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1. Introduction. Throughout the paper, the integer part of a real num-
ber t is denoted by btc.

The Piatetski-Shapiro sequences are sequences of the form

(bncc)n∈N (c > 1, c 6∈ N).

They are named in honor of Piatetski-Shapiro, who proved (cf. [22]) that for
any number c ∈

(
1, 1211

)
there are infinitely many primes of the form bncc.

The admissible range for c in this theorem has been extended many times
over the years, and the result is currently known for all c ∈

(
1, 243205

)
(cf. Rivat

and Wu [23]).
In the present paper we examine various arithmetic questions about the

Piatetski-Shapiro sequences. For instance, denoting by P (m) the largest
prime factor of an integer m ≥ 2, we exhibit a positive function θ(c) which
has the property that, for any non-integer c > 1 and real ε > 0, the inequality

(1.1) P (bncc) > nθ(c)−ε

holds for infinitely many n. Our results extend and improve the earlier work
of Abud [1] and of Arkhipov and Chubarikov [3]. The latter authors claim
that for any c ∈ (1, 2) one has

P (bncc) > n(27−13c)/28−ε

for infinitely many n; however, since they do not establish a result similar to
our Proposition 18 (see §4) to eliminate prime powers pk with k ≥ 2, their
result cannot be substantiated for c ≥ 149

87 = 1.712 . . . . The results presented
here are much sharper than those in [3] and cover a wider range.
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Throughout the paper, we make the convention that if a result is stated
in which ε appears, then ε denotes an arbitrary, sufficiently small positive
number.

Theorem 1. Let θ(c) be the piecewise linear function given by

θ(c) =



2− c if 243
205 ≤ c <

24979
20803 ,

3− 2c if 24979
20803 ≤ c ≤

112
87

(92− 49c)/68 if 112
87 ≤ c ≤

160
117 ,

(74− 31c)/86 if 160
117 ≤ c ≤

128
85 ,

(23− 10c)/25 if 128
85 ≤ c ≤

31
20 ,

(4− 2c)/3 if 31
20 ≤ c ≤

5
3 ,

(3− c)/6 if 5
3 ≤ c < 2.

Then for any c ∈
[
243
205 , 2

)
the inequality (1.1) holds for infinitely many n.

Theorem 2. There exists a constant β > 0 such that, for any c > 2,
c 6∈ N, the inequality

P (bncc) > nβ/c
2

holds for infinitely many n.

Theorem 1 is proved in §§5–6; Theorem 2 is proved in §5.
The most important tool for our proof of Theorem 1 is the following

exponential sum estimate, which is obtained by adapting the work of Cao and
Zhai [11] (actually, our result is much simpler in form than that in [11]). Here
and below we use notation likem ∼M as an abbreviation forM < m ≤ 2M ,
and (m1, . . . ,mk) ∼ (M1, . . . ,Mk) means that m1 ∼M1, . . . ,mk ∼Mk.

Theorem 3. Let

S =
∑

(m,m1,m2)∼(M,M1,M2)

a(m)b(m1,m2)e(Am
αmβ

1m
γ
2),

where M,M1,M2 ≥ 1, A 6= 0, |a(m)| ≤ 1, |b(m1,m2)| ≤ 1, and the con-
stants α, β, γ satisfy α(α − 1)(α − 2)βγ 6= 0. Writing N = M1M2 and
F = |A|MαMβ

1M
γ
2 we have

S (MN)−ε �M5/8N7/8F 1/8 +MN7/8 +M37/49N46/49F 3/49

+M23/29N27/29F 3/58 +M43/58N27/29F 2/29

+M115/152N7/8F 25/304 +M41/54N25/27F 7/108

+M5/6N +M11/10NF−1/4.

This is proved in §3.
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As another application of Theorem 3 we give in §4 a detailed proof of
a result sketched by Cao and Zhai [12]; their earlier paper [10] covers the
narrower range 1 < c < 61

36 .

Theorem 4. For fixed c ∈
(
1, 14987

)
we have

(1.2) #{n ≤ x : bncc is squarefree} = 6

π2
x+O(x1−ε).

A third application of Theorem 3 is the following result, which is needed
for our proof of Theorem 1 and may be of independent interest; the proof is
given in §4.

Theorem 5. For fixed c ∈
(
1, 14987

)
the inequality∑

p≤xc
log p

∑
n≤x
p|bncc

1 > (c− ε)x log x

holds for all sufficiently large x.

A question that has not been previously considered is the following: for
which values of c is it true that one has

P (bncc) ≤ nε

for infinitely many n? In this paper, we show that this is the case whenever
(1.3) 1 < c < 24979

20803 = 1.2007 . . . .

More precisely, we prove the following result in §6.
Theorem 6. For any number c in the range (1.3) we have

#{n ≤ x : P (bncc) ≤ nε} � x1−ε.

Finally, we consider a problem connected with Carmichael numbers,
which are composite natural numbers N with the property that N | aN − a
for every a ∈ Z. The existence of infinitely many Carmichael numbers was
established in 1994 by Alford, Granville and Pomerance [2]. In §7 we adapt
the method of [2] to prove the following result.

Theorem 7. For every c ∈
(
1, 147145

)
there are infinitely many Carmichael

numbers composed entirely of primes from the set
P(c) = {p prime : p = bncc for some n ∈ N}.

We call the members of P(c) Piatetski-Shapiro primes. The proof of The-
orem 7 requires a considerable amount of information about the distribution
of Piatetski-Shapiro primes in arithmetic progressions. Here, we single out
one such result. Writing

π(x; d, a) = #{p ≤ x : p ≡ a mod d},
πc(x; d, a) = #{p ≤ x : p ∈P(c), p ≡ a mod d},

we establish the following result in §7.
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Theorem 8. Let a and d be coprime integers, d ≥ 1. For fixed c ∈ (1, 1817)
we have

πc(x; d, a) = γxγ−1π(x; d, a) + γ(1− γ)
x�

2

uγ−2π(u; d, a) du

+O(x17/39+7γ/13+ε).

We remark that, for each of the various results obtained in the present
paper, the admissible range of c depends on the quality of our bounds for
certain exponential sums; the particular type of exponential sum that is
needed varies from one application to the next.

2. Notation and preliminaries. As usual, for all t ∈ R we write

e(t) = e2πit, ‖t‖ = min
n∈Z
|t− n|, {t} = t− btc.

We make considerable use of the sawtooth function

ψ(t) = t− btc − 1
2 = {t} − 1

2

along with the well-known approximation of Vaaler [25]: there exist numbers
ch (0 < |h| ≤ H) and dh (|h| ≤ H) such that

(2.1)
∣∣∣ψ(t)− ∑

0<|h|≤H

che(th)
∣∣∣≤ ∑
|h|≤H

dhe(th), ch �
1

|h|
, dh �

1

H
.

We use the following basic exponential sum estimates several times.

Lemma 9. Let f be three times continuously differentiable on a subin-
terval I of (N, 2N ].

(i) Suppose that for some λ > 0, the inequalities

λ� |f ′′(t)| � λ (t ∈ I)

hold, where the implied constants are independent of f and λ. Then∑
n∈I

e(f(n))� Nλ1/2 + λ−1/2.

(ii) Suppose that for some λ > 0, the inequalities

λ� |f ′′′(t)| � λ (t ∈ I)

hold, where the implied constants are independent of f and λ. Then∑
n∈I

e(f(n))� Nλ1/6 +N3/4 +N1/4λ−1/4.

Proof. See Graham and Kolesnik [15, Theorems 2.2 and 2.6].
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Lemma 10. Fix c ∈ (1, 2), and put γ = 1/c. Let z1, z2, . . . be complex
numbers such that zk � kε. Then∑

k≤K
k=bncc

zk = γ
∑
k≤K

zkk
γ−1 +

∑
k≤K

zk(ψ(−(k + 1)γ)− ψ(−kγ)) +O(1).

Proof. The equality k = bncc holds precisely when k ≤ nc < k + 1, or
equivalently, when −(k + 1)γ ≤ −n < −kγ . Consequently,∑

k≤K
k=bncc

zk =
∑
k≤K

zk(b−kγc − b−(k + 1)γc)

=
∑
k≤K

zk((k + 1)γ − kγ) +
∑
k≤K

zk(ψ(−(k + 1)γ)− ψ(−kγ)).

