An infinite family of pairs of quadratic fields $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{mD})$ whose class numbers are both divisible by 3

 $\mathbf{b}\mathbf{y}$

TORU KOMATSU (Tokyo)

Introduction. In [A-C], [H1], [Ho], [N], [W] and [Y] their authors study the divisibility of the class number of a quadratic field and state that there exist infinitely many quadratic fields whose class numbers are divisible by 3. Hartung [H2] proves the existence of infinitely many imaginary quadratic fields whose class numbers are not divisible by 3. In this paper we show

THEOREM A. Fix a rational integer $m \in \mathbb{Z}$ $(m \neq 0)$. Then there exist infinitely many quadratic fields $\mathbb{Q}(\sqrt{D})$ such that the class numbers of $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{mD})$ are both divisible by 3.

In the case m = -3, this theorem is deduced from Scholz's theorem and a result of Honda. In fact, Scholz [Sc] gave a relation between the 3-rank rof the ideal class group of a real quadratic field $\mathbb{Q}(\sqrt{D})$ and the 3-rank s of an imaginary quadratic field $\mathbb{Q}(\sqrt{-3D})$.

THEOREM (A. Scholz). We have the inequality $r \leq s \leq r+1$. In particular, if $3 \mid h(\mathbb{Q}(\sqrt{D}))$ for a positive integer D, then $3 \mid h(\mathbb{Q}(\sqrt{-3D}))$.

Honda [Ho] constructed an infinite family of real quadratic fields whose class numbers are divisible by 3. These results imply that there exist infinitely many quadratic fields $\mathbb{Q}(\sqrt{D})$ such that the class numbers of $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{-3D})$ are both divisible by 3.

In [K] we showed the existence of an infinite family of quadratic fields $\mathbb{Q}(\sqrt{D})$ with $3 \mid h(\mathbb{Q}(\sqrt{D}))$ and $3 \mid h(\mathbb{Q}(\sqrt{-D}))$. Our Theorem A is a generalization of this result. The divisibility of the class number by 3 is verified by the construction of an explicit cubic polynomial which gives an unramified cyclic cubic extension of the quadratic field.

We prove Theorem A by the following construction.

Let $m \in \mathbb{Z}$ be a square-free integer with $m \neq 1$. Let l be a prime number which splits in the extension $\mathbb{Q}(\sqrt{m})/\mathbb{Q}$ and is inert in the extension

²⁰⁰⁰ Mathematics Subject Classification: Primary 11R29; Secondary 11R11.

 $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$. We take an integer $n \in \mathbb{Z}$ such that

$$n \equiv \begin{cases} \pm (4m-3) \pmod{27} & \text{if } m \equiv 1 \pmod{3}, \\ \pm (4m+12) \pmod{27} & \text{if } m \equiv 2 \pmod{3}, \\ \pm 4m \pmod{27} & \text{if } m \equiv 3 \pmod{9}, \\ \pm 1 \pmod{3} & \text{otherwise}, \end{cases}$$

and $mn^2 \equiv 1 \pmod{l}$. Now put $r = mn^2$. Let P be the set of all prime divisors of r(r-1) except 3. We denote by T the set of integers $t \in \mathbb{Z}$ which satisfy the conditions:

$$t \equiv \begin{cases} 4 \text{ or } 7 \pmod{9} & \text{ if } m \equiv 1 \pmod{3}, \\ 3 \pmod{9} & \text{ if } m \equiv 2 \pmod{3}, \\ -3 \pmod{27} & \text{ if } m \equiv 3 \pmod{9}, \\ \pm (r/3)^2 \pmod{9} & \text{ otherwise}, \end{cases}$$

