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Multiplicative functions over short segments
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1. Introduction and result. In what follows, [t] is the integer part of
t and ε > 0 is an arbitrary small real number which does not need to be the
same at each occurrence.

In contrast to the long-sum case, there are few articles dealing with short
sums of multiplicative functions in the literature. By “short sums” we mean
sums of the shape
(1)

∑
x<n≤x+y

f(n)

where 10 ≤ y ≤ x are large real numbers with y = o(x) as x→∞. In partic-
ular, a result analogous to the well-known Halász theorem for the short-sum
case would be of great importance in some problems of number theory. How-
ever, this question still remains open and even the weaker case of functions
satisfying the Wirsing conditions is still unsolved.

The usual tools from analytic number theory used for sums over long
intervals may not work for sums of the type (1) or may provide results weaker
than expected. For instance, using Srinivasan’s multidimensional exponent
pairs, Varbanec [11] showed that∑

x<n≤x+y
µ2(n) =

y

ζ(2)
+O(x0.2196 + y1/2),

whilst using elementary means the authors in [2] proved that the main term
x0.2196 may be improved to x1/5 log x. Here and below, µ2(n) = 1 whenever
n is squarefree and 0 otherwise.

In [1], we proved that if f is a [0, 1]-valued multiplicative function satis-
fying f(p) = 1 for all primes p, then, for all ε > 0, we have∑

x<n≤x+y
f(n) = yMf +O(x1/15+εy2/3)
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uniformly for 2 ≤ y � x1/2, where

Mf =
∏
p

(
1− 1

p

)(
1 +

∞∑
α=1

f(pα)

pα

)
.(2)

Recently, Kapoor [9] extended this estimate to a larger class of complex-
valued multiplicative functions f such that

|f(p)− 1| ≤ A/pθ and |f(pα)| ≤ A

for some A > 0 and θ ≥ 4/5.
The aim of this work is both to generalize Varbanec’s estimate and to

extend the above results. To this end, let k ≥ 2 be an integer, A ≥ 0
and ε > 0 be real numbers, and define the class S(k;A, ε) to be the set of
complex-valued multiplicative functions f satisfying

|f(pα)− f(pα−1)| ≤ A/pα if 1 ≤ α < k,(3)

|(f ? µ)(n)| ≤ cε,knε if n is k-full,(4)

for some constant cε,k > 0 depending at most on ε and k and where f ? g
is the usual Dirichlet convolution product of the two arithmetic functions f
and g. Recall that an integer n = pe11 · · · perr is said to be k-full if ei ≥ k for
all i. If ei < k for all i, then n is k-free and µk is the characteristic function
of the set of k-free numbers.

Before stating our main result, note that if g = f ? µ is the Eratosthenes
transform of f , then by (3) and (4) we readily get

|g(n)| ≤

{
Aω(n)n−1 if n is k-free,
cε,kn

ε if n is k-full.
(5)

We are now in a position to state our main theorem.

Theorem 1.1. Let k ≥ 2 be an integer, A ≥ 0 and ε > 0 be real numbers
and let f ∈ S(k;A, ε). Then uniformly for 4k ≤ y < x we have∑
x<n≤x+y

f(n) = yMf +Oε,k,A
(
x

1
2k+1

+ε + yx
− 1

6(4k−1)(2k−1)
+ε

+ y
1− 2(k−1)

k(3k−1)xε
)

whereMf is defined in (2).

This article is organized as follows. Section 2 supplies some recent re-
sults from the theory of counting integer points lying very near certain
smooth curves. This theory has essentially been developed by Huxley–Sargos
[6, 7, 8] and Filaseta–Trifonov [2, 3] in order to investigate distribution prob-
lems in number theory. Section 3 is devoted to the proof of some cru-
cial lemmas needed in the proof of the main result, which is postponed
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to Section 4. Finally, several applications of Theorem 1.1 will be given in
Section 5.

2. Integer points near smooth curves. We summarize in the next
lemma the main tools picked up from the work of Huxley–Sargos [8, Théo-
rème 2] and Filaseta–Trifonov [3, Theorem 7]. In this section, N is a large
positive integer, δ is a small positive real number and R(f,N, δ) is the num-
ber of integers n ∈ [N, 2N ] such that ‖f(n)‖ < δ, where as usual ‖x‖ is the
distance between the real number x and its nearest integer.

Lemma 2.1.

(i) Let s ≥ 3 be an integer, δ ∈ (0, 1/4) and ϕ ∈ Cs[N, 2N ] such
that there exist λs−1, λs > 0 such that, for all x ∈ [N, 2N ], we
have

|ϕ(s−1)(x)| � λs−1, |ϕ(s)(x)| � λs and λs−1 = Nλs.