The result now follows on applying the mean value theorem and taking into
account that

∑
k≤K |zk|kγ−2 � 1.

Lemma 11. (Erdős–Turán) Let t1, . . . , tK ∈ R, β ∈ (0, 1), and H ≥ 1.
Then

#{k ≤ K : {tk} ≤ β} −Kβ �
K

H
+
∑
h≤H

1

h

∣∣∣ K∑
k=1

e(tkh)
∣∣∣.

Proof. See Baker [4, Theorem 2.1].

We need a simple “decomposition result” for sums of the form∑
X<n≤X1

Λ(n)f(n),

where f is any complex-valued function, and X1 ∼ X. A Type I sum is a
sum of the form

SI =
∑
k∼K

∑
l∼L

X<kl≤X1

ak f(kl)

in which |ak| ≤ 1 for all k ∼ K. A Type II sum is a sum of the form

(2.2) SII =
∑
k∼K

∑
l∼L

X<kl≤X1

ak bl f(kl)

in which |ak| ≤ 1 and |bl| ≤ 1 for all (k, l) ∼ (K,L). The following result
can be derived from Vaughan’s identity (see Vaughan [26] or Davenport [13,
Chapter 15]).

Lemma 12. Suppose that every Type I sum with L � X2/3 satisfies the
bound

SI � B(X)
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and that every Type II sum with X1/3 � K � X1/2 satisfies the bound

SII � B(X).

Then ∑
X<n≤X1

Λ(n)f(n)� B(X)Xε.

A standard procedure for estimating Type II sums with functions of the
form f(n) = e(g(n)) can be derived from the proof of [15, Lemma 4.13].

Lemma 13. Let 1 < Q ≤ L. If f is a function of the form f(n) = e(g(n)),
then any Type II sum (2.2) satisfies

|SII |2 � X2Q−1 +XQ−1
∑

0<|q|<Q

∑
l∼L
|S(q, l)|,

where
S(q, l) =

∑
k∈I(q,l)

e(g(kl)− g(k(l + q)))

for a certain subinterval I(q, l) of (X,X1].

3. Exponential sums with monomials. Theorem 3 is proved via the
method of Cao and Zhai [11]. The upper bound in our theorem has nine
terms, whereas in [11, Theorem 6] the corresponding upper bound has four-
teen terms. Since Cao and Zhai omit the details of their optimization, we do
not know how our optimization differs from theirs.

For the proof, we require four general results from the literature, which
are reproduced here for the convenience of the reader; some other results are
quoted during the course of the proof.

Lemma 14. Let Y = (yk)k∼K and Z = (zl)l∼L be two sequences of com-
plex numbers with |yk| ≤ 1, |zl| ≤ 1. Let αk, βl ∈ C, and put

Sα,β(Y,Z) =
∑
k∼K

∑
l∼L

αk βl e(Bykzl).

Then
|Sα,β(Y,Z)|2 ≤ 20(1 +B)Sα(Y,B

−1)Sβ(Z,B
−1),

where

Sα(Y,B
−1) =

∑
k,k′∼K

|yk−yk′ |≤B−1

|αkαk′ | and Sβ(Z,B
−1) =

∑
l,l′∼L

|zl−zl′ |≤B−1

|βlβl′ |.

Proof. See Bombieri and Iwaniec [8, Lemma 2.4].

Lemma 15. Let α, β ∈ R with αβ 6= 0, and let K,L ≥ 1. Put

u(k, l) =
kαlβ

KαLβ
(k ∼ K, l ∼ L).
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Then for any C > 0 we have

#{(k, k̃, l, l̃ ) : k, k̃ ∼ K, l, l̃ ∼ L, |u(k, l)− u(k̃, l̃ )| ≤ C}
� KL log(2KL) +K2L2C.

Proof. See Fouvry and Iwaniec [14, Lemma 1].

Lemma 16. Let N,Q ≥ 1, and let Z = (zn)n∼N be a sequence of complex
numbers. Then∣∣∣∑

n∼N
zn

∣∣∣2≤ (2 + N

Q

) ∑
|q|≤Q

(
1− |q|

Q

) ∑
n:N<n±q≤2N

zn+qzn−q.

Proof. See [14, Lemma 2].

Lemma 17. Let

L(Q) =
J∑
j=1

CjQ
cj +

K∑
k=1

DkQ
−dk ,

where Cj , cj , Dk, dk > 0. Then

(i) For any Q ≥ Q′ > 0 there exists Q1 ∈ [Q′, Q] such that

L(Q1)�
J∑
j=1

K∑
k=1

(Cdkj D
cj
k )1/(cj+dk) +

J∑
j=1

Cj(Q
′)cj +

K∑
k=1

DkQ
−dk .

(ii) For any Q > 0 there exists Q1 ∈ (0, Q] such that

L(Q1)�
J∑
j=1

K∑
k=1

(Cdkj D
cj
k )1/(cj+dk) +

K∑
k=1

DkQ
−dk .

Proof. See [15, Lemma 2.4] for a proof of the first assertion; the second
assertion can be proved similarly.

Proof of Theorem 3. Let T1, . . . , T9 respectively denote the nine terms in
the bound of the theorem.

Applying [14, Theorem 3] we have the bound

SL −2 �M1/2N3/4F 1/4 +M7/10N +MN3/4 +M11/10NF−1/4,

where L = log(2MN). In the case of F ≤M2N1/2 it follows that

SL −2 � T2 + T8 + T9,

and the theorem is proved; thus, we suppose from now on that F ≥M2N1/2.
By Cauchy’s inequality we have

|S|2 ≤ N
∑

m1∼M1
m2∼M2

∣∣∣ ∑
m∼M

a(m)e(Amαmβ
1m

γ
2)
∣∣∣2.
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Let Q be a parameter (to be optimized later) such that 10 ≤ Q ≤ M1/3−ε.
Applying Lemma 16 to the inner sum, we obtain (after splitting the range
of q into dyadic subintervals)

(3.1) |S|2L −1 �M2N2Q−1 +MNQ−1Σ,

where
Σ =

∑
m1∼M1
m2∼M2

∑
m∼M
q1∼Q1

c(m, q1)e(t(m, q1)Am
β
1m

γ
2)

for some Q1 ∈
[
1
2 , Q

]
, with

c(m, q1) = a(m+ q1) a(m− q1),
t(m, q1) = (m+ q1)

α − (m− q1)α.
Note that |c(m, q1)| ≤ 1 for all (m, q1) ∼ (M,Q1).

Next, we put Q2 = Q2
1 and again apply Cauchy’s inequality, Lemma 16

and a dyadic splitting argument to derive the bound

(3.2) L −1Σ2 �M2N2Q2
1Q
−1
2 +MNQ1Q

−1
2 Σ1 =M2N2 +MNQ−11 Σ1,

where
Σ1 =

∑
m1∼M1
m2∼M2

∑
m∼M
q1∼Q1
q2∼Q∗2

c(m, q1, q2)e(t(m, q1, q2)Am
β
1m

γ
2)

for some Q∗2 ∈
[
1
2 , Q2

]
, with

c(m, q1, q2) = c(m+ q2, q1) c(m− q2, q1),
t(m, q1, q2) = t(m+ q2, q1)− t(m− q2, q1).

Note that |c(m, q1, q2)| ≤ 1 for all (m, q1, q2) ∼ (M,Q1, Q2).
We now partition the sum Σ1. To do this, we put

Qa = min{Q1, Q
∗
2} and Qb = max{Q1, Q

∗
2}.

Let f be the function defined by

f(q1, q2) = (q1q
α−1
2 )1/(α−2),

and let c′ > c > 0 be suitable constants (depending only on α) such that the
interval

I = [c f(Qa, Qb), c
′ f(Qa, Qb)]

contains all numbers of the form f(q1, q2) with (q1, q2) ∼ (Qa, Qb). Let η be
selected from the range

(3.3) max{Q2
aQ
−2
b , 3LQ−1a Q−1b } ≤ η ≤ c

′/c− 1.

