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1. Introduction. It is a generally accepted conjecture that an irre-
ducible integer-valued polynomial without a constant divisor assumes in-
finitely many prime values at integers. On the other hand, it is easy to see
that for a reducible f ∈ Q[x] there are only finitely many integers n for which
f(n) is prime. It is, however, a nontrivial question to estimate the number
of these integers. We shall be primarily interested in finding estimates in
terms of the degree of f .

In what follows by “polynomial” we always mean a polynomial with
rational coefficients, and reducibility is meant in Q[x]. We will write

P (f) = #{m ∈ Z : f(m) is prime}.
In the first part [3] we investigated the class of integer-valued polynomials,

that is, such that f(n) is integral whenever n is. We proved that

exp
(
c

n
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)

< sup{P (f) : deg f = n, f is integer-valued and reducible in Q[x]}

< exp
(
C

n

logn

)

with positive absolute constants c, C.
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In this part we investigate the behaviour of P (f) under further restric-
tions. We shall assume that either

(a) the factors of f are also integer-valued, or
(b) f has integral coefficients, in which case by Gauss’ lemma we may

also assume that the factors have integral coefficients.

These assumptions considerably reduce the possible number of prime
values. Indeed, if f = gh with integer-valued g and h, then f(x) can be a
prime only if either g(x) = ±1 or h(x) = ±1, which immediately gives 2n
as an upper bound. (Ore [5] attributes this observation to Stäckel [8].) Our
aim is to improve this bound.

The more natural case (b) has been investigated by Ore [5]. His re-
sult sounds essentially as follows. [He formulates it indirectly (a polynomial
which assumes more than. . .prime values must be irreducible), and does not
give the construction for general n.]

Theorem 1. Let f ∈ Z[x] be a reducible polynomial of degree n. If n 6=
4, 5, then P (f) ≤ n+ 2. On the other hand , for every n there is a reducible
f ∈ Z[x] such that P (f) ≥ n + 1. If n = 4 or 5, then the maximal possible
value of P (f) is 8.

We think that the upper bound gives the truth.

Conjecture 1.1. For every n there is a reducible f ∈ Z[x] such that
P (f) = n+ 2.

In Section 2 we outline Ore’s argument, describe the construction and
to support the conjecture we show that it follows from certain generally
accepted but hopeless conjectures about primes.

In case (a) we can also reduce the trivial upper bound, though we are
far from a complete answer.

Theorem 2. There is a constant c < 2 such that

P (f) < cn+ o(n)

for every polynomial of degree n which can be written as a product of two
integer-valued nonconstant polynomials. A possible value of this constant is
c = 1.8723406362 . . . , determined by the formula c = 1 + 1/t, where t is the
only real root of the equation

t(2 log t+ 1/2) = 2 log 2− 1/2.

Besides P (f) we will also consider

P+(f) = #{m ∈ Z : f(m) > 0 is prime}.
This is a less natural concept; however, the restriction to positive primes
will enable us to give an exact answer. In the case considered in Part I
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the discrepancy between the lower and upper bound was so large that this
distinction did not matter.

Theorem 3. For every n ≥ 2 and every polynomial of degree n which
can be written as a product of two integer-valued nonconstant polynomials
we have P+(f) ≤ n. On the other hand , there is a reducible f ∈ Z[x] for
which P+(f) = n, and consequently the maximum of P+ in both cases (a)
and (b) is exactly n.

2. Polynomials with integer coefficients. The upper bounds stated
in Theorem 1 are due to Ore [5]. We outline his argument, since the source
is not easily available and also it gives some background to the construction
and the related conjecture.

For a polynomial f , write

E+(f) = #{m ∈ Z : f(m) = 1}, E−(f) = #{m ∈ Z : f(m) = −1},
E(f) = E+(f) + E−(f) = #{m ∈ Z : |f(m)| = 1}.

In this section by polynomial we will always mean a polynomial with
integer coefficients.

The starting point is the following result of Dorwart and Ore [4].

Lemma 2.1. If a polynomial of degree n satisfies E(f) > n, then n ≤ 3
and f is of the form f(x) = ±hi(±x + a), where the polynomials hi, i =
1, . . . , 5, are listed below :

h1(x) = x(x− 1)(x− 3) + 1, n = 3, E(f) = 4,

h2(x) = (x− 1)(x− 2)− 1, 2, 4,

h3(x) = 2x(x− 2) + 1, 2, 3,

h4(x) = 2x− 1, 1, 2,

h5(x) = x− 1, 1, 2.

