of the proof of Theorem 3.1, it is enough to prove that there is
a choice of isomorphisms ψ̃1, . . . , ψ̃s such that for any D ∈ Dmin and f ∈
L(G−D) \ {0} we have

Vm(cf ) ≥ δ∗m(d1, . . . , ds; deg(G)) + 1.

For any D ∈ Dmin we have deg(D) = deg(G) by one of our assumptions.
Therefore dim(L(G − D)) ≤ 1 by Clifford’s theorem [12, Theorem I.6.11].
We can assume dimL(G − D) = 1 for each D ∈ Dmin without loss of
generality, otherwise we can remove the corresponding D from Dmin and
the corresponding (l1, . . . , ls) from Smin. For each D ∈ Dmin we choose a
nonzero function fD ∈ L(G − D) and let M = {fD : D ∈ Dmin} be the
set of these functions. Therefore for any fD ∈ M, if D =

∑s
i=1 liPi, then

νPi(fD) = li − νPi(G) for i = 1, . . . , s. Note that |M| ≤ |Smin| and that it
suffices to prove that

Vm(cf ) ≥ δ∗m(d1, . . . , ds; deg(G)) + 1 for any f ∈ M.

With the notation in Section 3, for f ∈ M and chosen local parameters ti at
Pi and Fq-linear vector space isomorphisms ψi : FPi → Fdiq for i = 1, . . . , s,
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let
αi,f := ψi(f (νPi(f))(Pi)) ∈ Fdiq \ {0}

for those i = 1, . . . , s with di ≥ 2. Consider the set

T =
{

(αi,f ) ∈
s∏

i=1
di≥2

(Fdiq \ {0}) : f ∈M
}
.

By assumption, |Smin| <
∏s
i=1(1 + q + . . .+ qdi−1). Then we have

|T | ≤ |M| ≤ |Smin| <
s∏

i=1

(1 + q + . . .+ qdi−1) =
s∏

i=1
di≥2

(1 + q + . . .+ qdi−1).

Therefore we can apply the second part of Lemma 4.1. This yields an Fq-
linear automorphism ϕi of Fdiq for each i = 1, . . . , s with di ≥ 2 such that
the following holds: for each f ∈ M there exists i ∈ {1, . . . , s} with di ≥ 2
satisfying

ϕi(αi,f ) 6∈ 〈(1, 0, . . . , 0)〉 ⊆ Fdiq .
Moreover, νPi(f) + νPi(G) = li ≤ mi− 1 by assumption, and hence αi,f is a

part of c(i)
f in the definition of θi. Therefore, using the Fq-linear isomorphisms

ψ̃i : FPi → Fdiq given by

ψ̃i =
{
ϕi ◦ ψi if di ≥ 2,
ψi if di = 1,

for i = 1, . . . , s

in the definition of θ, we get indeed

Vm(cf ) ≥ δ∗m(d1, . . . , ds; deg(G)) + 1 for any f ∈ M.

This finishes the proof.

Now we give an example illustrating Theorem 4.3.

Example 4.4. Let q = 2 and let F = F2(x) be the rational function
field over F2. Let P1, P2, P∞, and Q be the places of F which are the zeros
of the functions x, x+1, 1/x, and x2 +x+1, respectively. Assume that local
parameters at P1, P2, P∞, Q and Fq-linear isomorphisms ψ1 : FP1 → F2, ψ2 :
FP2 → F2, ψ3 : FP∞ → F2, ψ4 : FQ → F2

2 are chosen arbitrarily. By Theorem
3.1, for N = C2(P1, P2, P∞, Q; 6P∞) we have δ2(N ) ≥ δ∗2(1, 1, 1, 2; 6) = 1.
Moreover, Smin = {(2, 2, 2, 0)} and the assumptions of Theorem 4.3 are
satisfied. Note that L(6P∞−2P1−2P2−2P∞) = {0, f} with f = x2(x+1)2 ≡
1 mod Q. Let α = ψ4(1) ∈ F2