Let ak = (1 + η)k c f(Qa, Qb) and Ik = [ak, (1 + η)ak] for 0 ≤ k ≤ K, where

K =

⌊
log(c′/c)

log(1 + η)

⌋
.
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Note that K � η−1 for all η satisfying (3.3). Since t(m, q1, q2) = t(m, q2, q1)
we have

Σ1 =
∑

0≤k≤K

∑
(q1,q2)∼(Qa,Qb)
f(q1,q2)∈Ik

∑
m∼M
m1∼M1
m2∼M2

e(t(m, q1, q2)Am
β
1m

γ
2).

Let Dk be the number of 6-tuples

(m, m̃, q1, q̃1, q2, q̃2) ∼ (M,M,Qa, Qa, Qb, Qb)

such that f(q1, q2) and f(q̃1, q̃2) lie in Ik and

|t(m, q1, q2)− t(m̃, q̃1, q̃2)| �
1

|A|Mβ
1M

γ
2

,

and let E be the number of 4-tuples (m1, m̃1,m2, m̃2) ∼ (M1,M1,M2,M2)
such that

|mβ
1m

γ
2 − m̃

β
1m̃

γ
2 | �

1

|A|Mα−2Q1Q∗2
.

An application of Lemma 14 for each value of k (taking B � M−2FQ1Q
∗
2

and using the fact that F ≥M2N1/2) yields the bound

Σ1 � (M−2FQ1Q
∗
2E)1/2

∑
0≤k≤K

D
1/2
k .

Using Cauchy’s inequality again we have

(3.4) Σ2
1 �M−2FQ1Q

∗
2Eη

−1
∑

0≤k≤K
Dk.

First assume that α 6= 3.
If Qb > QaM

ε/4 we are in a position to apply [11, Theorem 2]; the
conditions Qb ≤ M1−ε and QaQb ≤ M3/2−ε are certainly satisfied. For a
suitably chosen η satisfying (3.3) we obtain the bound

(3.5) M−εη−1
∑

0≤k≤K
Dk � B1,

where

B1 =MQaQb +M4F−1QaQb +M1/4Q7/4
a Q

9/4
b +M−2Q4

aQ
4
b

+M3/4F−1/8Q7/4
a Q2

b +M3F−1/2Qa +Q13/6
a Q

5/2
b

+MF−1/4Q7/4
a Q

9/4
b +M−1/2Q5/2

a Q3
b .

In the case that Qb ≤ QaM
ε/4 we apply [11, Theorem 1] with the choices

K = 0 and η = c′/c. Since the condition Qb ≤ M2/3−ε is clearly satisfied,
we see that

M−ε/2η−1D0 �M−ε/2D0 �MQaQb+M
4QaQbF

−1+M−2Q2
aQ

6
b+Q

2
aQ

8/3
b .
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Since

M−2Q2
aQ

6
b ≤M−2Q4

aQ
4
b ·M ε/2 and Q2

aQ
8/3
b ≤ Q13/6

a Q
5/2
b ·M ε/2,

we obtain (3.5) in this case as well.
Since Qa ≤ Q1 and Qb ≤ Q2 = Q2

1 we find that

(3.6) M−εη−1
∑

0≤k≤K
Dk � B2,

where

B2 =MQ3
1 +M4F−1Q3

1 +M1/4Q
25/4
1 +M−2Q12

1 +M3/4F−1/8Q
23/4
1

+M3F−1/2Q1 +Q
43/6
1 +MF−1/4Q

25/4
1 +M−1/2Q

17/2
1 .

We now notice that for α = 3 we have t(m, q1, q2) = 24mq1q2, so the
bound (3.6) is immediate in this case.

To bound E we use Lemma 15 to derive that

(3.7) E � NL +
M2N2

FQ1Q∗2
.

Combining (3.4), (3.6) and (3.7) leads to

M−2εΣ2
1 �M−2FQ1Q

∗
2(N+M2N2/(FQ1Q

∗
2))B2 ≤ (M−2NFQ3

1+N
2)B2.

Taking into account (3.2) we see that

M−3εΣ4 �M4N4 +M2N2Q−21 ·M
−2εΣ2

1

�M4N4 + (FN3Q1 +M2N4Q−21 )B2.

In the last expression only one term has a negative exponent of Q1, namely,

(M2N4Q−21 )(M3F−1/2Q1)�M5N4F−1/2;

in the other terms, we replace Q1 by Q. In view of (3.1) we derive the bound

|S|8M−4ε �M8N8Q−4 +M4N4Q−4 ·M−3εΣ4

�M8N8Q−4 +M5N7F +M8N7 +M17/4N7FQ13/4

+M2N7FQ9 +M19/4N7F 7/8Q11/4 +M7N7F 1/2Q−2

+M4N7FQ25/6 +M5N7F 3/4Q13/4 +M7/2N7FQ11/2

+M7N8Q−3 +M10N8F−1Q−3 +M25/4N8Q1/4

+M4N8Q6 +M27/4N8F−1/8Q−1/4 +M9N8F−1/2Q−4

+M6N8Q7/6 +M7N8F−1/4Q1/4 +M11/2N8Q5/2

= U1 + · · ·+ U19 (say).

Because F ≥M2 and Q ≤M1/3, we can discard U15 and U18 in view of
the term M5/6N in the bound of Theorem 3. Collecting terms for which the
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exponent of F is 1, we use Q ≤M1/3 to eliminate U5 and U10:

U5 ≤ U2 and U10 ≤ U8.

Collecting terms in which F is absent, we use Q ≤ M1/3 to eliminate U11,
U13, U14, U17 and U19:

max{U11, U13, U14, U17, U19} ≤ U1.

We can also discard the term U16 since the bound U16 � U1 follows from
the inequalities F ≥M2 and Q ≥ 1

2 . Finally, the term U12 can be eliminated
as the inequality F ≥M2N1/2 implies that

U12 =M10N8F−1Q−3 ≤ (M8N8Q−4)1/2(M7N7F 1/2Q−2)1/2 = (U1U7)
1/2.

After eliminating these terms, we are left with the bound

|S|8M−4ε �M4N7FQ25/6 + (M17/4N7F +M5N7F 3/4)Q13/4

+M19/4N7F 7/8Q11/4 +M5N7F +M8N7

+M7N7F 1/2Q−2 +M8N8Q−4.

Now we apply Lemma 17 to derive that

|S|8M−4ε �M5N7F +M8N7 +M223/37N7F 49/74

+M296/49N368/49F 24/49 +M131/21N7F 25/42

+M184/29N216/29F 12/29 +M125/21N7F 29/42

+M172/29N216/29F 16/29 +M115/19N7F 25/38

+M164/27N200/27F 14/27 +M4N7F +M5N7F 3/4

+M17/4N7F +M19/4N7F 7/8 +M19/3N7F 1/2 +M20/3N8

= V1 + · · ·+ V16 (say).

We can discard half of these terms using the following facts:

(i) V3 ≤ (V 52
1 V 22

2 V 703
9 )1/777;

(ii) V5 = V
2/21
2 V

19/21
9 ;

(iii) V7 = V
2/21
1 V

19/21
9 ;

(iv) max{V11, V12, V13, V14} ≤ V1;
(v) V15 ≤ V 1/2

1 V
1/2
2 .

Therefore, we arrive at the bound

|SI |8M−4ε � V1 + V2 + V4 + V6 + V8 + V9 + V10 + V16

= T 8
1 + T 8

2 + T 8
3 + T 8

4 + T 8
5 + T 8

6 + T 8
7 + T 8

8 ,

as required.
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4. On the divisibility of bncc by squares. The following proposition
is needed for the proofs of Theorems 4 and 5.

Proposition 18. Fix c ∈
(
1, 14987

)
. Let 1 ≤ D ≤ xc/2, and let (zd)d∼D

be a sequence of complex numbers such that zd � log d. Then

(4.1)
∑
d∼D

zd
∑
n≤x
d2|bncc

1 = x
∑
d∼D

zd
d2

+O(x1−ε).

Proof. First, suppose that D ≤ x2−c−6ε. Let Sd be the inner sum on the
left-hand side of (4.1). By the argument used to prove Lemma 10, we see
that

Sd =
∑

l≤xc/d2
(b−(d2l)γc − b−(d2l + 1)γc) +O(1)

=
∑

l≤xc/d2
((d2l + 1)γ − (d2l)γ)−

∑
l≤xc/d2

ψ(−(d2l)γ)

+
∑

l≤xc/d2
ψ(−(d2l + 1)γ) +O(1).