Then

R(ϕ,N, δ)� Nλ
2

s(s+1)
s +N(δλs−1)

2
s(s−1)+2 +Nδ

2
(s−1)(s−2)

+ (δ/λs−1)
1

s−1 + 1.

(ii) Let r ≥ 2 be an integer, δ > 0 and x ≥ 1 such that 4 ≤ N ≤ x1/r.
Then there exists a constant cr > 0 depending only on r such that if
N r−1δ ≤ cr, then

R(x/nr, N, δ)� x
1

2r+1 + x
1

6r+3 δN r−1/3.

Lemma 2.2. Let k ≥ 2 be an integer, A ≥ 0, ε > 0, f ∈ S(k;A, ε) and
let g = f ? µ. For any real number z ≥ 1, we have∑

n≤z
|g(n)| �ε,k,A z

1/k+ε and
∑
n>z

|g(n)|
n
�ε,k,A z

−1+1/k+ε.

Proof. Writing uniquely n = ab with a k-free, b k-full and (a, b) = 1 and
using (5), we get∑

n≤z
|g(n)| ≤

∑
a≤z

a k-free

Aω(a)

a

∑
b≤z/a
b k-full

|g(b)| � z2ε
∑
a≤z

1

a

∑
b≤z/a
b k-full

1

� z1/k+2ε
∑
a≤z

1

a1+1/k
�ε,k,A z

1/k+2ε.

The second inequality follows at once by partial summation. We leave the
details to the reader.
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3. Fundamental lemmas

Lemma 3.1. Let r ≥ 2 be a fixed integer. Uniformly for x ≥ 1 and
0 < y < x we have∑
(2y)1/r<n≤(2x)1/r

([
x+ y

nr

]
−
[
x

nr

])
�r

(
x

1
2r+1 + yx

− 1
6r(2r+1) + y1/r

)
log(ex).

Proof. I Case 0 < y ≤ 4r. For any integer m ≤ x+ 4r, we have

τ(m) ≤ exp

(
22r+1(2r + 1)

log 2

)
m

1
2r+1 �r x

1
2r+1

so that ∑
(2y)1/r<n≤(2x)1/r

([
x+ y

nr

]
−
[
x

nr

])
=

∑
x<m≤x+y

∑
nr|m

(2y)1/r<n≤(2x)1/r

1

≤
∑

x<m≤x+4r

τ(m)�r x
1

2r+1 .

I Case 4r ≤ y ≤ x1/(2r). Let cr > 0 be the constant appearing in
Lemma 2.1(ii) and write∑
(2y)1/r<n≤(2x)1/r

([
x+ y

nr

]
−
[
x

nr

])

=
( ∑
(2y)1/r<n≤c−1

r x1/(2r)

+
∑

c−1
r x1/(2r)<n≤x1/r

+
∑

x1/r<n≤(2x)1/r

)([x+y
nr

]
−
[
x

nr

])

=
( ∑
(4y)1/r<n≤c−1

r x1/(2r)

+
∑

c−1
r x1/(2r)<n≤x1/r

+
∑

x1/r<n≤(2x)1/r

)([x+y
nr

]
−
[
x

nr

])
+O(y1/r)

= Σ1 +Σ2 +Σ3 +O(y1/r).

. For Σ3, we easily see that [x/nr] = 0 and [(x + y)/nr] = 1 if x1/r <
n ≤ (x+ y)1/r and 0 otherwise, so that

Σ3 =
∑

x1/r<n≤(x+y)1/r
1 ≤ (x+ y)1/r − x1/r + 1� yx−1+1/r + 1� y1/r.

. Since y ≤ x1/(2r), we may apply Lemma 2.1(ii) to Σ2, which yields
Σ2 � max

c−1
r x1/(2r)<N≤x1/r

R(x/nr, N, y/N r) log(ex)

� max
c−1
r x1/(2r)<N≤x1/r

(
x

1
2r+1 + x

1
6r+3 yN−1/3

)
log(ex)

�
(
x

1
2r+1 + yx

− 1
6r(2r+1)

)
log(ex).
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. The sum Σ1 is estimated using Lemma 2.1(i) with s = 2r. This gives

Σ1 � max
(4y)1/r<N≤c−1

r x1/(2r)

(
x

1
r(2r+1)N

2r−2
2r+1 + (xy)

1
2r2−r+1N

(r−2)(2r−1)

2r2−r+1

+ N
2r2−4r+1

(r−1)(2r−1) y
1

(r−1)(2r−1) +N(yx−1)
1

2r−1
)
log(ex)

�
(
x

1
2r+1 + x

1
r
− 2r+1

2(2r2−r+1) y
1

2r2−r+1

+ x
1
2r
− 1

2(r−1)(2r−1) y
1

(r−1)(2r−1) +
(
yx−

1
2r
) 1

2r−1
)
log(ex)

and we check that every secondary term is absorbed by the first one since
y ≤ x1/(2r).