2 \ {(0, 0)} and β = ψ4(ξ) ∈ F2
2 \ {(0, 0)}, where

ξ ≡ x mod Q. Let ϕ4 : F2
2 → F2

2 be defined as ϕ4(α) = (0, 1) and ϕ4(β) =
(1, 0). Hence, using the F2-linear isomorphisms ψ̃1 = ψ1, ψ̃2 = ψ2, ψ̃3 = ψ3,
and ψ̃4 = ϕ4 ◦ ψ4 for defining θ in the definition of C2(P1, P2, P∞, Q; 6P∞),
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we get δ2(N ) ≥ 2 by Theorem 4.3. Since this lower bound is best possible
by the generalized Singleton bound [7, Proposition 1], we obtain δ2(N ) = 2.

Remark 4.5. It is possible to generalize Theorem 4.3 to the case where
for some (l1, . . . , ls) ∈ Smin we have

∑s
i=1 lidi < deg(G). First we generalize

Lemma 4.1 in the following sense. For integers u, µ,B ≥ 1 and e1, . . . , eu ≥
B + 1, let Vi,1, . . . , Vi,µ ⊆ Feiq be given Fq-linear subspaces of dimension at
most B for i = 1, . . . , u. By a counting argument, for q large enough, there
is a u-tuple (ϕ1, . . . , ϕu) ∈ U such that for each j = 1, . . . , µ there exists
i ∈ {1, . . . , u} with (1, 0, . . . , 0) ∈ Feiq \ ϕi(Vi,j). Note that it is important to
have an effective lower bound on q as in Lemma 4.1. Now we can generalize
Theorem 4.3. Recall that if D is any divisor of F with 0 ≤ deg(D) ≤
2g − 2, then dim(L(D)) ≤ 1 + (1/2) deg(D) by Clifford’s theorem. Also,
if deg(D) ≥ max(0, 2g − 1), then dim(L(D)) = deg(D) + 1 − g by the
Riemann–Roch theorem. Hence there is an effective upper bound B on the
set {dim(L(G− l1P1 − . . .− lsPs)) : (l1, . . . , ls) ∈ Smin}. Indeed let

d = max
{

deg(G)−
s∑

i=1

lidi : (l1, . . . , ls) ∈ Smin

}
.

Note that d ≥ 0 and

B =
{

1 + d/2 if d ≤ 2g − 2,
d+ 1− g if d ≥ 2g − 1,

is an upper bound. Moreover, for certain divisors G of F and d ≤ 2g − 2,
we can also improve the bound B depending on G in some cases. Now
assume that there exists i ∈ {1, . . . , s} with di ≥ B + 1. Also assume that
for any (l1, . . . , ls) ∈ Smin and any i ∈ {1, . . . , s}, if di ≥ B + 1, then
li < mi. Therefore, if q is large enough, using the generalized version of
Lemma 4.1 and similar arguments as in the proof of Theorem 4.3, we obtain
that there exist Fq-linear isomorphisms ψ̃i : FPi → Fdiq for i = 1, . . . , s
such that using these Fq-linear isomorphisms in the definition of θ instead
of arbitrary Fq-linear isomorphisms, for N = Cm(P1, . . . , Ps;G) we have
δm(N ) ≥ δ∗m(d1, . . . , ds; deg(G)) + 1.

Note that Smin is independent of q and an explicit knowledge of Smin
allows us to have weaker assumptions in some cases and also to get an
effective lower bound on q for the generalized version of Lemma 4.1 above
and for other suitable generalizations or improvements of the lemma.

It is clear that by proceeding as in the proofs of Theorems 3.2 and 3.7,
we can obtain improved parameters in digital (t,m, s)-nets constructed over
Fq and (d, k,m, s)-systems over Fq under the conditions of Theorem 4.3 and
Remark 4.5.
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5. An improvement using a distinguished divisor. In this section
we improve our basic construction of Section 3 by choosing a distinguished
divisor G of the global function field F . We use a generalized version of a
similar idea of Niederreiter and Xing [10, Section 3] which is in turn based
on an idea introduced by Xing [14] in the theory of algebraic-geometry
codes.