The mean value theorem yields the estimate∑
l≤xc/d2

((d2l + 1)γ − (d2l)γ) = γdγ−2
∑

l≤xc/d2
lγ−1 +O(1) =

x

d2
+O(1)

(see, e.g., LeVeque [21, pp. 138–139] for the last step). Hence, to finish the
proof in this case it suffices to show that the bound

(4.2)
∑

l≤xc/d2
ψ(−d2γ(l + ξ)γ)� D−1x1−2ε

holds uniformly for 0 ≤ ξ < 1. Applying [10, Lemma 3] with κ = λ = 1
2 , the

left-hand side of (4.2) is∑
l≤xc/d2

ψ(−d2γ(l + ξ)γ)� d2γ/3(xc/d2)(1+γ)/3 + d−2γ(xc/d2)1−γ

� D−2/3x(c+1)/3 +D−2x1−γ � D−1x1−2ε,

where we have used the inequality D ≤ x2−c−6ε in the last step.
Next, we consider the case D ≥ x2−c−6ε. It suffices to show that the sum

(4.3) S(D,L) =
∑
d∼D

∑
l∼L

(b−(d2l)γc − b−(d2l + 1)γc)

satisfies the bound
S(D,L)� x1−3ε
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uniformly for all L ≥ 1, D2L ≤ xc. Noting that the summand in (4.3) is
always either 0 or 1, and it is 0 whenever

{−(d2l)γ} > (d2l + 1)γ − (d2l)γ ,

an application of Lemma 11 yields the bound

S(D,L) ≤
∑
d∼D

∑
l∼L

{−(d2l)γ}≤(D2L)γ−1

1

� DL(D2L)γ−1 +
DL

H1
+
∑
h≤H1

1

h

∣∣∣∑
d∼D

∑
l∼L

e(h(d2l)γ)
∣∣∣

for any number H1 ≥ 1; we choose H1 = DLx−1+3ε. Since

DL(D2L)γ−1 = D−1(D2L)γ � D−1x� x1−3ε,

we need only show that for 1
2 ≤ H < H1 and any sequence (bh)h∼H of

complex numbers with |bh| ≤ 1, the following bound holds uniformly:

(4.4) S∗ =
∑
h∼H

bh
∑
d∼D

∑
l∼L

e(h(d2l)γ)� Hx1−3ε.

If it is the case that D > x2c−3+16ε we can deduce (4.4) from Robert and
Sargos [24, Theorem 3], which yields

(4.5) S∗ � xεDLH

((
F

DL2H

)1/4

+ L−1/2 + F−1
)
,

where

(4.6) F = H(D2L)γ ≤ Hx.

The second and third summands in (4.5) are easily dispatched. Indeed,

DL1/2Hxε � Hxc/2+ε � Hx1−3ε,

and

(4.7) DLHF−1xε � (D2L)1−γxε � xc−1+ε � Hx1−3ε.

Taking into account (4.6) and the inequality D > x2c−3+16ε, we have for the
first summand in (4.5):

DLH

(
F

DL2H

)1/4

xε = (D2L)1/2D−1/4H3/4F 1/4xε

≤ (xc)1/2(x2c−3+16ε)−1/4H3/4(Hx)1/4xε = Hx1−3ε,

which gives (4.4) and finishes the proof in this case.
We treat the remaining case x2−c−6ε < D ≤ x2c−3+16ε using Theorem 3.

Let η � 1 be a real number such that for F ≤ ηL the derivative of the
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function l 7→ h(d2l)γ has absolute value at most 1/2 for h ∼ H, d ∼ D. If
F ≤ ηL, the Kuz’min–Landau inequality (cf. [15, Theorem 2.1]) gives

S∗ � DLHF−1,

and the proof is completed using the estimate (4.7). Now suppose that
F ≥ ηL. We apply the B-process to the sum over l in S∗. Following the
argument that yields [24, (6.10)] we have

S∗ � L

F 1/2

1/2�

−1/2

∣∣∣∣ ∑
h∼H

∑
d∼D

∑
V <ν≤V1

e(νt)e

(
Y hβdγνα

HβDγV α

)∣∣∣∣min{L, |t|−1} dt

+DLHF−1/2 +DH logD,

where

V � V1 � F/L, Y � F, β =
1

1− γ
, γ =

2γ

1− γ
, α =

γ

1− γ
.

It is easy to see that

DLHF−1/2 = D−1(D2L)1−γ/2H1/2 � H1/2x2c−5/2+6ε

since D2L ≤ xc and D > x2−c−6ε, and that

DH logD � Hx2c−3+17ε

since D ≤ x2c−3+16ε. Taking into account that c < 7
4 we obtain the bound

DLHF−1/2 +DH logD � Hx1−3ε,

which is acceptable with regard to (4.4). To bound the integrand above, we
apply Theorem 3 pointwise with (F/L,DH) instead of (M,N); as a result,
it suffices to show that

(F/L)5/8(DH)7/8F 1/8 + · · ·+ (F/L)11/10(DH)F−1/4 � (F 1/2/L)Hx1−4ε.

Replacing F by H(D2L)γ , we now obtain nine separate bounds of the
form

(4.8) DrLsHt(D2L)γu � xv−Cε,

where C is a positive constant (not necessarily the same at each occurrence)
and the numbers r, t, s, u, v satisfy

t ≥ 0, s+ t ≥ 0, u ≥ 0, r ≥ 2s+ t.

Indeed, using the inequalitiesH≤DLx−1+3ε,D2L≤xc, andD≤ |!x2c−3+16ε,
the left-hand side of (4.8) is

DrLsHt(D2L)γu ≤ Dr+tLs+t(D2L)γux−t+3tε

= Dr−2s−t(D2L)s+t+γux−t+3tε

≤ (x2c−3+16ε)r−2s−t(xc)s+t+γux−t+3tε � xv−Cε
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provided that

(2c− 3)(r − 2s− t) + c(s+ t) < t− u+ v.

This leads to the bound

c < min{74 ,
19
11 ,

149
87 ,

12
7 ,

85
49 ,

163
95 ,

71
39} =

149
87 ,

and the proof is complete.

Proof of Theorem 4. Using Proposition 18 and a dyadic splitting argu-
ment, the left-hand side of (1.2) is equal to∑

n≤x

∑
d2|bncc

µ(d) =
∑

d≤xc/2
µ(d)

∑
n≤x

bncc≡0mod d2

1 = x
∑

d≤xc/2

µ(d)

d2
+O(x1−ε).

The theorem then follows by extending the series to infinity.

Next, we turn to the proof of Theorem 5, which eliminates pk with k ≥ 2
from a Chebyshev-style approach to establishing a lower bound for P (bncc).

Proof of Theorem 5. Clearly,

(4.9)
∑
n≤x

logbncc ∼ cx log x.

The left-hand side of (4.9) may also be written as∑
n≤x

∑
d|bncc

Λ(d) =
∑
d≤xc

Λ(d)
∑
n≤x
d|bncc

1 =
∑
p≤xc

log p
∑
n≤x
p|bncc

1 + E

where

0 ≤ E ≤
∑

k≥2, p≤xc/k
log p

∑
n≤x

p2bk/2c|bncc

1 =
∑
d≤xc

ad
∑
n≤x
d2|bncc

1.

Here,
ad =

∑
k≥2, p≤xc/k
pbk/2c=d

log p ≤ 2 log d (d ≤ xc).

By Proposition 18 we have E � x, and Theorem 5 follows immediately.

5. Large prime factors of bncc

Proof of Theorem 1 for c ∈
(
24979
20803 ,

5
3

)
. Let δ = ε2. We show that

(5.1)
∑

p≤xθ(c)−δ
log p

∑
n≤x
p|bncc

1 ≤ (θ(c) +O(ε))x log x
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for all large x. In conjunction with Theorem 5 this establishes that there
is a positive proportion of natural numbers n ≤ x divisible by some prime
p ≥ xθ(c)−δ; thus, P (n) > nθ(c)−δ for such n.