This immediately implies that if a reducible polynomial f = gh satisfies
P (f) > n, then at least one of g, h is from the above list. Furthermore, we
see that P (f) ≤ n+ 4, and if P (f) = n+ 3 or n+ 4, then both factors come
from the list. For n+ 4 prime values, the only possibility is

f(x) = ±h2(±x+ a)h2(±x+ b),

and indeed we get 8 prime values for

f(x) = (1 + x(x− 3))(1 + (x− 4)(x− 7)).

For n + 3 prime values, one of the factors must be an h2, and the other
factor has to assume prime values at four consecutive integers. However, h3,
h4 and h5 are easily shown not to have this property by simple divisibility
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arguments. Another factor of type h1 is possible, and an example is

f(x) = (1 + x(x− 3))(1 + (x− 4)(x− 5)(x− 7)).

This ends Ore’s argument. We will now discuss the case of n + 1 or
n+ 2 prime values. The above facts show that for n > 6 the only possibility
to have n + 2 prime values happens when one factor is of type h2. Thus
we fix h(x) = h2(x). We show how to construct, for a given n ≥ 3, a
polynomial g of degree n − 2 so that f = gh assumes n + 2 prime values.
This construction depends on two unproved conjectures. The first is that h
assumes infinitely many primes; it is a generally accepted conjecture that
this holds for every irreducible polynomial without constant divisor. The
next is that for every finite collection a1, . . . , ak of nonzero integers we can
find an integer t such that all the numbers 1 + tai are prime, a version of
the prime k-tuple conjecture (we will use it for k = 4).

Assuming the first conjecture, let b1, . . . , bn−2 be distinct integers such
that each h(bi) is a prime. We put

g(x) = 1 + t(x− b1) . . . (x− bn−2)

with suitable t. For every choice of t we have f(bi) = h(bi) = prime. Now
the second conjecture yields the existence of a t such that g(i) is prime for
i = 0, 1, 2, 3, and then so is f(i) since h(i) = ±1 for these numbers.

Ore’s arguments show that this is essentially the only choice of h, hence
the first conjecture is necessary.

The second conjecture can possibly be weakened for our purposes. In-
deed, we do not need prime-yielding values of t for every b1, . . . , bn−2; what
we need is that from the set B = {b : h(b) is prime} we can select some
n− 2 such that the prime-quadruple conjecture works for the four numbers,
determined by these n− 2 elements of B in the above described way. Hence
an average version of the prime tuple conjecture, similar to that proved by
Balog [2], may suffice.

Finally we prove unconditionally that n+1 prime values can be attained
for every n ≥ 6. One of the factors must come from the list, and just as
in the above conditional argument we need that it assume infinitely many
primes. The only polynomials for which this is established are the linear
ones, thus we have to use h4 or h5. We will use h(x) = x = h5(x+ 1).

Let p1, . . . , pn−1 be distinct (not necessarily positive) primes. We put

g(x) = 1 + t(x− p1) . . . (x− pn−1)

with a suitable integer t. Then f = gh satisfies f(pi) = pi for i = 1, . . . , n−1
and

f(1) = g(1) = 1 + t(1− p1) . . . (1− pn−1),

f(−1) = −g(−1) = −(1 + t(−1− p1) . . . (−1− pn−1)).
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In general it seems difficult to make two such expressions simultaneously
prime. We get around this difficulty by selecting distinct primes p1, . . . , pn−1

so that

(2.1) (1− p1) . . . (1− pn−1) = (−1− p1) . . . (−1− pn−1).

This will guarantee g(−1) = g(1) independently of the choice of t, and if we
select t to make these numbers prime, then f(1) = g(1) and f(−1) = −g(1)
will be prime besides f(pi) = pi. This can be done by Dirichlet’s theorem.

To achieve (2.1), if n is odd, we simply use primes in pairs with their
negatives, that is, p2 = −p1, p4 = −p3 and so on. Every such pair contributes
the same to both products.

If n ≥ 4 is even, we use primes in pairs except the last three which will
be 2,−3 and −5. These contribute (−1) · 4 · 6 = (−3) · 2 · 4 = −24 to both
sides.

Finally we mention two examples that establish the maximal value for
degree 2 and 3:

n = 2: f(x) = x(x− 4): P (f) = 4,
n = 3: f(x) = (1 + x(x− 3))(x− 5): P (f) = 5.