We keep the notation of previous sections. We also assume that F has a
rational place Q, for simplicity. Let h be the divisor class number of F and
for i ≥ 0 let Ai denote the number of positive divisors of F of degree i. We
also put Ai = 0 for i < 0. First we prove a lemma.

Lemma 5.1. Let U1, . . . , Ul be sets of divisors of F of degree u1, . . . , ul,
respectively. If r is an integer with

l∑

i=1

|Ui| ·Ar−ui < h,

then there exists a divisor G of F of degree r such that

L(G−D) = {0} for all D ∈
l⋃

i=1

Ui.

Proof. Since L(B) = {0} for any divisor B of F with deg(B) < 0, we can
restrict the attention to the case where r ≥ max(u1, . . . , ul). For i = 1, . . . , l
let

Ei = {(Di, Ei) : Di ∈ Ui and Ei is a positive divisor of F of degree r − ui},
and put E =

⋃l
i=1 Ei. Then |Ei| = |Ui| ·Ar−ui , |E| ≤

∑l
i=1 |Ui| ·Ar−ui , and

E =
{

(D,E) :

D ∈
l⋃

i=1

Ui and E is a positive divisor of F of degree r − deg(D)
}
.

Assume that
∑l

i=1 |Ui|·Ar−ui < h. Recall that the set of degree zero divisors
of F is divided into h disjoint subsets by the equivalence relation between
the divisors. The set Ẽ = {D+E− rQ : (D,E) ∈ E} is a subset of the set of
degree zero divisors of F . Moreover, |Ẽ | ≤ |E| ≤∑l

i=1 |Ui| · Ar−ui < h, and
hence there exists a degree zero divisor H0 of F such that

H0 6∼ H for all H ∈ Ẽ .
For such a divisor H0, let G = H0 + rQ. We claim that L(G − D) =
{0} for any D ∈ ⋃l

i=1 Ui, which finishes the proof. Otherwise, for some
1 ≤ i ≤ l there exist D ∈ Ui and f ∈ L(G − D) \ {0}. Then we have
E := G−D+ div(f) ≥ 0, deg(E) = r− ui, and D+E − rQ ∈ Ẽ . Therefore
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H0 = G− rQ = D + E − rQ− div(f) ∼ D + E − rQ,
which is a contradiction to the definition of H0.

We need some notation and definitions to give the improved construction
of this section. First recall from Section 2 that with the notation introduced
there we have

S =
{

(l1, . . . , ls) ∈ Zs :
s∑

i=1

lidi ≤ r, 0 ≤ li ≤ mi for 1 ≤ i ≤ s
}

and

δ∗m(d1, . . . , ds; r) = min
{ s∑

i=1

max(0,m− (li + 1)di + 1) : (l1, . . . , ls) ∈ S
}
.

For integers u ≥ 0 let

Smin(u, u) :=
{

(l1, . . . , ls) ∈ S :
s∑

i=1

max(0,m− (li + 1)di + 1)

= δ∗m(d1, . . . , ds; r) + u
}
.

Note that Smin(0, 0) = Smin, which was defined in Section 4. For integers
u ≥ 1 and 0 ≤ v ≤ u − 1 we define Smin(u, v) to be the set of (l1, . . . , ls) ∈
Smin(v, v) such that there is no (l′1, . . . , l

′
s) ∈ S with (l′1, . . . , l

′
s) 6= (l1, . . . , ls),

l′i ≤ li for 1 ≤ i ≤ s, and
s∑

i=1

max(0,m− (l′i + 1)di + 1) ≤ δ∗m(d1, . . . , ds; r) + u.

We show that the cardinalities of the sets Smin(u, v) are small for small
values of v.