We cover [1, xθ(c)−ε] with O(log x) abutting intervals of the form

ID = [D, (1 + ε)D]

with 1 ≤ D ≤ xθ(c)−ε. For each D we cover [1, xc/D] with O(log x) abutting
intervals of the form

JL = [L, (1 + ε)L]

with 1 ≤ L ≤ xc/D. As in the proof of Lemma 10, the double sum in (5.1)
is

(5.2)
∑

p≤xθ(c)−ε
log p

∑
l≤xc/p

(b−(pl)γc − b−(pl + 1)γc) +O(xθ(c)−ε).

Arguing as we did after (4.3), the contribution to (5.2) from the pairs (p, l)
that lie in ID × JL is at most

WD,L(logD)(DL)γ−1(γ+O(ε))+O

(
WD,L

H1
+
∑
h≤H1

1

h

∣∣∣ ∑
(p,l)∈ID×JL

e(h(pl)γ)
∣∣∣),

where
H1 = DLx−1+δ and WD,L = #{(p, l) ∈ ID × JL}.

Now∑
D,L

WD,L(logD)(DL)γ−1(γ +O(ε))

≤ (1 +O(ε))
∑

p≤xθ(c)−δ
log p

∑
l≤xc/p

γ(pl)γ−1

≤ (1 +O(ε))x
∑

p≤xθ(c)−δ

log p

p

≤ (θ(c) +O(ε))x log x.

Hence it suffices to show that for any pair (D,L), any number H ∈ [1, H1],
and any sequence (ah)h∼H of complex numbers with |ah| ≤ 1, the following
bound holds uniformly:

S∗ =
∑
h∼H

ah
∑

(p,l)∈ID×JL

e(h(pl)γ)� Hx1−δ.

We consider three separate cases.

Case 1: c ∈
[
243
205 ,

112
87

)
. We use [24, Theorem 3] to obtain the bound

(5.3) S∗ � xδDLH

((
F

DL2H

)1/4

+ L−1/2 + F−1
)
.
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Here we write
F = H(DL)γ ≤ Hx.

The last two terms in (5.3) are handled easily, for

xδDL1/2H � xc/2+δD1/2H � Hx1−δ

since D � x2−c−4δ, whereas

xδDLHF−1 = xδ(DL)1−γ � xc−1+δ � Hx1−δ.

For the first summand, we have

xδDLH

(
F

DL2H

)1/4

= xδ(DL)1/2D1/4H3/4F 1/4

≤ xδ(xc)1/2(x3−2c−ε)1/4H3/4(Hx)1/4 � Hx1−δ

since D ≤ x3−2c−ε. This completes the proof in Case 1.

Now suppose c ≥ 112
87 . Before separating the argument further, we observe

that (using the Kuz’min–Landau inequality as in the proof of Proposition 18)
it suffices to consider the case that F ≥ ηL for an appropriate constant η � 1.
Following the argument that gives [24, (6.10)] we have

S∗ � L

F 1/2

1/2�

−1/2

∣∣∣∣∑
h∼H

∑
d∼D

∑
V <ν≤V1

e(νt)e

(
Y hβdανα

HβDαV α

)∣∣∣∣min{L, |t|−1} dt(5.4)

+DLHF−1/2 +DH logD,

where
V � V1 � F/L, Y � F, β =

1

1− γ
, α =

γ

1− γ
.

Since F � L it is clear that

DLHF−1/2 +DH logD � DL1/2Hxδ ≤ D1/2Hxc/2+δ

≤ Hx(θ(c)+c)/2+δ � Hx1−δ,

thus it only remains to bound the integral in (5.4). We group the variables
h, d, ν differently in the next two cases.

Case 2: c ∈
[
112
87 ,

160
117

)
. To bound the integrand, we apply Theorem 3

pointwise with (M,M1,M2) replaced by (D,H,F/L), and thus it suffices to
verify that

D5/8N7/8F 1/8 + · · ·+D11/10NF−1/4 � (F 1/2L−1)Hx1−2δ.

Since F = H(DL)γ and N =M1M2 = H2(DL)γL−1, this gives rise to nine
upper bounds of the form

(5.5) DrLsHt(DL)γu � xv−Cδ,
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where C is a positive constant (not necessarily the same at each occurrence)
and the numbers r, s, t, u, v satisfy

t ≥ 0, s+ t ≥ 0, u ≥ 0, r ≥ s.
Using the inequalities H ≤ DLx−1+δ and DL ≤ xc, we see that the left-hand
side of (5.5) is

≤ Dr+tLs+tx−t+u+tδ = Dr−s(DL)s+tx−t+u+tδ ≤ Dr−sxc(s+t)−t+u+tδ;

therefore, (5.5) holds provided that

(5.6) D ≤ x(v+t−u−c(s+t))/(r−s)−ε.
Taking all nine bounds into account, we must have D ≤ xθ1(c)−ε, where
θ1(c)=min

{
7−4c
4 , 7−3c7 , 92−49c68 , 54−28c42 , 54−29c39 , 266−139c192 , 100−53c74 , 6−3c5 , 20−5c22

}
.

After a simple computation one verifies that

θ1(c) =
92−49c

68 = θ(c) for all c ∈
[
112
87 ,

160
117

)
,

so this completes the proof in Case 2.

Case 3: c ∈
[
160
117 ,

5
3

)
. We proceed just as in Case 2 but with the roles ofD

and H interchanged, i.e., we apply Theorem 3 pointwise with (M,M1,M2)
replaced by (H,D,F/L), and we have N = M1M2 = DH(DL)γL−1. We
obtain nine new bounds of the form (5.6) with different values of r, s, t, u, v,
and this leads to the requirement that D ≤ xθ2(c)−ε, where
θ2(c) = min

{
5−2c
6 , 8−4c6 , 74−31c86 , 46−20c50 , 43−18c50 , 230−103c228 , 82−35c92 , 22−7c20

}
.

After a calculation, one verifies that θ2(c) = θ(c) for all c ∈
[
160
117 ,

5
3

)
. This

completes the proof in Case 3 and finishes the proof of Theorem 1 for values
of c in the interval

[
24979
20803 ,

5
3

)
.

Not far to the right of c = 8
5 , it becomes more efficient to estimate the

exponential sum ∑
n∼N

e

(
hnc

q

)
in order to give a good lower bound for P (bncc). We use this approach for
values of c ≥ 5

3 .

Proposition 19. Uniformly over all integers a we have:

(a) Fix c ∈
(
3
2 , 2
)
. For any natural number q ≤ N (3−c)/6−3ε we have

(5.7) #{n ∼ N : bncc ≡ a mod q} = N

q
+O

(
N1−ε

q

)
.

(b) There exists a constant β > 0 with the property that for any fixed
c > 2, c 6∈ Z, the estimate (5.7) holds for any natural number
q ≤ Nβ/c2.
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From Proposition 19 we derive the following corollary, which establishes
Theorem 1 for any c ∈

[
5
3 , 2
)
and also establishes Theorem 2.

Corollary 20. Let

θ3(c) =

{
(3− c)/6 if 5

3 ≤ c < 2,
β/c2 if c > 2, c 6∈ Z.

Then

(5.8) P (bncc) > nθ3(c)−ε

for infinitely many n.

Proof. Let p be a prime in the interval
[
1
2N

θ3(c)−ε/2, Nθ3(c)−ε/2
]
. Apply-

ing Proposition 19 with ε/6 in place of ε, the number of n ∼ N for which
p | bncc is � N/p � N1−θ3(c)+ε/2 for all large N , and (5.8) holds for every
such n.

Lemma 21. There is a constant b ∈ (0, 1) such that for any c > 2, c 6∈ Z,
the bound ∑

n∼N
e(αnc)� N1−b/c2

holds uniformly for all α such that N−c/2 ≤ |α| ≤ N c/2, where the implied
constant depends only on c.

Proof. This is a special case of Karatsuba [20, Theorem 1]; see also
Brüdern and Perelli [9, Lemma 10]. One can adapt the work of Baker and
Kolesnik [7] to give an explicit value for b; an even larger value for b would
follow by incorporating the recent work of Wooley [27].

Proof of Proposition 19. The condition bncc ≡ a mod q is equivalent to

(5.9)
a

q
≤
{
nc

q

}
<
a+ 1

q
.