3. Integer-valued polynomials. In this section we prove Theorem 2.

Lemma 3.1. Let a1, . . . , ak, b1, . . . , bk be 2k distinct integers. Write

U =
∏

i<j

|ai − aj |, V =
∏

i<j

|bi − bj |, D =
∏

i,j

|ai − bj |.

Then D ≥ UV (4/9)k.

This is Lemma 2.1 of [6].

Lemma 3.2. With the above notations we have

(3.1) D ≥ (2/3)k(1!2! . . . (2k − 1)!)1/2.

Proof. Let c1 < . . . < c2k be the sequence a1, . . . , ak, b1, . . . , bk arranged
in increasing order. Clearly

W =
∏

i<j

(cj − ci) ≥
∏

1≤i<j≤2k

(j − i) = 1!2! . . . (2k − 1)!.

On the other hand, we have W = UV D ≤ D2(9/4)k by the previous lemma.
(3.1) follows by comparing these inequalities.

Lemma 3.3. Let a1, . . . , ak, b1, . . . , bs be k + s distinct integers, k ≤ s.
Then

(3.2) D =
k∏

i=1

s∏

j=1

|ai − bj | ≥ (2/3)s(1!2! . . . (2k − 1)!)s/(2k).
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Proof. By the previous lemma we have

D =
k∏

i=1

k∏

j=1

|ai − bmj | ≥ (2/3)k(1!2! . . . (2k − 1)!)1/2

for every sequence m1, . . . ,mk of distinct integers satisfying 1 ≤ mj ≤ s.
Multiplying these inequalities for all possible choices of the mj and taking
an appropriate root we obtain (3.2).

Proof of Theorem 2. Let f be an integer-valued polynomial of degree n.
We shall find an upper estimate for E(f) in the form cn + o(n) with the c
given in the theorem.

Write r = E+(f), s = E−(f) and take integers a1, . . . , ar, b1, . . . , bs so
that f(ai) = 1, f(bj) = −1. The polynomial F = n!f has integer coefficients.
Write

(3.3) F (x) + n! = A

n∏

j=1

(x− βj).

Here A is an integer, hence |A| ≥ 1. Since the integers bj are roots of the
polynomial F (x)+n!, they are listed among the βj , say β1 = b1, . . . , βs = bs.

We substitute x = ai into (3.3) to obtain

(3.4) 2n! = F (ai) + n! = A
n∏

j=1

(ai − βj).

For each s+ 1 ≤ j ≤ n there may be at most one i for which

(3.5) −1/2 ≤ ai − Reβj < 1/2.

This makes altogether at most n−s values of i, so there are at least r−(n− s)
= (r + s) − n values for which ai does not satisfy any of the inequalities
(3.5). We may assume that these are a1, . . . , ak, where k = r + s − n. We
may also assume that k > n/2, since otherwise E(f) = k + n ≤ (3/2)n and
we are ready.

Now we multiply the equations (3.4) for i = 1, . . . , k. This yields

(3.6) (2n!)k = Ak
k∏

i=1

n∏

j=1

(ai − βj) = Ak
k∏

i=1

s∏

j=1

(ai − bj)
k∏

i=1

n∏

j=s+1

(ai − βj).

Observe that k = r + s− n ≤ s.
Now we give a lower estimate for the right side of (3.6). Take first a j

satisfying s+ 1 ≤ j ≤ n. We have

|ai − βj | ≥ |ai − Reβj |.
If we arrange all the numbers |m−Reβj |, m ∈ Z, in increasing order, we

get the sequence γ, 1−γ, 1+γ, 2−γ, 2+γ, 3−γ, . . . , where γ is the distance
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of Reβj from the nearest integer. The factors of our product are k numbers
from this sequence, and the first term (γ) is excluded. Since 1 − γ ≥ 1/2,
1 + γ ≥ 1, 2− γ ≥ 3/2 and so on, the product of k terms is at least

1
2
· 2

2
· 3

2
· . . . · k

2
=
k!
2k
.

In particular,
k∏

i=1

|ai − βj | ≥ 2−kk!,
k∏

i=1

n∏

j=s+1

|ai − βj | ≥ 2−k(n−s)k!n−s.

To estimate the first double product in (3.6) we use Lemma 3.3, and also
|A|k ≥ 1. These inequalities together give

(2n!)k ≥ (2/3)s(1!2! . . . (2k − 1)!)s/(2k)2−k(n−s)k!n−s.

