An infinite family of pairs of quadratic fields $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{m D})$ whose class numbers are both divisible by 3

by
Toru Komatsu (Tokyo)
Introduction. In [A-C], [H1], [Ho], [N], [W] and [Y] their authors study the divisibility of the class number of a quadratic field and state that there exist infinitely many quadratic fields whose class numbers are divisible by 3 . Hartung [H2] proves the existence of infinitely many imaginary quadratic fields whose class numbers are not divisible by 3 . In this paper we show

Theorem A. Fix a rational integer $m \in \mathbb{Z}(m \neq 0)$. Then there exist infinitely many quadratic fields $\mathbb{Q}(\sqrt{D})$ such that the class numbers of $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{m D})$ are both divisible by 3 .

In the case $m=-3$, this theorem is deduced from Scholz's theorem and a result of Honda. In fact, Scholz $[\mathrm{Sc}]$ gave a relation between the 3-rank r of the ideal class group of a real quadratic field $\mathbb{Q}(\sqrt{D})$ and the 3-rank s of an imaginary quadratic field $\mathbb{Q}(\sqrt{-3 D})$.

Theorem (A. Scholz). We have the inequality $r \leq s \leq r+1$. In particular, if $3 \mid h(\mathbb{Q}(\sqrt{D}))$ for a positive integer D, then $3 \mid h(\mathbb{Q}(\sqrt{-3 D}))$.

Honda [Ho] constructed an infinite family of real quadratic fields whose class numbers are divisible by 3 . These results imply that there exist infinitely many quadratic fields $\mathbb{Q}(\sqrt{D})$ such that the class numbers of $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{-3 D})$ are both divisible by 3 .

In $[\mathrm{K}]$ we showed the existence of an infinite family of quadratic fields $\mathbb{Q}(\sqrt{D})$ with $3 \mid h(\mathbb{Q}(\sqrt{D}))$ and $3 \mid h(\mathbb{Q}(\sqrt{-D}))$. Our Theorem A is a generalization of this result. The divisibility of the class number by 3 is verified by the construction of an explicit cubic polynomial which gives an unramified cyclic cubic extension of the quadratic field.

We prove Theorem A by the following construction.
Let $m \in \mathbb{Z}$ be a square-free integer with $m \neq 1$. Let l be a prime number which splits in the extension $\mathbb{Q}(\sqrt{m}) / \mathbb{Q}$ and is inert in the extension

[^0]$\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$. We take an integer $n \in \mathbb{Z}$ such that
\[

n \equiv $$
\begin{cases} \pm(4 m-3)(\bmod 27) & \text { if } m \equiv 1(\bmod 3) \\ \pm(4 m+12)(\bmod 27) & \text { if } m \equiv 2(\bmod 3) \\ \pm 4 m(\bmod 27) & \text { if } m \equiv 3(\bmod 9) \\ \pm 1(\bmod 3) & \text { otherwise }\end{cases}
$$
\]

and $m n^{2} \equiv 1(\bmod l)$. Now put $r=m n^{2}$. Let P be the set of all prime divisors of $r(r-1)$ except 3 . We denote by T the set of integers $t \in \mathbb{Z}$ which satisfy the conditions:

$$
t \equiv \begin{cases}4 \operatorname{or} 7(\bmod 9) & \text { if } m \equiv 1(\bmod 3) \\ 3(\bmod 9) & \text { if } m \equiv 2(\bmod 3) \\ -3(\bmod 27) & \text { if } m \equiv 3(\bmod 9) \\ \pm(r / 3)^{2}(\bmod 9) & \text { otherwise }\end{cases}
$$

$t \equiv-1(\bmod l)$ and $t \not \equiv r(\bmod p)$ for every $p \in P$. Decompose T into two subsets T_{1} and T_{2} where $T_{1}=\{t \in T \mid t \geq 3 r / 2\}$ and $T_{2}=\{t \in T \mid t<$ $3 r / 2\}$. Define

$$
D_{r}(X)=\left(3 X^{2}+r\right)\left(2 X^{3}-3(r+1) X^{2}+6 r X-r(r+1)\right) / 27
$$

Let $\mathcal{F}(S)$ denote the family $\left\{\mathbb{Q}\left(\sqrt{D_{r}(t)}\right) \mid t \in S\right\}$ for a subset S of \mathbb{Z}. Then we have