According to Lemma 11, the number of n ∼ N for which (5.9) holds is
N

q
+O

(
N1−ε

q

)
+O

( ∑
1≤h≤qNε

∣∣∣∣∑
n≤N

e

(
hnc

q

)∣∣∣∣).
Thus, to deduce (a) it suffices show that the bound

(5.10)
∑
n≤N

e

(
hnc

q

)
� N1−2ε

q
(1 ≤ h ≤ qN ε)

holds for any q ≤ N (3−c)/6−3ε. We apply Lemma 9(ii) with λ � hN c−3q−1,
which gives∑

n≤N
e

(
hnc

q

)
� N

q
(h1/6q5/6N (c−3)/6 + qN−1/4 + h−1/4q5/4N−c/4).
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Taking into account the following bounds, which are valid for any c ∈
(
3
2 , 3
)
:

h1/6q5/6N (c−3)/6 ≤ qN (c−3)/6+ε ≤ N−2ε,
qN−1/4 ≤ N1/4−c/6−3ε ≤ N−2ε,
h−1/4q5/4N−c/4 ≤ q5/4N−c/4 ≤ N5/8−11c/24−2ε ≤ N−2ε,

we finish the proof of (a).
For part (b), choose any positive β < min{1, b}, where b is the constant

of Lemma 21. We must prove (5.10) for any q ≤ Nβ/c2 . Clearly, if ε > 0 is
sufficiently small we have

N−c/2 ≤ N−β/c2 ≤ h

q
≤ N ε ≤ N c/2,

and by Lemma 21 it follows that∑
n≤N

e

(
hnc

q

)
� N1−b/c2 � N1−2ε

q

which completes the proof of (b).

6. Smooth values of bncc. The proof of Theorem 6 is based on the
following result which we prove by adapting Heath-Brown [17].

Proposition 22. Fix c ∈
(
1, 2497920803

)
. Let (ak)k∈N be a bounded sequence

of non-negative numbers for which

(6.1)
∑
k∼K

ak �
K

logK

for all large K ≤ 1
2x. Put

K = xc−1+6ε, L = 1
5x

1−6ε, R(n) =
∑

(k,l)∼(K,L)
kl=bncc

akal.

Then ∑
n≤x

R(n)� x1−ε.

Proof. In view of Lemma 10 we have∑
n≤x

R(n) = T0 + T1 +O(1),

where
T0 = γ

∑
(k,l)∼(K,L)

akal(kl)
γ−1 � (KL)γ−ε � x1−ε
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from (6.1), whereas

T1 =
∑

(k,l)∼(K,L)

akal(ψ(−(kl + 1)γ)− ψ(−(kl)γ)).

Hence, it suffices to show that T1 � x1−2ε.
Using (2.1) and writing ψ∗(t) =

∑
0<|h|≤H che(th), ykl = −(kl + 1)γ ,

zkl = −(kl)γ , we see that T1 � S1 + S2 + S3, where

S1 =
∣∣∣ ∑
(k,l)∼(K,L)

akal(ψ
∗(ykl)− ψ∗(zkl))

∣∣∣,
S2 =

∑
|h|≤H

dh
∑

(k,l)∼(K,L)

e(hykl),

and S3 is defined as S2 with zkl instead of ykl. We choose H = xc−1+ε, so
that the contribution to S2 + S3 from h = 0 is O(KLH−1) = O(x1−ε).

To bound the contribution to S2+S3 for non-zero h, we use the exponent
pair

(
1
2 ,

1
2

)
for the sum over l and treat the sums over k, h trivially. For

example, ∣∣∣∣ ddt(h(kt+ 1)γ)

∣∣∣∣ � |h|(xc)γ−1K = |h|x6ε.

Since x6ε � |h|x6ε � xc−1+7ε for any c < 2 we have∑
k∼K

∣∣∣∑
l∼L

e(hykl)
∣∣∣� KL1/2(xc−1+7ε)1/2 � x3c/2−1+7ε � x1−ε.

The sum S1 is treated using a partial summation argument given in
Heath-Brown [18] with R(n) replacing Λ(n). It suffices to show that∑

h≤H
εh

∑
B<n≤B1

R(n)e(hnγ)� Bx−ε,

where B = KL, B1 is an arbitrary number in (B, 4B], and |εh| = 1 for
each h. We can rewrite this as∑

h≤H
εh
∑
k∼K

ak
∑

B/k<l≤B1/k

ale(h(kl)
γ)� Bx−ε.

By a standard technique (explained, e.g., in Harman [16, §3.2]) we need only
show that the bound

S =
∑
h∼H′

εh
∑
k∼K

bk
∑
l∼L

cle(h(kl)
γ)� KLx−2ε

holds whenever H ′ ≤ H, |bk| ≤ 1, |cl| ≤ 1. We use Baker [5, Theorem 2]. It is
easy to check the hypothesisX � L1L2 holds with the choiceX = H ′(KL)γ ,
L1 = H ′, and L2 = K; hence, for any exponent pair (κ, λ) we derive that

S � ((H ′K)1/2L+ (HK)
2+κ
2+2κ (H ′KγLγ)

κ
2+2κL

1+κ+λ
2+2κ ) log x.
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Examining the ‘worst’ case in the proof of [5, Theorem 2] leads us to choose
the exponent pair (see [19])

(κ, λ) = BA4
(

32
205 + ε, 12 + 32

205 + ε
)
=
(
3843
8480 ,

4304
8480

)
+O(ε).

Noting that the bound

(HK)1/2L log x� KLx−2ε

follows from the identity H = Kx−5ε, it remains to show that

HK
2+κ
2+2κ (KγLγ)

κ
2+2κL

1+κ+λ
2+2κ log x� KLx−2ε.

Recalling our choices of K, L and H, we are led to the bound

(2 + κ)(c− 1) < 1− λ, or c < 24979
20803 .

Proposition 22 immediately yields the following result.

Corollary 23. For any fixed c ∈
(
1, 2497920803

)
:

(a) for at least C0x
1−ε natural numbers n ≤ x one has P (bncc) ≤ nε,

(b) for at least C0x
1−ε natural numbers n ≤ x one has P (bncc) ≥ n2−c−ε,

where C0 > 0 depends only c and ε.

The reader can easily obtain Corollary 23 by taking (ak)k∈N to be the
indicator function either of the integers with P (k) ≤ xε/2, or of the prime
numbers. Note that assertion (b) completes the proof of Theorem 1 for values
of c in the interval

[
243
205 ,

24979
20803

)
.

7. Carmichael numbers composed of Piatetski-Shapiro primes.
Our first goal is to establish two preliminary lemmas that are needed for an
application of Lemma 12 with the function

f(x) = e(mxγ + xh/d),

where m,h, d ∈ N. In what follows, we suppose that 1 < N < N1 ≤ 2N .

Lemma 24. Suppose |ak|≤1 for all k∼K. Fix γ∈(0, 1) and m,h, d∈N.
Then for any L� N2/3 the Type I sum

SI =
∑
k∼K

∑
l∼L

N<kl≤N1

ake(mk
γlγ + klh/d)

satisfies the bound

SI � m1/2N1/3+γ/2 +m−1/2N1−γ/2.

Proof. Writing F (l) = mkγlγ + klh/d we see that

|F ′′(l)| = mγ(1− γ)kγlγ−2 � mKγLγ−2 (l ∼ L).
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Using Lemma 9 leads to∑
l∼L

N<kl≤N1

e(mkγlγ + klh/d)� m1/2Kγ/2Lγ/2 +m−1/2K−γ/2L1−γ/2.

Since |ak| ≤ 1 for all k ∼ K we see that

SI ≤
∑
k∼K

∣∣∣ ∑
l∼L

N<kl≤N1

e(mkγlγ + klh/d)
∣∣∣

� m1/2K1+γ/2Lγ/2 +m−1/2K1−γ/2L1−γ/2.

Noting that KL � N (else the result is trivial) and so K � N1/3, we finish
the proof.

Lemma 25. Suppose |ak| ≤ 1 and |bl| ≤ 1 for (k, l) ∼ (K,L). Fix γ ∈
(0, 1) and m,h, d ∈ N. Then for any K in the range N1/3 � K � N1/2 the
Type II sum

SII =
∑
k∼K

∑
l∼L

N<kl≤N1

ak bl e(mk
γlγ + klh/d)

satisfies the bound

SII � m−1/4N1−γ/4 +m1/6N7/9+γ/6 +N11/12.