 $t \equiv -1 \pmod{l}$ and $t \not\equiv r \pmod{p}$ for every $p \in P$. Decompose T into two subsets T_1 and T_2 where $T_1 = \{t \in T \mid t \geq 3r/2\}$ and $T_2 = \{t \in T \mid t < 3r/2\}$. Define

$$D_r(X) = (3X^2 + r)(2X^3 - 3(r+1)X^2 + 6rX - r(r+1))/27$$

Let $\mathcal{F}(S)$ denote the family $\{\mathbb{Q}(\sqrt{D_r(t)}) \mid t \in S\}$ for a subset S of Z. Then we have

THEOREM B. For every $t \in T$, the class numbers of $\mathbb{Q}(\sqrt{D_r(t)})$ and $\mathbb{Q}(\sqrt{mD_r(t)})$ are both divisible by 3. Moreover, the families $\mathcal{F}(T_1)$, $\mathcal{F}(T_2)$ and $\mathcal{F}(T)$ each include infinitely many quadratic fields. In particular, when m > 0, the quadratic fields $\mathbb{Q}(\sqrt{D_r(t)})$ and $\mathbb{Q}(\sqrt{mD_r(t)})$ are both real (resp. both imaginary) if $t \in T_1$ (resp. $t \in T_2$).

Let \mathbb{Z} , \mathbb{Q} and \mathbb{F}_p be the ring of rational integers, the field of rational numbers and the finite field of p elements, respectively. For a prime number p and an integer a, $v_p(a)$ is the greatest exponent n such that $p^n | a$. The class number of an algebraic number field F is denoted by h(F).

I wish to express my deepest gratitude to Professor Masato Kurihara for his guidance, encouragement and criticism throughout my study.

1. Existence of the prime number l and the integer n. First of all we claim that there exists a prime number l which splits in $\mathbb{Q}(\sqrt{m})/\mathbb{Q}$ and is inert in $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$. Let \mathcal{L} be the set of all such primes l.

LEMMA 1.1. The set \mathcal{L} is infinite.

Proof. Put $M_1 = \mathbb{Q}(\sqrt{m}, \sqrt{-3}, \sqrt[3]{2})$ and $M_2 = \mathbb{Q}(\sqrt{m}, \sqrt{-3})$. Then M_1 is Galois over \mathbb{Q} . Let σ be an element of the Galois group $G = \text{Gal}(M_1/\mathbb{Q})$ such that $\langle \sigma \rangle = \text{Gal}(M_1/M_2)$. It is easy to see that the conjugate class C of σ in G is $\{\sigma, \sigma^2\}$. We note that $l \in \mathcal{L}$ splits in $\mathbb{Q}(\sqrt{-3})/\mathbb{Q}$ since l is inert in

 $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$. In fact, $\mathbb{Q}(\sqrt{-3},\sqrt[3]{2})/\mathbb{Q}$ is a Galois extension whose group is not cyclic. Thus, for every prime ideal \mathfrak{l} of M_1 lying above $l \in \mathcal{L}$, the Frobenius automorphism of \mathfrak{l} is σ or σ^2 . Conversely, if the Frobenius automorphism of a prime \mathfrak{l}_0 of M_1 is σ or σ^2 , then the prime l_0 below \mathfrak{l}_0 belongs to \mathcal{L} . It follows from the Chebotarev density theorem [T] that

$$\lim_{s \to 1+0} \left(\log \frac{1}{s-1} \right)^{-1} \sum_{l \in \mathcal{L}} \frac{1}{l^s} = \frac{|C|}{|G|} = \begin{cases} 1/3 & \text{if } m = -3, \\ 1/6 & \text{otherwise.} \end{cases}$$

In particular, the set \mathcal{L} has infinitely many primes.

To end this section we show the existence of the integer n which is taken for our construction in the introduction. Note that $l \neq 3$. Indeed, $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is totally ramified at 3. From the assumption that l splits in $\mathbb{Q}(\sqrt{m})/\mathbb{Q}$, we have $m \in \mathbb{F}_l^{\times 2}$, that is, there exists an integer z_0 satisfying $z_0^2 \equiv m$ (mod l). Then we also have an integer z_1 such that $z_0 z_1 = 1 \pmod{l}$ since z_0 is invertible in \mathbb{F}_l . Let z_2 be an integer. The Chinese remainder theorem implies that there exist infinitely many integers z so that $z \equiv \pm z_1 \pmod{l}$ and $z \equiv z_2 \pmod{3^3}$. The integer n is one of such z's.