Lemma 5.2. With the notation as above let u ≥ 1. For d ≥ 1, if 0 ≤ v ≤
u− d, then

(l1, . . . , ls) ∈ Smin(u, v)⇒ li = 0 for each i ∈ {1, . . . , s} with di ≤ d.
In particular , if d = max(d1, . . . , ds), then Smin(u, v) ⊆ {(0, . . . , 0)} for any
0 ≤ v ≤ u−d. Moreover , if also Smin(u, u) 6= ∅ or u < (m+ 1)s−∑s

i=1 di−
δ∗m(d1, . . . , ds; r) + d, then Smin(u, v) = ∅ for any 0 ≤ v ≤ u− d.

Proof. We proceed by contradiction. First assume that d ≥ 1, 0 ≤ v ≤
u− d, (l1, . . . , ls) ∈ Smin(u, v), and li0 ≥ 1 for some 1 ≤ i0 ≤ s with di0 ≤ d.
Let l′i = li for i 6= i0 and i ∈ {1, . . . , s} and l′i0 = li0 − 1. It is clear that
(l′1, . . . , l

′
s) ∈ S. If li0 = mi0 , then
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s∑

i=1

max(0,m− (l′i + 1)di + 1) =
s∑

i=1

max(0,m− (li + 1)di + 1) + ri0 + 1

= δ∗m(d1, . . . , ds; r) + v + ri0 + 1

≤ δ∗m(d1, . . . , ds; r) + u.

Moreover, l′i ≤ li for all i = 1, . . . , s, and hence we get a contradiction to the
definition of Smin(u, v). Similarly, if 1 ≤ li0 ≤ mi0 − 1, then

s∑

i=1

max(0,m− (l′i + 1)di + 1) =
s∑

i=1

max(0,m− (li + 1)di + 1) + di0

= δ∗m(d1, . . . , ds; r) + v + di0
≤ δ∗m(d1, . . . , ds; r) + u.

Therefore this also gives a contradiction, and so the first part of the lemma
is shown.

Now for u ≥ 1, d = max(d1, . . . , ds), and 0 ≤ v ≤ u − d assume that
(0, . . . , 0) ∈ Smin(u, v). Then
s∑

i=1

max(0,m− (0 + 1)di + 1) = (m+ 1)s−
s∑

i=1

di = δ∗m(d1, . . . , ds; r) + v.

Therefore

u ≥ v + d = (m+ 1)s−
s∑

i=1

di − δ∗m(d1, . . . , ds; r) + d.

Furthermore, for any (l1, . . . , ls) ∈ S we have
s∑

i=1

max(0,m− (li + 1)di + 1) ≤
s∑

i=1

max(0,m− (0 + 1)di + 1)

= δ∗m(d1, . . . , ds; r) + v

< δ∗m(d1, . . . , ds; r) + u,

and so Smin(u, u) = ∅.
Remark 5.3. By the preceding lemma, for u ≥ 1 and d1 = . . . = ds = 1,

if

u ≤ min(ms, r) = ms−max(0,ms− r) = (m+ 1)s−
s∑

i=1

1− δ∗m(1, . . . , 1; r),

then Smin(u, v) = ∅ for any 0 ≤ v ≤ u− 1.

Example 5.4. We give simple examples for which u ≥ 1, 0 ≤ v ≤ u− 1,
and Smin(u, v) 6= ∅. Let s = 2, d1 = 1, d2 = 2, and m = 4. First, for
r = 4 we have δ∗4(1, 2; 4) = 3, Smin(3, 3) = {(1, 0)}, Smin(3, 2) = {(0, 1)},
and Smin(3, 1) = Smin(3, 0) = ∅. Second, for r = 2 we have δ∗4(1, 2; 2)
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= 5, Smin(4, 4) = Smin(4, 3) = ∅, Smin(4, 2) = {(0, 0)}, and Smin(4, 1) =
Smin(4, 0) = ∅. Note that in this case d = max(1, 2) = 2 and u = 4 ≥
(m+ 1)s−∑s

i=1 di − δ∗m(d1, . . . , ds; r) + d = 5 · 2− (1 + 2)− 5 + 2.