I Case x1/(2r) < y < x. We split the sum into the following subsums∑
(2y)1/r<n≤(2x)1/r

([
x+ y

nr

]
−
[
x

nr

])

=
( ∑

(4y)1/r<n≤c−1
r y

+
∑

c−1
r y<n≤x1/r

+
∑

x1/r<n≤(2x)1/r

)([x+ y

nr

]
−
[
x

nr

])
+O(y1/r)

= Σ1 +Σ2 +Σ3 +O(y1/r)

where we assume by convention that Σ2 = 0 whenever y ≥ crx1/r.
. As above, we have Σ3 � y1/r.
. Lemma 2.1(ii) applied to Σ2 yields

Σ2 �
(
x

1
2r+1 + x

1
6r+3 y2/3

)
log(ex)

and since x < y2r we get

Σ2 �
(
x

1
2r+1 + yx

− 1
6r(2r+1)

)
log(ex).

. As above, we apply Lemma 2.1(i) with s=2r to the sumΣ1, which gives

Σ1 �
(
x

1
r(2r+1) y

2r−2
2r+1 + x

1
2r2−r+1 y

(r−1)(2r−3)

2r2−r+1 + y
2r−2
2r−1 + x−

1
2r−1 y

2r
2r−1

)
log(ex),

and the inequality x < y2r implies that

Σ1 � y
2r

2r+1 log x� yx
− 1

6r(2r+1) log(ex).

The proof is complete.

Lemma 3.2. Let k ≥ 2 be a fixed integer and ε > 0 be a small real
number. Uniformly for X ≥ 1 and 0 < Y < X we have∑

2Y <b≤2X
b k-full

([
X + Y

b

]
−
[
X

b

])
�k,ε X

ε
{
X

1
2k+1 + Y X

− 1
6(4k−1)(2k−1) + Y

1− 2(k−1)
k(3k−1)

}
.
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Proof. Let S be the sum on the left-hand side. One may uniquely write
every k-full integer b as

b =

k∏
i=1

ak+i−1i = ak+j−1j dj where dj =

k∏
i=1
i 6=j

ak+i−1i (j ∈ {1, . . . , k})

with a2 · · · ak squarefree and (a`, am) = 1 for all 2 ≤ ` < m ≤ k. Since
b > Y , there exists an integer j ∈ {1, . . . , k} such that aj > Y 2/(k(3k−1)).
The contribution Sj of these integers to S satisfies

Sj �
∑

Y
2

k(3k−1)<aj≤(2X)
1

k+j−1

∑
m∈Ij

∑
dj |m

1

where dj is defined above and

Ij =
(

X

ak+j−1j

,
X + Y

ak+j−1j

]
∩ Z.

We infer that

Sj �ε X
ε

∑
Y

2
k(3k−1)<aj≤(2X)

1
k+j−1

([
X + Y

ak+j−1j

]
−
[

X

ak+j−1j

])

and hence

S ≤
k∑
j=1

Sj �k,ε X
ε

k∑
j=1

∑
Y

2
k(3k−1)<aj≤(2X)

1
k+j−1

([
X + Y

ak+j−1j

]
−
[

X

ak+j−1j

])
.

We now split the inner sum into∑
Y

2
k(3k−1)<aj≤(2Y )

1
k+j−1

+
∑

(2Y )
1

k+j−1<aj≤(2X)
1

k+j−1

;

estimating the first one trivially leads to

S �k,ε X
ε
(
Σk + Y

1− 2(k−1)
k(3k−1)

)
where

Σk :=

k∑
j=1

∑
(2Y )

1
k+j−1<aj≤(2X)

1
k+j−1

([
X + Y

ak+j−1j

]
−
[

X

ak+j−1j

])
.

Lemma 3.1 applied to Σk with r = k + j − 1 ≥ 2 yields

Σk �k,ε

k∑
j=1

(
X

1
2k+2j−1 + Y X

− 1
6(k+j−1)(2k+2j−1) + Y

1
k+j−1

)
log(eX)

�k,ε

(
X

1
2k+1 + Y X

− 1
6(4k−1)(2k−1) + Y 1/k + Y

1
2k−1

)
log(eX),
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concluding the proof since Y 1/k + Y
1

2k−1 ≤ 2X
1

2k+1 if 0 < Y ≤ 1 and

Y 1/k + Y
1

2k−1 ≤ 2Y
1− 2(k−1)

k(3k−1) whenever Y > 1.