So Theorem A follows from Theorem B.

2. Proof of Theorem B. Let m, l, n, r, P and T be as in the introduction. Here T is an infinite set by the Chinese remainder theorem. We shall show that $3 \mid h(\mathbb{Q}(\sqrt{D_r(t)}))$ and $3 \mid h(\mathbb{Q}(\sqrt{mD_r(t)}))$ for each $t \in T$. For a fixed $t \in T$, we put $u = t^3 + 3tr$, $w = 3t^2 + r$, a = u - w, b = u - rw and $c = t^2 - r$. Then u, w, a, b and c are integers such that $(t + \sqrt{r})^3 = u + w\sqrt{r}$ and $ra^2 - b^2 = (r-1)c^3$.

LEMMA 2.1. The integer c is odd and $gcd(ab, c) = 3^e$ for some $e \in \mathbb{Z}$.

Proof. Note that $2 \in P$ since r(r-1) is even. By the assumption $t \not\equiv r \pmod{2}$, $c = t^2 - r$ is odd. Let p be a prime divisor of $\gcd(ab, c)$. Then we have $r \equiv t^2 \pmod{p}$ and $ab = (u - w)(u - rw) \equiv -2^4 t^5 (t-1)^2 \equiv 0 \pmod{p}$. Here, c is odd and so is p. This means that $t \equiv 0$ or $1 \pmod{p}$. If $t \equiv 0 \pmod{p}$, then $r \equiv 0 \pmod{p}$. This implies that $p \in P$ or p = 3. Since $t \equiv r \equiv 0 \pmod{p}$, we see $p \notin P$ and thus p = 3. When $t \equiv 1 \pmod{p}$, we have $r \equiv 1 \pmod{p}$, which also yields p = 3. Hence, $\gcd(ab, c) = 3^e$ for some $e \in \mathbb{Z}$.

Define $f_1(Z) = Z^3 - 3cZ - 2a$ and $f_2(Z) = Z^3 - 3cZ - 2b$.

LEMMA 2.2. The polynomials $f_1(Z)$ and $f_2(Z)$ are both irreducible over \mathbb{F}_l . In particular, $f_1(Z)$ and $f_2(Z)$ are both irreducible over \mathbb{Q} .

Proof. It follows from the definition that $r \equiv 1 \pmod{l}$ and $t \equiv -1 \pmod{l}$. Then $a \equiv b \equiv -2^3 \pmod{l}$ and $c \equiv 0 \pmod{l}$. Thus, $f_i(Z) \equiv Z^3 + 2^4 \pmod{l}$ for each i = 1, 2. Since l is inert in $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$, $Z^3 - 2$ is irreducible

over \mathbb{F}_l and so is $Z^3 + 2^4$. Therefore $f_i(Z)$ is irreducible over \mathbb{F}_l , and hence also over \mathbb{Q} .

Let f(Z) be an irreducible cubic polynomial of the form $f(Z) = Z^3 - \alpha Z - \beta$ for $\alpha, \beta \in \mathbb{Z}$. We denote by K_f the minimal splitting field of f(Z) over \mathbb{Q} , and $k_f = \mathbb{Q}(\sqrt{4\alpha^3 - 27\beta^2}) (\subset K_f)$. Assume $gcd(\alpha, \beta) = 3^{\varepsilon}$ for some $\varepsilon \in \mathbb{Z}$. Let δ be the maximal integer such that $\alpha/3^{2\delta}, \beta/3^{3\delta} \in \mathbb{Z}$. We put $\alpha_0 = \alpha/3^{2\delta}$ and $\beta_0 = \beta/3^{3\delta}$.