By the symmetric role of r and s we also have

(2n!)k ≥ (2/3)r(1!2! . . . (2k − 1)!)r/(2k)2−k(n−r)k!n−r.

We multiply these inequalities and we obtain (recall that r + s = n+ k)

(2n!)2k ≥ (2/3)n+k(1!2! . . . (2k − 1)!)(n+k)/(2k)2−k(n−k)k!n−k.

To utilize this inequality we take the logarithm of both sides and use the
familiar estimate

logm! = m(logm− 1) +O(logm)

and the following one which can be deduced from it by an immediate calcu-
lation:

log(1!2! . . .m!) = m2( 1
2 logm− 3

4

)
+O(m logm).

We obtain

2kn(logn− 1) ≥ k(n+ k)(log k + log 2− 3/2)− k(n− k) log 2

+ k(n− k)(log k − 1) +O(n logn).

After dividing by k2 and cancelling certain terms this inequality becomes

n

k

(
2 log

n

k
+

1
2

)
≥ 2 log 2− 1

2
+O

(
logn
n

)
.

Thus we get n/k ≥ t + o(1), where t is the solution of t(2 log t + 1/2) =
2 log 2− 1/2. We find t = 1.1463411865 . . . , which leads to r + s = k + n ≤
n(1+1/t)+o(n). The constant appearing here is 1+1/t = 1.8723406362 . . .

Remark. Let S be an arbitrary finite set. Let ES(f) denote the number
of distinct integers a such that f(a) ∈ S. The proofs of Theorems 1 and 2
depended on estimations for the value of ES(f) in the case that S = {−1, 1}.
For more general finite sets S similar estimates can be obtained.
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Following the approach of Dorwart and Ore, one can show that if f has
integer coefficients, then ES(f) ≤ n except for a finite list of polynomials and
their translations; in particular, ES(f) ≤ n for n sufficiently large. However,
it seems to be a nontrivial question to find sharp estimates (in terms of the
set S) for the number and maximal degree of the exceptional polynomials.

For integer-valued polynomials f we can show that ES(f) < Cn+ o(n)
for some absolute constant C (independent of the size of the finite set S).
This can be done by modifying the proof of Theorem 2, and in this way we
obtained C = 3.

We indicate a different proof that yields a somewhat better constant.
Let K denote the maximum of absolute values of elements of S. A theorem
of Pólya [6] (see also Aigner–Ziegler [1]) asserts that for a polynomial f of
degree n and leading coefficient 1 the measure of real numbers satisfying
|f(x)| ≤ 1 is at most 4 (in fact, the measure of the real parts of such
complex numbers x is at most 4). By a natural rescaling we find that if the
leading coefficient is c, then the measure of reals satisfying |f(x)| ≤ K is
at most 4(K/|c|)1/n. Since this set is the union of at most n intervals, the
number of integers satisfying |f(k)| ≤ K is at most n + 4(K/|c|)1/n. Since
for integer-valued polynomials we have |c| ≥ 1/n!, we obtain

ES(f) ≤ n+ 4(Kn!)1/n =
(

1 +
4
e

)
n+O(logn).

On the other hand, we do not have any better lower bound than ES(f) ≥
n+ 2 for even values of n, which follows by considering

f(x) = a

(
x

k

)
+ b

for suitable a, b. We cannot even achieve this for general odd n.

4. The case of positive primes. In this section we prove Theorem 3.
To show that n prime values are possible we apply the following con-

struction. Let p1, . . . , pn−1 be distinct positive primes. We put h(x) = x
and

g(x) = 1 + t(x− p1) . . . (x− pn−1)

with a suitable integer t. Then f = gh satisfies f(pi) = pi for i = 1, . . . , n−1
and

f(1) = g(1) = 1 + t(1− p1) . . . (1− pn−1).

This will be a positive prime for a suitable choice of t by Dirichlet’s theorem.
Next we show that the number of prime values is at most n.
Let f = gh, where g, h are integer-valued polynomials of degree at least 1.

If f(m) is prime, then either g(m) = ±1 or h(m) = ±1. Hence the upper
estimate follows from the following statement.
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Statement 4.1. Let g, h be polynomials of degree at least one with real
coefficients and write f = gh. Consider those real numbers that satisfy

(a) g(x) = ±1 or h(x) = ±1, and
(b) f(x) > 1.

The total number of such reals is at most n = deg f .

Proof. Let these numbers be x1 < . . . < xk. We will show that

(4.1) (number of roots of g′) + (number of roots of h′) ≥ k − 2.