4. Proof of Theorem 1.1. Using the Möbius inversion formula and
interchanging the order of summations we get∑

x<n≤x+y
f(n) =

∑
d≤x+y

g(d)

([
x+ y

d

]
−
[
x

d

])

=
( ∑
d≤2y

+
∑

2y<d≤x+y

)
g(d)

([
x+ y

d

]
−
[
x

d

])
= Σ1 +Σ2.

. By Lemma 2.2, the series
∑

d≥1 g(d)d
−1 is absolutely convergent and

we get

Σ1 = y

∞∑
d=1

g(d)

d
+O

( ∑
n≤2y

|g(n)|
)
+O

(
y
∑
n>2y

|g(n)|
n

)
= yMf +Ok,ε(y

1/k+ε).

. Using (5) we get, as in the proof of Lemma 2.2,

|Σ2| ≤
∑

2y<d≤2x
|g(n)|

([
x+ y

d

]
−
[
x

d

])

≤
∑
a≤2x
a k-free

Aω(a)

a

∑
2y/a<b≤2x/a

b k-full

|g(b)|
([

(x+ y)/a

b

]
−
[
x/a

b

])

� x2ε
∑
a≤2x

µk(a)

a

∑
2y/a<b≤2x/a

b k-full

([
(x+ y)/a

b

]
−
[
x/a

b

])

� x2ε
(∑
a≤x

+
∑

x<a≤2x

)µk(a)
a

∑
2y/a<b≤2x/a

b k-full

([
(x+ y)/a

b

]
−
[
x/a

b

])

= Σ21 +Σ22.

When x < a ≤ 2x, we have 2x/a < 2 so that 1 is the unique value taken by
b in the inner sum of Σ22 and hence

Σ22 =
∑

x<a≤2x

µk(a)

a

([
x+ y

a

]
−
[
x

a

])
≤

∑
x<a≤2x

µk(a)

a
� 1.

For Σ21, we apply Lemma 3.2 to the inner sum with X = x/a and Y = y/a,
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which gives

Σ21 � x3ε
∑
a≤x

µk(a)

a

×
{(

x

a

) 1
2k+1

+ yx
− 1

6(4k−1)(2k−1)a
−1+ 1

6(4k−1)(2k−1) +

(
y

a

)1− 2(k−1)
k(3k−1)

}
� x3ε

(
x

1
2k+1 + yx

− 1
6(4k−1)(2k−1) + y

1− 2(k−1)
k(3k−1)

)
as required.

5. Applications. Let k ≥ 2 be a fixed integer.

. Define the multiplicative function

τ (k)(n) =
∑
dk|n

1.

Hence τ (k)(pα) = 1 + [α/k] and thus

(τ (k) ? µ)(pα) =

[
α

k

]
−
[
α− 1

k

]
∈ {0, 1}.

. Let βk be the number of k-full divisors. We have

βk(p
α) =

{
1 if 1 ≤ α < k,
α− k + 2 if α ≥ k,

so that βk ? µ is the characteristic function of the set of k-full numbers.
. Let γk be the greatest k-free divisor. Then

γk(p
α) =

{
pα if 1 ≤ α < k,
pk−1 if α ≥ k,

so that

(ϕγk Id−2 ?µ)(pα) =


−p−1 if α = 1,
0 if 2 ≤ α < k,
−pk−α−2(p− 1)2 if α ≥ k.

. Let Mk be the maximal k-full divisor, so that

Mk(p
α) =

{
1 if 1 ≤ α < k,
pα if α ≥ k.

This implies that

(M−1k ? µ)(pα) =


0 if 1 ≤ α < k,
p−k − 1 if α = k,
p−α − p1−α if α > k.

. Let a be the number of non-isomorphic abelian groups. It is well-known
(see [10] for instance) that a(pα) = P (α) where P is the unrestricted par-
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tition function. Hence (a ? µ)(p) = P (1) − 1 = 0 and, for any α ≥ 2, we
have

0 ≤ (a ? µ)(pα) = P (α)− P (α− 1) ≤ P (α) = a(pα)

where the first inequality is given by [5]. We infer that

0 ≤ (a ? µ)(n)

nε
≤ a(n)

nε
n→∞−−−→ 0

where the limit comes from [10, Proposition 2].

. Let τ (e) be the number of exponential divisors. We have τ (e)(pα) = τ(α)
and hence (τ (e) ? µ)(p) = τ(1)− 1 = 0 and, for any α ≥ 2, we have

|(τ (e) ? µ)(pα)| = |τ(α)− τ(α− 1)| ≤ α+ 1 = τ(pα).