PROPOSITION LN ([L-N], [R]). The extension K_f/k_f is unramified if one of the following conditions holds:

- (i) $3 \nmid \alpha_0$,
- (ii) $v_3(\alpha_0) = 1$ and $v_3(\beta_0) \ge 2$,
- (iii) $\alpha_0 \equiv 3 \pmod{9}$ and $\beta_0^2 \equiv \alpha_0 + 1 \pmod{27}$.

REMARK 2.3. In [L-N] and [R] more general conditions are considered. However, Proposition LN is enough for us to show Lemma 2.4 below.

LEMMA 2.4. The extensions K_{f_1}/k_{f_1} and K_{f_2}/k_{f_2} are both unramified. We need the following lemma.

LEMMA 2.5. We have

$$r \equiv \begin{cases} 1 \pmod{3^3} & \text{if } m \equiv 1 \pmod{3}, \\ -10 \pmod{3^3} & \text{if } m \equiv 2 \pmod{3}, \\ -2 \cdot 3^3 \pmod{3^5} & \text{if } m \equiv 3 \pmod{9}, \\ -3 \pmod{3^2} & \text{otherwise.} \end{cases}$$

Proof. When $m \equiv 1 \pmod{3}$, we have

$$r \equiv m(4m-3)^2 = (m-1)(4m-1)^2 + 1 \equiv 1 \pmod{27}.$$

If $m \equiv 2 \pmod{3}$, then $r \equiv m(4m+12)^2 = 16(m+1)^2(m+4) - 64 \equiv -10 \pmod{27}$. Assume $m \equiv 3 \pmod{9}$. Then we have $r/3^3 = (m/3)(n/3)^2 \equiv 16(m/3)^3 \pmod{9}$. It follows from $m/3 \equiv 1 \pmod{3}$ that $(m/3)^3 \equiv 1 \pmod{9}$. Thus, $r/3^3 \equiv -2 \pmod{9}$ and $r \equiv -2 \cdot 3^3 \pmod{3^5}$. For the case $m \equiv 6 \pmod{9}$, we have $r \equiv m \equiv -3 \pmod{9}$.

Proof of Lemma 2.4. We first assume $m \equiv 1 \pmod{3}$. By the definition, $t \equiv 4 \text{ or } 7 \pmod{9}$. Then $c = t^2 - r \equiv 0 \pmod{3}$ and $c \not\equiv 0 \pmod{9}$. This means $v_3(c) = 1$. On the other hand, $u \equiv t^3 + 3t \pmod{27}$ and $w \equiv 3t^2 + 1 \pmod{27}$. Thus we have $a \equiv b \equiv (t-1)^3 \equiv 0 \pmod{27}$, that is, $v_3(a) \ge 3$ and $v_3(b) \ge 3$. It follows from Lemmas 2.1 and 2.2 that $f_1(Z)$ and $f_2(Z)$ satisfy the assumptions of Proposition LN. Hence Proposition LN(i) shows that K_{f_1}/k_{f_1} and K_{f_2}/k_{f_2} are both unramified.