Proof. We can assume that KL � N . By Lemma 13 we have

(7.1) |SII |2 � K2L2Q−1 +KLQ−1
∑
l∼L

∑
0<|q|≤Q

|S(q; l)|,

where

S(q;n) =
∑

k∈I(q;l)

e(F (k)), F (k) = mkγ(lγ − (l + q)γ)− kqh/d,

and each I(q;n) is a certain subinterval in the set of numbers k ∼ K. Since

|F ′′(k)| = mγ(1− γ)kγ−2((l + q)γ − lγ) � mKγ−2Lγ−1q (k ∼ K),

it follows from Lemma 9 that

S(q; l)� K(mKγ−2Lγ−1q)1/2 + (mKγ−2Lγ−1q)−1/2.

Inserting this bound in (7.1) and summing over l and q, we derive that

|SII |2 � K2L2Q−1 +m1/2K1+γ/2L3/2+γ/2Q1/2

+m−1/2K2−γ/2L5/2−γ/2Q−1/2

� N2Q−1 +m1/2K−1/2N3/2+γ/2Q1/2

+m−1/2K−1/2N5/2−γ/2Q−1/2,
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where we used the fact that KL � N in the second step. Since the above
holds whenever 0 < Q ≤ L, an application of Lemma 17 gives

|SII |2 � KN +m−1/2N2−γ/2 +m1/3K−1/3N5/3+γ/3 +K−1/2N2.

Finally, for K in the range N1/3 � K � N1/2 we arrive at the bound

|SII |2 � m−1/2N2−γ/2 +m1/3N14/9+γ/3 +N11/6,

and the result follows.

For any coprime integers a and d ≥ 1, we denote by P
(c)
d,a the set of

Piatetski-Shapiro primes in the arithmetic progression a mod d; that is,

P
(c)
d,a = {p ≡ a mod d : p = bncc for some n ∈ N}.

Our next goal is to estimate the counting functions

πc(x; d, a) = #{p ≤ x : p ∈P
(c)
d,a} and ϑc(x; d, a) =

∑
p≤x

p∈P
(c)
d,a

log p

in terms of the more familiar functions

π(x; d, a) = #{p ≤ x : p ≡ a mod d} and ϑ(x; d, a) =
∑
p≤x

p≡amod d

log p.

By Lemma 10 we have

πc(x; d, a) = Σ1(x) +Σ2(x) +O(1),

where

Σ1(x) = γ
∑
p≤x

p≡amod d

pγ−1, Σ2(x) =
∑
p≤x

p≡amod d

(ψ(−(p+ 1)γ)− ψ(−pγ)).

Using partial summation one sees that

Σ1(x) = γxγ−1 π(x; d, a)− γ(γ − 1)

x�

2

uγ−2 π(u; d, a) du.

Next, we turn our attention to Σ2(x). We begin by considering sums of the
form

(7.2) S =
∑

N<n≤N1
n≡amod d

Λ(n)(ψ(−(n+ 1)γ)− ψ(−nγ)).

Arguing as in [15, pp. 47–49], for any real number M ≥ 1 we derive the
uniform bound

(7.3) S � Nγ−1 max
N2∼N

∑
1≤m≤M

∣∣∣ ∑
N<n≤N2
n≡amod d

Λ(n)e(mnγ)
∣∣∣+NM−1 +Nγ/2M1/2.
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To bound the inner sum, we note that∑
N<n≤N2
n≡amod d

Λ(n)e(mnγ) =
1

d

d∑
h=1

∑
N<n≤N2

Λ(n)e(mnγ + (n− a)h/d),

hence it suffices to give a bound on exponential sums of the form

T =
∑

N<n≤N2

Λ(n)e(mnγ + nh/d),

where 1 < N < N2 ≤ 2N . We do this with an application of Lemma 12,
taking into account the estimates of Lemmas 24 and 25; we find that

TN−ε � m1/2N1/3+γ/2 +m1/6N7/9+γ/6 +m−1/4N1−γ/4 +N11/12

for any fixed ε > 0. Inserting this bound in (7.3) and summing over m, it
follows that

SN−ε � N−2/3+3γ/2M3/2 +N−2/9+7γ/6M7/6

+N3γ/4M3/4 +N−1/12+γM +NM−1.

Since the above holds for any real M ≥ 1, using Lemma 17 we find that

SN−ε � N−2/3+3γ/2 +N−2/9+7γ/6 +N3γ/4 +N−1/12+γ

+N1/3+3γ/5 +N17/39+7γ/13 +N3/7+3γ/7 +N11/24+γ/2.

Since πc(x; d, a)� xγ , this bound is trivial unless the exponent of each term
in the parentheses is strictly less than γ. Thus, from now on we assume that
γ ∈

(
17
18 , 1

)
. In this case, after eliminating lower order terms, the previous

bound simplifies to

(7.4) S � N17/39+7γ/13+ε

for any fixed ε > 0.
To bound Σ2(x), let

G(x) =
∑
p≤x

p≡amod d

(log p)(ψ(−(p+ 1)γ)− ψ(−pγ)),

H(x) =
∑
n≤x

n≡amod d

Λ(n)(ψ(−(n+ 1)γ)− ψ(−nγ)).

Clearly,
H(x) = G(x) +O(x1/2),

and by partial summation,

Σ2(x) =
G(x)

log x
+

x�

2

G(u)

u(log u)2
du.
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Splitting the sum H(x) into O(log x) sums S of the form (7.2) with 2N ≤ x,
and using (7.4), we see that the bound H(x)� x17/39+7γ/13+ε holds for any
fixed ε > 0, and from the preceding observations we derive a similar result
for Σ2(x). Putting everything together, we have proved Theorem 8.

Replacing the function πc(x; d, a) with the weighted counting function

ϑc(x; d, a) =
∑
p≤x

p∈P
(c)
d,a

log p =
∑
p≤x

p≡amod d

(b−pγc − b−(p+ 1)γc) log p

and using a similar argument, we obtain the following statement.

Theorem 26. For any c ∈
(
1, 1817

)
and ε > 0 we have

ϑc(x; d, a) = γxγ−1 ϑ(x; d, a) + γ(1− γ)
x�

2

uγ−2 ϑ(u; d, a) du

+O(x17/39+7γ/13+ε),

where the implied constant depends only on c, ε.

For the proof of Theorem 7 we also require the following variant of
the Brun–Titchmarsh bound for Piatetski-Shapiro primes, which is a conse-
quence of Theorem 8.

Theorem 27. For any c ∈
(
1, 1817

)
and A ∈

(
0,−17

39 + 6γ
13

)
there is a

number C = C(c, A) > 0 such that if gcd(a, d) = 1 and 1 ≤ d ≤ xA then

πc(x; d, a) ≤
C xγ

ϕ(d) log x
.

Proof. Let ε > 0 be chosen (depending only on c, A) so that

max
{
2Aγ, 1739 + 7γ

13 + ε
}
≤ γ −A− ε.

Then by Theorem 8 it follows that

(7.5) πc(x; d, a)� xγ−1π(x; d, a) +

x�

x2A

uγ−2π(u; d, a) du+ xγ−A−ε,

where the implied constant depends only on c, A. Since

xγ−A−ε � xγ−A

log x
≤ xγ

ϕ(d) log x
(1 ≤ d ≤ xA),

the result follows by applying the Brun–Titchmarsh theorem to the right
side of (7.5).

We now outline our proof of Theorem 7. We are brief since our construc-
tion of Carmichael numbers composed of primes from P(c) closely follows the
construction of “ordinary” Carmichael numbers given by Alford, Granville
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and Pomerance [2]. Here, we discuss only the changes that are needed to
establish Theorem 7.

The idea behind our proof is to show that the set P(c) is sufficiently
well-distributed over arithmetic progressions so that, following the method
of [2], the primes used to form Carmichael numbers can all be drawn from
P(c) rather than the set P of all prime numbers. For this, we apply the
results derived earlier in this section.

The following statement plays a crucial role in our construction, analo-
gous to that played by [2, Theorem 2.1].