. Let µ(e) be the analog of the Möbius function for the exponential divi-
sors. Then µ(e)(pα) = µ(α), and therefore as above we obtain

|(µ(e) ? µ)(pα)| =
{
0 if α = 1,
µ(α)− µ(α− 1) if α ≥ 2.

Putting all this together and using Theorem 1.1, we get the following
asymptotic formulae.

Corollary 5.1. Let k ≥ 2 be a fixed integer and ε > 0 be a small real
number. Define

Rk = Rk(x, y) = x
1

2k+1 + yx
− 1

6(4k−1)(2k−1) + y
1− 2(k−1)

k(3k−1) .

Then uniformly for all 4k ≤ y < x we have∑
x<n≤x+y

µ(e)(n) = y
∏
p

(
1 +

∞∑
α=2

µ(α)− µ(α− 1)

pα

)
+Oε(R2x

ε),

∑
x<n≤x+y

τ (e)(n) = y
∏
p

(
1 +

∞∑
α=2

τ(α)− τ(α− 1)

pα

)
+Oε(R2x

ε),

∑
x<n≤x+y

a(n) = y

∞∏
j=2

ζ(j) +Oε(R2x
ε),

∑
x<n≤x+y

µk(n) =
y

ζ(k)
+Oε,k(Rkxε),∑

x<n≤x+y
τ (k)(n) = yζ(k) +Oε,k(Rkxε),

∑
x<n≤x+y

βk(n) = y
∏
p

(
1 +

1

pk−1(p− 1)

)
+Oε,k(Rkxε),
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∑
x<n≤x+y

1

Mk(n)
= y

∏
p

(
1− 1

pk
+

1

p2k−1(p+ 1)

)
+Oε,k(Rkxε),

∑
x<n≤x+y

ϕ(n)γk(n)

n2
= y

∏
p

(
1− 1

p2
− p− 1

pk(p+ 1)

)
+Oε,k(Rkxε).

Acknowledgments. I express my gratitude to the referee for his careful
reading of the manuscript and the many valuable suggestions and corrections
he made.

References

[1] O. Bordellès, On short sums of certain multiplicative functions, J. Inequal. Pure
Math. 3 (2002), art. 70, 6 pp.; Corrigendum, ibid. 5 (2004), art. 81, 3 pp.

[2] M. Filaseta and O. Trifonov, On gaps between squarefree numbers II , J. London
Math. Soc. 45 (1992), 215–221.

[3] M. Filaseta and O. Trifonov, The distribution of fractional parts with application to
gap results in number theory , Proc. London Math. Soc. 73 (1996), 241–278.

[4] S. W. Graham and G. Kolesnik, Van der Corput’s Method for Exponential Sums,
London Math. Soc. Lecture Note Ser. 126, Cambridge Univ. Press, 1991.

[5] H. Gupta, Finite differences of the partition function, Math. Comp. 32 (1978),
1241–1243.

[6] M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford Sci. Publ., Oxford
Univ. Press, 1996.

[7] M. N. Huxley et P. Sargos, Points entiers au voisinage d’une courbe plane de classe
Cn, Acta Arith. 69 (1995), 359–366.

[8] M. N. Huxley et P. Sargos, Points entiers au voisinage d’une courbe plane de classe
Cn II , Funct. Approx. Comment. Math. 35 (2006), 91–115.

[9] V. Kapoor, Short sums of multiplicative functions, Proc. Amer. Math. Soc.
[10] J.-L. Nicolas, Sur les entiers N pour lesquels il y a beaucoup de groupes abéliens

d’ordre N , Ann. Inst. Fourier (Grenoble) 28 (1978), no. 4, 1–16.
[11] P. D. Varbanec, Trigonometric sums and their applications, Ann. Univ. Sci. Bu-

dapest. 14 (1994), 219–240.

Olivier Bordellès
2 allée de la Combe
43000 Aiguilhe, France
E-mail: borde43@wanadoo.fr

Received on 29.11.2011
and in revised form on 9.6.2012 (6899)

http://dx.doi.org/10.1112/jlms/s2-45.2.215
http://dx.doi.org/10.1112/plms/s3-73.2.241
http://dx.doi.org/10.1090/S0025-5718-1978-0480319-5
http://dx.doi.org/10.7169/facm/1229442619
http://dx.doi.org/10.1090/S0002-9939-2012-11257-2

	Introduction and result
	Integer points near smooth curves
	Fundamental lemmas
	Proof of Theorem 1.1
	Applications