When $m \equiv 2 \pmod{3}$, we have $r \equiv -10 \pmod{27}$ and $t \equiv 3 \pmod{9}$. This implies that $a \equiv 1 \pmod{27}$, $b \equiv -1 \pmod{27}$ and $c \equiv 1 \pmod{9}$. Thus K_{f_1}/k_{f_1} and K_{f_2}/k_{f_2} are both unramified by Proposition LN(iii). If $m \equiv 3 \pmod{9}$, then $v_3(a) \geq 3$, $v_3(b) \geq 3$ and $v_3(c) = 2$. Put $r_0 = r/3^3$ and $t_0 = t/3$. Then $r_0 \equiv -2 \pmod{9}$ and $t_0 \equiv -1 \pmod{9}$. This means that $a/3^3 = t_0^3 - t_0^2 + 9t_0r_0 - r_0 \equiv 0 \pmod{9}$ and $c/3^2 = t_0^2 - 3r_0 \equiv 1 \pmod{3}$. Proposition LN(ii) implies that K_{f_1}/k_{f_1} is unramified. On the other hand, we have $b/3^3 \equiv t_0^3 + 9t_0r_0 \pmod{27}$. Then $(2b/3^3)^2 - 3c/3^2 - 1 \equiv 4(t_0^6 + 18t_0^4r_0) - 3t_0^2 + 9r_0 - 1 = (t_0^2 - 1)(2t_0^2 + 1)^2 + 9(8t_0^4 + 1)r_0 \equiv 0 \pmod{27}$. Thus Proposition LN(iii) shows that K_{f_2}/k_{f_2} is unramified.

Finally we consider the case $m \equiv 6 \pmod{9}$. It follows from $t \equiv \pm (r/3)^2 \pmod{9}$ that $t^2 \equiv (r/3)^4 \pmod{9}$. By Lemma 2.5 we have $r/3 \equiv -1 \pmod{3}$ and $(r/3)^3 \equiv -1 \pmod{9}$. Thus, $t^2 \equiv -r/3 \pmod{9}$ and $r \equiv -3t^2 \pmod{27}$. This implies that $a \equiv b \equiv -8t^3 \pmod{27}$ and $c \equiv 4t^2 \pmod{27}$. Then we have $4a^2 - 3c - 1 \equiv 4b^2 - 3c - 1 \equiv 13t^6 - 12t^2 - 1 = (t^2 - 1)(2t^2 + 1)^2 + 9t^2(t^4 - 1) \equiv 0 \pmod{27}$. Hence K_{f_1}/k_{f_1} and K_{f_2}/k_{f_2} are both unramified from Proposition LN(iii).

By the definition we have

$$4(3c)^{3} - 27(2a)^{2} = 108(3t^{2} + r)(2t^{3} - 3(r+1)t^{2} + 6rt - r(r+1))$$

= $54^{2}D_{r}(t)$,
$$4(3c)^{3} - 27(2b)^{2} = 108r(3t^{2} + r)(2t^{3} - 3(r+1)t^{2} + 6rt - r(r+1))$$

= $(54n)^{2}mD_{r}(t)$.

Thus, $k_{f_1} = \mathbb{Q}(\sqrt{D_r(t)})$ and $k_{f_2} = \mathbb{Q}(\sqrt{mD_r(t)})$. Lemma 2.4 and class field theory imply

PROPOSITION 2.6. The class numbers of $\mathbb{Q}(\sqrt{D_r(t)})$ and $\mathbb{Q}(\sqrt{mD_r(t)})$ are both divisible by 3 for every $t \in T$.

Recall that $\mathcal{F}(S)$ is the family $\{\mathbb{Q}(\sqrt{D_r(t)}) \mid t \in S\}$ for $S \subset \mathbb{Z}$. We next show

PROPOSITION 2.7. The families $\mathcal{F}(T_1)$, $\mathcal{F}(T_2)$ and $\mathcal{F}(T)$ each include infinitely many quadratic fields.

Proof. Assume $S \neq \emptyset$ is a subset of T such that $\mathcal{F}(S)$ is finite. We will choose t_0 from T so that $\mathcal{F}(S) \subsetneq \mathcal{F}(S \cup \{t_0\})$. Let M_S be the composite field of all quadratic fields which belong to $\mathcal{F}(S)$, and P_S the set of prime numbers ramifying in M_S/\mathbb{Q} . We note that P_S is finite since M_S/\mathbb{Q} is of finite degree. Thus there exists a prime number q such that $q \notin P \cup P_S \cup \{3\}$ and $3x^2 + r \equiv 0 \pmod{q}$ for some $x \in \mathbb{Z}$. Taking such a q with x, we define $x_0 = x$ or $x_0 = x + q$ according to whether $3x^2 + r \not\equiv 0 \pmod{q^2}$ or not. This implies that $3x_0^2 + r \equiv 0 \pmod{q}$ and $3x_0^2 + r \not\equiv 0 \pmod{q^2}$.