Now we partition the sets Smin(u, v) into subsets T (u, v;λ) such that for
any (l1, . . . , ls) ∈ T (u, v;λ) we have

∑s
i=1 lidi = λ. First, for 0 ≤ v ≤ u and

Smin(u, v) 6= ∅ we define

∆(u, v) := max
{ s∑

i=1

lidi : (l1, . . . , ls) ∈ Smin(u, v)
}
.

Then for 0 ≤ v ≤ u and 0 ≤ λ ≤ ∆(u, v) we let

T (u, v;λ) :=
{

(l1, . . . , ls) ∈ Smin(u, v) :
s∑

i=1

lidi = λ
}
.

If Smin(u, v) = ∅, then we put ∆(u, v) := 0 and T (u, v; 0) := ∅. Now we can
establish the following improvement on Theorem 3.1.

Theorem 5.5. With the notation as above, if r ≥ 0, u ≥ 0, and

u∑

v=0

∆(u,v)∑

λ=0

|T (u, v;λ)| ·Ar−λ < h,

then there exists a divisor G of F such that deg(G) = r and either L(G) =
{0} or

δm(Cm(P1, . . . , Ps;G)) ≥ δ∗m(d1, . . . , ds; r) + u+ 1.

Proof. First observe that for divisors D1 ≤ D2, if G is any divisor satis-
fying L(G−D1) = {0}, then we have L(G−D2) = {0}. For a given u ≥ 0
let

S(u) =
{

(l1, . . . , ls) ∈ S :
s∑

i=1

max(0,m− (li + 1)di + 1)

≤ δ∗m(d1, . . . , ds; r) + u
}
.

By the definition of T (u, v;λ), the set

T (u) :=
u⋃

v=0

∆(u,v)⋃

λ=0

T (u, v;λ) =
u⋃

v=0

Smin(u, v)

is a subset of S(u) such that for any (l1, . . . , ls)∈S(u), there exists (l′1, . . . , l
′
s)

∈ T (u) having the property that l′i ≤ li for all i = 1, . . . , s. Therefore, by
the observation at the beginning of the proof and Lemma 5.1, there exists
a divisor G of F with deg(G) = r satisfying

L(G− (l1P1 + . . .+ lsPs)) = {0} for all (l1, . . . , ls) ∈ S(u).
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Hence if dim(L(G)) ≥ 1, then

δm(Cm(P1, . . . , Ps;G)) ≥ δ∗m(d1, . . . , ds; r) + u+ 1

by the proof of Theorem 3.1 and the definition of S(u).

Remark 5.6. We can rule out the case L(G) = {0} in the conclusion of
Theorem 5.5 by imposing the condition r ≥ g, where g is the genus of F .

Remark 5.7. We can combine the method of Section 4 with the preced-
ing theorem in order to relax the conditions of the theorem. For instance, let
r ≥ 0, u = 0, and T (0) =

⋃∆(0,0)
λ=0 T (0, 0;λ) be the set defined as in the proof

of Theorem 5.5. Assume that there exists a subset T0 ⊆ T (0) satisfying the
following:

(i) (l1, . . . , ls) ∈ T0 ⇒
∑s

i=1 lidi = r,
(ii) |T0| <

∏s
i=1(1 + q + . . .+ qdi−1), and

(iii) |T (0) \ T0|+
∑∆(0,0)

λ=0, λ6=r |T (0, 0;λ)| ·Ar−λ < h.

Then there exist a divisor G of F with deg(G) = r and Fq-linear isomor-
phisms ψ̃i : FPi → Fdiq for i = 1, . . . , s such that, using these Fq-linear
isomorphisms in the definition of θ, for N = Cm(P1, . . . , Ps;G) we have
δm(N ) ≥ δ∗m(d1, . . . , ds; r) + 1.
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