Theorem B. For every $t \in T$, the class numbers of $\mathbb{Q}\left(\sqrt{D_{r}(t)}\right)$ and $\mathbb{Q}\left(\sqrt{m D_{r}(t)}\right)$ are both divisible by 3. Moreover, the families $\mathcal{F}\left(T_{1}\right), \mathcal{F}\left(T_{2}\right)$ and $\mathcal{F}(T)$ each include infinitely many quadratic fields. In particular, when $m>0$, the quadratic fields $\mathbb{Q}\left(\sqrt{D_{r}(t)}\right)$ and $\mathbb{Q}\left(\sqrt{m D_{r}(t)}\right)$ are both real (resp. both imaginary) if $t \in T_{1}$ (resp. $t \in T_{2}$).

Let \mathbb{Z}, \mathbb{Q} and \mathbb{F}_{p} be the ring of rational integers, the field of rational numbers and the finite field of p elements, respectively. For a prime number p and an integer $a, v_{p}(a)$ is the greatest exponent n such that $p^{n} \mid a$. The class number of an algebraic number field F is denoted by $h(F)$.

I wish to express my deepest gratitude to Professor Masato Kurihara for his guidance, encouragement and criticism throughout my study.

1. Existence of the prime number l and the integer n. First of all we claim that there exists a prime number l which splits in $\mathbb{Q}(\sqrt{m}) / \mathbb{Q}$ and is inert in $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$. Let \mathcal{L} be the set of all such primes l.

Lemma 1.1. The set \mathcal{L} is infinite.
Proof. Put $M_{1}=\mathbb{Q}(\sqrt{m}, \sqrt{-3}, \sqrt[3]{2})$ and $M_{2}=\mathbb{Q}(\sqrt{m}, \sqrt{-3})$. Then M_{1} is Galois over \mathbb{Q}. Let σ be an element of the Galois group $G=\operatorname{Gal}\left(M_{1} / \mathbb{Q}\right)$ such that $\langle\sigma\rangle=\operatorname{Gal}\left(M_{1} / M_{2}\right)$. It is easy to see that the conjugate class C of σ in G is $\left\{\sigma, \sigma^{2}\right\}$. We note that $l \in \mathcal{L}$ splits in $\mathbb{Q}(\sqrt{-3}) / \mathbb{Q}$ since l is inert in
$\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$. In fact, $\mathbb{Q}(\sqrt{-3}, \sqrt[3]{2}) / \mathbb{Q}$ is a Galois extension whose group is not cyclic. Thus, for every prime ideal \mathfrak{l} of M_{1} lying above $l \in \mathcal{L}$, the Frobenius automorphism of \mathfrak{l} is σ or σ^{2}. Conversely, if the Frobenius automorphism of a prime \mathfrak{l}_{0} of M_{1} is σ or σ^{2}, then the prime l_{0} below \mathfrak{l}_{0} belongs to \mathcal{L}. It follows from the Chebotarev density theorem [T$]$ that

$$
\lim _{s \rightarrow 1+0}\left(\log \frac{1}{s-1}\right)^{-1} \sum_{l \in \mathcal{L}} \frac{1}{l^{s}}=\frac{|C|}{|G|}= \begin{cases}1 / 3 & \text { if } m=-3 \\ 1 / 6 & \text { otherwise }\end{cases}
$$

In particular, the set \mathcal{L} has infinitely many primes.
To end this section we show the existence of the integer n which is taken for our construction in the introduction. Note that $l \neq 3$. Indeed, $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ is totally ramified at 3 . From the assumption that l splits in $\mathbb{Q}(\sqrt{m}) / \mathbb{Q}$, we have $m \in \mathbb{F}_{l}^{\times 2}$, that is, there exists an integer z_{0} satisfying $z_{0}^{2} \equiv m$ $(\bmod l)$. Then we also have an integer z_{1} such that $z_{0} z_{1}=1(\bmod l)$ since z_{0} is invertible in \mathbb{F}_{l}. Let z_{2} be an integer. The Chinese remainder theorem implies that there exist infinitely many integers z so that $z \equiv \pm z_{1}(\bmod l)$ and $z \equiv z_{2}\left(\bmod 3^{3}\right)$. The integer n is one of such z 's.