Now we put $g_r(X) = 2X^3 - 3(r+1)X^2 + 6rX - r(r+1)$. Then $D_r(X) = (3X^2 + r)g_r(X)/27$ and $3g_r(X) = (2X - 3r - 3)(3X^2 + r) + 16rX$. When

 $g_r(x_0) \equiv 0 \pmod{q}$, we have $16rx_0 \equiv 0 \pmod{q}$, which contradicts the assumption on q and x. Hence, $D_r(x_0) \equiv 0 \pmod{q}$ and $D_r(x_0) \not\equiv 0 \pmod{q^2}$. On the other hand, there exists $t_0 \in T$ such that $t_0 \equiv x_0 \pmod{q^2}$ by $q \notin P \cup \{3\}$ and the Chinese remainder theorem. Then we have $D_r(t_0) \equiv D_r(x_0) \equiv 0 \pmod{q}$ and $D_r(t_0) \equiv D_r(x_0) \not\equiv 0 \pmod{q^2}$. This shows that q ramifies in $\mathbb{Q}(\sqrt{D_r(t_0)})/\mathbb{Q}$ and in $M_S(\sqrt{D_r(t_0)})/\mathbb{Q}$. Since M_S/\mathbb{Q} is not ramified at q, we have $M_S \subsetneq M_S(\sqrt{D_r(t_0)})$ and $\mathcal{F}(S) \subsetneq \mathcal{F}(S \cup \{t_0\})$.

Here the family $\mathcal{F}(S \cup \{t_0\})$ is also finite. Hence we may construct an infinite increasing sequence of subsets S_i of T such that $\mathcal{F}(S) \subsetneq \mathcal{F}(S_1) \subsetneq \mathcal{F}(S_2) \subsetneq \ldots$ where $S \subsetneq S_1 \subsetneq S_2 \subsetneq \ldots$ This means that $\mathcal{F}(T)$ is infinite. In the same way we show that $\mathcal{F}(T_1)$ and $\mathcal{F}(T_2)$ are also infinite.

REMARK 2.8. By using Siegel's theorem (cf. [Si] or [Sil]) we can prove Proposition 2.7 in the same manner as in [K].

Finally we study when $\mathbb{Q}(\sqrt{D_r(t)})$ and $\mathbb{Q}(\sqrt{mD_r(t)})$ are both real (or both imaginary). If m < 0, then one of $\mathbb{Q}(\sqrt{D_r(t)})$ and $\mathbb{Q}(\sqrt{mD_r(t)})$ is real, and the other imaginary. For the case m > 0, we have the following criterion:

PROPOSITION 2.9. Assume m > 0. Then $\mathbb{Q}(\sqrt{D_r(t)})$ and $\mathbb{Q}(\sqrt{mD_r(t)})$ are both real (resp. both imaginary) if $t \in T_1$ (resp. $t \in T_2$).

This follows immediately from

LEMMA 2.10. When $r \ge 2$, we have $D_r(t) > 0$ if and only if $t \ge 3r/2$.

Proof. Recall that $D_r(t) = (3t^2 + r)g_r(t)/27$ where $g_r(t) = 2t^3 - 3(r+1)t^2 + 6rt - r(r+1)$. Since r is positive, the sign of $D_r(t)$ coincides with that of $g_r(t)$. The derivative of $g_r(X)$ is equal to $\partial g_r(X)/\partial X = 6(X-1)(X-r)$. It is easily seen that $g_r(1) = -(r-1)^2 < 0$. This means that $g_r(X) = 0$ has only one real root. By some calculation we find that $g_r(3r/2 - 1/2) = -(r-1)^2 < 0$ and $g_r(3r/2) = r(5r-4)/4 > 0$. This shows that $g_r(t) > 0$ if and only if $t \geq 3r/2$. Hence $D_r(t) > 0$ is equivalent to $t \geq 3r/2$.