Lemma 28. Fix c ∈
(
1, 1817

)
and B ∈

(
0,−17

39 +
6γ
13

)
. There exist numbers

η > 0, x0 and D such that for all x ≥ x0 there is a set D(x) consisting of at
most D integers such that∣∣∣∣ϑc(x; d, a)− xγ

ϕ(d)

∣∣∣∣≤ xγ

2ϕ(d)

provided that

(i) d is not divisible by any element of D(x);
(ii) 1 ≤ d ≤ xB;
(iii) gcd(a, d) = 1.

Every number in D(x) exceeds log x, and all but at most one exceed xη.

Remark. In the statement and proof of Lemma 28, η, x1, D and D(x)
all depend on the choice of c and B, but this is suppressed from the notation
for the sake of clarity.

Proof of Lemma 28. For any such B we have 2B < 5
12 . Applying [2,

Theorem 2.1] (with 2B instead of B) we see that there exist numbers η > 0,
x1 and D such that for all x ≥ x1 there is a set D(x) consisting of at most
D integers such that

(7.6)
∣∣∣∣ϑ(y; d, a)− y

ϕ(d)

∣∣∣∣≤ y

10ϕ(d)
(x1−B ≤ y ≤ x)

whenever (i)–(iii) hold. Furthermore, every number in D(x) exceeds log x,
and all but at most one exceed xη.

Let ε > 0 be chosen (depending only on c,B) so that
17
39 + 7γ

13 + ε ≤ γ −B − ε,

and suppose that d and a are integers such that (i)–(iii) hold. Then by
Theorem 26 it follows that

ϑc(x; d, a) = T1 + T2 + T3 +O(T4),
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where

T1 = γxγ−1 ϑ(x; d, a),

T2 = γ(1− γ)
x�

x1−B

uγ−2ϑ(u; d, a) du,

T3 = γ(1− γ)
x1−B�

2

uγ−2ϑ(u; d, a) du,

T4 = xγ−B−ε.

By (7.6) we have

0.9γ
xγ

ϕ(d)
≤ T1 ≤ 1.1γ

xγ

ϕ(d)

and

0.9(1− γ) xγ

ϕ(d)
+O

(
xγ(1−B)

ϕ(d)

)
≤ T2 ≤ 1.1(1− γ) xγ

ϕ(d)
+O

(
xγ(1−B)

ϕ(d)

)
.

Using the Brun–Titchmarsh bound ϑ(x; d, a) � x/ϕ(d) for 1 ≤ d ≤ xB we
also see that

T3 �
xγ(1−B)

ϕ(d)
.

Finally, we note that

T4 ≤
xγ−ε

ϕ(d)
(1 ≤ d ≤ xB).

Combining the above estimates, we deduce that the inequalities

(0.9 + o(1))
xγ

ϕ(d)
≤ ϑc(x; d, a) ≤ (1.1 + o(1))

xγ

ϕ(d)

hold as x→∞, and the result follows.

As an application of Lemma 28 we derive the following statement, which
extends [2, Theorem 3.1] to the setting of Piatetski-Shapiro primes.

Lemma 29. Fix c ∈
(
1, 1817

)
, and let A,B,B1 be positive real numbers

such that B1 < B < A < −17
39 + 6γ

13 . Let C = C(c, A) > 0 have the property
described in Theorem 27. There exists a number x2 = x2(c, A,B,B1) such
that if x ≥ x2 and L is a squarefree integer not divisible by any prime q
exceeding x(A−B)/2 and for which

(7.7)
∑

prime q|L

1

q
≤ 1−A

16C
,
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then there is a positive integer k ≤ x1−B with gcd(k, L) = 1 such that

#{d | L : dk + 1 ≤ x and p = dk + 1 is a prime in P(c)}

≥ 2−D−2(x1−B+B1)γ−1

log x
#{d |L : xB1 ≤ d ≤ xB},

where D = D(c,B) is chosen as in Lemma 28.

Sketch of proof. We follow the proof and use the notation of [2, Theo-
rem 3.1]. In view of Lemma 28 we can replace the lower bound [2, (3.2)] with
the bound

πc(dx
1−B; d, 1) ≥ 1

2

(dx1−B)γ

ϕ(d) log x
(d |L′, 1 ≤ d ≤ xB).

Also, since dq ≤ (dx1−B)A for any natural numbers d ≤ xB and q ≤
x(A−B)/2, Theorem 27 enables us to replace the upper bound that occurs
after [2, (3.2)] with the bound

πc(dx
1−B; dq, 1) ≤ 4C

q(1−A)
(dx1−B)γ

ϕ(d) log x
(1 ≤ d ≤ xB)

for every prime q dividing L′. Taking into account (7.7), we see that there
are at least

(x1−B)γ

4 log x

∑
1≤d≤xB
d|L′

dγ

ϕ(d)
≥ (x1−B)γ

4 log x
xB1(γ−1)#{d |L′ : xB1 ≤ d ≤ xB}

pairs (p, d) where p ≤ dx1−B is a prime in P(c), p ≡ 1 mod L, (p − 1)/d is
coprime to L, d |L′, and xB1 ≤ d ≤ xB. Hence, there is an integer k ≤ x1−B
with gcd(k, L) = 1 such that k has at least

(x1−B+B1)γ−1

4 log x
#{d |L′ : xB1 ≤ d ≤ xB}

representations as (p−1)/d with a pair (p, d) as above. Since we can replace
[2, (3.1)] with the lower bound

#{d | L′ : xB1 ≤ d ≤ xB} ≥ 2−D#{d |L : xB1 ≤ d ≤ xB},
the proof is complete.

Let π(x) be the number of primes p ≤ x, and let π(x, y) be the number
of those for which p − 1 is free of prime factors exceeding y. As in [2], we
denote by E the set of numbers E in the range 0 < E < 1 for which

π(x, x1−E) ≥ x1+o(1) (x→∞),

where the function implied by o(1) depends only on E. With only some slight
modifications to the proof of [2, Theorem 4.1], using Lemma 29 in place of
[2, Theorem 3.1], we have:
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Lemma 30. Fix c ∈
(
1, 5756

)
, and let B,B1 be positive real numbers such

that B1 < B < −17
39 + 6γ

13 . For any E ∈ E there is a number x4, de-
pending on c,B,B1, E and ε, such that for any x ≥ x4 there are at least
xEB+(1−B+B1)(γ−1)−ε Carmichael numbers up to x composed solely of primes
from P(c).

Remark. It may seem more natural to state this result for any c ∈(
1, 1817

)
in view of our earlier results; however, it can be seen that the exponent

EB + (1−B +B1)(γ − 1)− ε is never positive when c ≥ 57
56 , so the result is

vacuous in that case. This point is discussed further below.

Sketch of proof of Lemma 30. Following the proof and notation of [2,
Theorem 4.1], the condition (7.7) is easily verified, so we can construct a set
P of primes in P(c) with p ≤ x with p = dk + 1 for some divisor d of L,
which satisfies the lower bound

#P ≥ 2−D−2(x1−B+B1)γ−1

log x
#{d | L : xB1 ≤ d ≤ xB}

by Lemma 29 (compare to [2, (4.5)]). To complete the argument, we simply
observe that the lower bound for #{d |L : 1 ≤ d ≤ xB} given in [2, p. 718]
is also a lower bound for #{d |L : xB1 ≤ d ≤ xB} if x is large enough, since
the product of any

u =

⌊
log xB

log yθ

⌋
=

⌊
B log x

θ log y

⌋
primes q ∈ (yθ/log y, yθ] is a divisor d of L of size xB+o(1) ≤ d ≤ xB as
x→∞.

Taking B and B1 arbitrarily close to −17
39 + 6γ

13 , and noting that E is an
open set by [2, Proposition 5.1], Lemma 30 implies that there are infinitely
many Carmichael numbers composed of primes from P(c) provided that

(7.8) E
(
−17

39 + 6γ
13

)
+ γ − 1 > 0.

Since E < 1, this inequality cannot hold if γ ≤ 56
57 . Moreover, we do not know

that E can be taken arbitrarily close to one, i.e., that E = (0, 1). At present,
it is known unconditionally that 0.7039 ∈ E (see Baker and Harman [6]),
and taking E = 0.7039 in (7.8) leads to the statement of Theorem 7.
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