This clearly implies the statement.
We divide the points xi into four types. Type g+ is defined by g(xi) = 1;

the types g−, h+ and h− are defined analogously. By a block we mean a
maximal sequence of consecutive xi’s of the same type; the type of the block
is this type. Let l denote the number of blocks. The number of pairs xi, xi+1

of equal type is then exactly k − l.
We call a block extremal if it contains x1 or xk, and central otherwise.

The number of extremal blocks is 1 or 2, the number of central blocks is at
least l − 2.

We will show that

number of roots of g′ ≥ (number of pairs of type g±)(4.2)

+ (number of central blocks of type h±),

and similarly

number of roots of h′ ≥ (number of pairs of type h±)(4.3)

+ (number of central blocks of type g±).

On adding these inequalities we get the left side of (4.1), and on the right
side we have at least (k − l) + (l − 2) = k − 2 as claimed.

To prove (4.2) we are going to map the pairs of type g± and blocks of
type h± onto roots of g′.

Given a pair of type g± we have g(xi) = g(xi+1). Hence g′ has at least
one root in the interval (xi, xi+1). We map this pair to this root (or to any
of such roots, if there are more than one).

Consider now a central block of type h±, say (xi, . . . , xj), where 1 < i ≤
j < k by definition. For sake of definiteness assume it is of type h+. We
have h(xi) = . . . = h(xj) = 1, so g(xi) > 1, . . . , g(xj) > 1. On the other
hand, xi−1 and xj+1 are of a different type, and consequently g(xi−1) ≤ 1,
g(xj+1) ≤ 1. We map this block onto any local maximum point of g within
the interval [xi−1, xj+1]. The previous inequalities show that this cannot be
any of the endpoints, thus it must be a root of g′.

We are going to show that we use any given root at most once. This has
three subcases.

The roots corresponding to pairs are obviously distinct.
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A root corresponding to a block is within an interval [xt, xt+1], where at
least one of xt and xt+1 is a member of that block, in particular, it is of type
h±. This shows that it cannot coincide with a root corresponding to a pair.

Consider finally two blocks, say (xi, . . . , xj) and (xu, . . . , xv), such that
j < u. The corresponding roots are situated in the intervals (xi−1, xj+1) and
(xu−1, xv+1), respectively. These are disjoint unless u = j + 1. If u = j + 1,
then the two blocks are adjacent, hence they must be of different types, one
of type h+ and the other of type h−. Hence g has a local maximum at one
and a local minimum at the other, so they are distinct.

The proof of (4.3) proceeds in the same way, with the roles of g and h
interchanged.

Remark. Learning this result, Nándor Simányi pointed out that State-
ment 4.1 holds for an arbitrary ordered field. The above proof can probably
be extended to this more general case; however, we can also argue as fol-
lows. For a fixed pair of degrees (deg g,deg h) this is a first order formula
in the theory of really closed ordered fields. This theory is complete, and
we already know that the statement is true for R, therefore it is true for an
arbitrary really closed field. Finally, every ordered field has a really closed
extension, and the validity of the statement descends to subfields.

He also asked whether a generalization of Statement 4.1 could be valid
for the case of complex polynomials g, h and complex values of x1, . . . , xk.
We found that the answer is “no”, as shown by the following example:

g(z) = 1
3z

3 − z + 1, h(z) = 2
9 (z − 2)2 + 1.

Here deg(gh) = 5 but we have six “bad” xi’s: g(0) = g(±
√

3) = h(2) = 1,
h(2± 3i) = −1, and gh(xi) ∈ (1,∞) for all of them.

This example now raises the question whether the maximal number of
possible complex xi’s is equal to the trivial upper bound 2(deg g + deg h).
So far we have not been able to find more than six “bad” values for the pair
of degrees (2, 3); a reason for this may be Bézout’s theorem on the number
of intersections of the real algebraic curves g−1(R) and h−1(R).

Acknowledgements. We are grateful to the referee for several correc-
tions and for suggesting the problem of estimating ES(f) for general sets
(Remark at the end of Section 3), and to John Rickard for the information
on Pólya’s inequality.
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[6] G. Pólya, Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusam-
menhangenden Gebieten, Sitzungsber. Preuss. Akad. Wiss. Berlin 1928, 228–232; also
in Collected Papers, Vol. 1, MIT Press, 1974, 347–351.

[7] I. Z. Ruzsa, Large prime factors of sums, Studia Sci. Math. Hungar. 27 (1992),
463–470.
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