Concerning the $D_r(X)$, we make the following remark. Generally $D_r(x)$ is not an integer for some $x \in \mathbb{Z}$. However,

LEMMA 2.11. For every m and every $t \in T$, $D_r(t)$ is an integer.

Proof. If $m \equiv 1$ or 2 (mod 3), then $g_r(t) \equiv 0 \pmod{27}$ from Lemma 2.5 and the definition of t in the introduction. When $m \equiv 3 \pmod{9}$, we have $3t^2 + r \equiv 0 \pmod{27}$ since 27 | r and 3 | t. For the case $m \equiv 6 \pmod{9}$, it is already shown in the proof of Lemma 2.4 that $3t^2 + r \equiv 0 \pmod{27}$. Hence $D_r(t) = (3t^2 + r)g_r(t)/27 \in \mathbb{Z}$.

Propositions 2.6, 2.7 and 2.9 imply Theorem B.

3. Some examples and remarks pertaining to Theorem B. For each square-free integer $m \neq 1$ in a range of m we calculated the smallest l, the smallest |n| and several $t \in T$ as in the introduction. Table 3.1 contains the results for the case $1 < m \leq 10$. Here we take the integers t from T_1 and T_2 nearest to 3r/2. In Table 3.2, $-10 < m \leq -1$. For each m in Table 3.2, t is the smallest positive integer in T. We set $P_0 = P \setminus \{2, l\}$.

\overline{m}	l	n	r	P_0	t	$D_r(t)$
2	7	47	4418	$\{47, 631\}$	$\begin{cases} 6663\\ 6537 \end{cases}$	$\begin{array}{c} 15886218131390125 \\ -36400989613740975 \end{array}$
3	13	42	5292	$\{7, 11, 37\}$	$\begin{cases} 8475\\7773 \end{cases}$	615850683070207599 - 133604270796204909
5	19	59	17405	$\{5, 59, 229\}$	$\left\{\begin{array}{c} 26238\\ 25896\end{array}\right.$	$\begin{array}{c} 13772800490106893922 \\ -21107438412836157274 \end{array}$
6	19	4	96	<i>{</i> 5 <i>}</i>	$\begin{cases} 227\\ -115 \end{cases}$	$\begin{array}{c} 48814901243 \\ -10260589521 \end{array}$
7	19	83	48223	$\{7, 47, 83\}$	$\begin{cases} 72484 \\ 72256 \end{cases}$	$\begin{array}{c} 918746050940607703528 \\ -473811154617323131552 \end{array}$
10	13	37	13690	$\{5, 37\}$	$\begin{cases} 20617 \\ 20383 \end{cases}$	$\begin{array}{r} 3303268105263818329 \\ -5819433986897632763 \end{array}$

Table 3.1 (m > 0)

Table 3.2 (m < 0)

\overline{m}	l	n	r	P_0	t	$D_r(t)$
-1	13	8	-64	{5}	129	13637284103
-2^{-1}	-	16	-512	Ø	151	103381223923
-3	7	4	-48	Ø	13	377791
-5	7	23	-2645	$\{5, 23\}$	34	52276960
-6	7	57	-19494	$\{5, 19, 557\}$	699	1542419323812333
-7	37	124	-107632	$\{7, 31, 2909\}$	813	14056744007830975

REMARK 3.1. Tables 3.1 and 3.2 enable us to guess that the absolute values $|D_r(t)|$ would be too big in general. We could probably find D smaller than $|D_r(t)|$ such that both $3 | h(\mathbb{Q}(\sqrt{D}))$ and $3 | h(\mathbb{Q}(\sqrt{mD}))$.

For each integer $m \neq 0$, let \mathfrak{D}_m be the set of integers D such that $3 \mid h(\mathbb{Q}(\sqrt{D}))$ and $3 \mid h(\mathbb{Q}(\sqrt{mD}))$. Put $\mathfrak{D}_m^+ = \{D \in \mathfrak{D}_m \mid D > 0\}$ and $\mathfrak{D}_m^- = \{D \in \mathfrak{D}_m \mid D < 0\}$. Theorem B implies that \mathfrak{D}_m^+ and \mathfrak{D}_m^- are both infinite. Some values of $D_m^+ = \min \mathfrak{D}_m^+$ and $D_m^- = \max \mathfrak{D}_m^-$ are given in Table 3.3.

REMARK 3.2. Theorem B presents an infinite family of pairs of quadratic fields $k_1 = \mathbb{Q}(\sqrt{D})$ and $k_2 = \mathbb{Q}(\sqrt{mD})$ which have unramified cyclic cubic extensions K_1 and K_2 satisfying the condition that any prime ideals of k_1 and k_2 above the fixed l are inert in K_1/k_1 and K_2/k_2 , respectively (cf. Lemma 2.2). Without this condition we may find D smaller than in Table 3.3. T. Komatsu

	Table	0.0	,	
D_m^+	D_m^-	m	D_m^+	D_m^-
761	-53	-1	473	-473
1478	-29	-2	359	-393
934	-139	-3	79	-107
1229	-29	-5	229	-157
733	-26	-6	321	-214
223	-61	-7	229	-61
	761 1478 934 1229 733	$\begin{array}{ccc} D_m^+ & D_m^- \\ \hline 761 & -53 \\ 1478 & -29 \\ 934 & -139 \\ 1229 & -29 \\ 733 & -26 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 3.3

References

- [A-C] N. C. Ankeny and S. Chowla, On the divisibility of the class number of quadratic fields, Pacific J. Math. 5 (1955), 321–324.
- [H1] P. Hartung, Explicit construction of a class of infinitely many imaginary quadratic fields whose class number is divisible by 3, J. Number Theory 6 (1974), 279–281.
- [H2] —, Proof of the existence of infinitely many imaginary quadratic fields whose class number is not divisible by 3, ibid., 276–278.
- [Ho] T. Honda, On real quadratic fields whose class numbers are multiples of 3, J. Reine Angew. Math. 233 (1968), 101–102.
- [K] T. Komatsu, A family of infinite pairs of quadratic fields $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{-D})$ whose class numbers are both divisible by 3, Acta Arith. 96 (2001), 213–221.
- [L-N] P. Llorente and E. Nart, Effective determination of the decomposition of the rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579–585.
- [N] T. Nagel, Über die Klassenzahl imaginär-quadratischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg 1 (1922), 140–150.
- [R] H. Reichardt, Arithmetische Theorie der kubischen Körper als Radikalkörper, Monatsh. Math.-Phys. 40 (1933), 323–350.
- [Sc] A. Scholz, Über die Beziehung der Klassenzahlen quadratischer Körper zueinander, J. Reine Angew. Math. 166 (1932), 201–203.
- [Si] C. Siegel, Über einige Anwendungen diophantischer Approximationen, in: Collected Works, Springer, 1966, 209–266.
- [Sil] J. H. Silverman, The Arithmetic of Elliptic Curve, Springer, New York, 1986.
- [T] N. Tschebotareff [N. Chebotarev], Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören, Math. Ann. 95 (1926), 191–228.
- [W] P. J. Weinberger, *Real quadratic fields with class numbers divisible by n*, J. Number Theory 5 (1973), 237–241.
- [Y] Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57–76.

Department of Mathematics Tokyo Metropolitan University Minami-Ohsawa 1-1, Hachioji-shi Tokyo 192-0397, Japan E-mail: trkomatu@comp.metro-u.ac.jp

(3935)