So Theorem A follows from Theorem B.
2. Proof of Theorem B. Let m, l, n, r, P and T be as in the introduction. Here T is an infinite set by the Chinese remainder theorem. We shall show that $3 \mid h\left(\mathbb{Q}\left(\sqrt{D_{r}(t)}\right)\right)$ and $3 \mid h\left(\mathbb{Q}\left(\sqrt{m D_{r}(t)}\right)\right)$ for each $t \in T$. For a fixed $t \in T$, we put $u=t^{3}+3 t r, w=3 t^{2}+r, a=u-w, b=u-r w$ and $c=t^{2}-r$. Then u, w, a, b and c are integers such that $(t+\sqrt{r})^{3}=u+w \sqrt{r}$ and $r a^{2}-b^{2}=(r-1) c^{3}$.

Lemma 2.1. The integer c is odd and $\operatorname{gcd}(a b, c)=3^{e}$ for some $e \in \mathbb{Z}$.
Proof. Note that $2 \in P$ since $r(r-1)$ is even. By the assumption $t \not \equiv r$ $(\bmod 2), c=t^{2}-r$ is odd. Let p be a prime divisor of $\operatorname{gcd}(a b, c)$. Then we have $r \equiv t^{2}(\bmod p)$ and $a b=(u-w)(u-r w) \equiv-2^{4} t^{5}(t-1)^{2} \equiv 0$ $(\bmod p)$. Here, c is odd and so is p. This means that $t \equiv 0$ or $1(\bmod p)$. If $t \equiv 0(\bmod p)$, then $r \equiv 0(\bmod p)$. This implies that $p \in P$ or $p=3$. Since $t \equiv r \equiv 0(\bmod p)$, we see $p \notin P$ and thus $p=3$. When $t \equiv 1(\bmod p)$, we have $r \equiv 1(\bmod p)$, which also yields $p=3$. Hence, $\operatorname{gcd}(a b, c)=3^{e}$ for some $e \in \mathbb{Z}$.

Define $f_{1}(Z)=Z^{3}-3 c Z-2 a$ and $f_{2}(Z)=Z^{3}-3 c Z-2 b$.
Lemma 2.2. The polynomials $f_{1}(Z)$ and $f_{2}(Z)$ are both irreducible over \mathbb{F}_{l}. In particular, $f_{1}(Z)$ and $f_{2}(Z)$ are both irreducible over \mathbb{Q}.

Proof. It follows from the definition that $r \equiv 1(\bmod l)$ and $t \equiv-1$ $(\bmod l)$. Then $a \equiv b \equiv-2^{3}(\bmod l)$ and $c \equiv 0(\bmod l)$. Thus, $f_{i}(Z) \equiv Z^{3}+2^{4}$ $(\bmod l)$ for each $i=1,2$. Since l is inert in $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}, Z^{3}-2$ is irreducible
over \mathbb{F}_{l} and so is $Z^{3}+2^{4}$. Therefore $f_{i}(Z)$ is irreducible over \mathbb{F}_{l}, and hence also over \mathbb{Q}.

Let $f(Z)$ be an irreducible cubic polynomial of the form $f(Z)=Z^{3}-$ $\alpha Z-\beta$ for $\alpha, \beta \in \mathbb{Z}$. We denote by K_{f} the minimal splitting field of $f(Z)$ over \mathbb{Q}, and $k_{f}=\mathbb{Q}\left(\sqrt{4 \alpha^{3}-27 \beta^{2}}\right)\left(\subset K_{f}\right)$. Assume $\operatorname{gcd}(\alpha, \beta)=3^{\varepsilon}$ for some $\varepsilon \in \mathbb{Z}$. Let δ be the maximal integer such that $\alpha / 3^{2 \delta}, \beta / 3^{3 \delta} \in \mathbb{Z}$. We put $\alpha_{0}=\alpha / 3^{2 \delta}$ and $\beta_{0}=\beta / 3^{3 \delta}$.

Proposition LN ([L-N], [R]). The extension K_{f} / k_{f} is unramified if one of the following conditions holds:
(i) $3 \nmid \alpha_{0}$,
(ii) $v_{3}\left(\alpha_{0}\right)=1$ and $v_{3}\left(\beta_{0}\right) \geq 2$,
(iii) $\alpha_{0} \equiv 3(\bmod 9)$ and $\beta_{0}^{2} \equiv \alpha_{0}+1(\bmod 27)$.

REMARK 2.3. In [L-N] and [R] more general conditions are considered. However, Proposition LN is enough for us to show Lemma 2.4 below.

Lemma 2.4. The extensions $K_{f_{1}} / k_{f_{1}}$ and $K_{f_{2}} / k_{f_{2}}$ are both unramified.
We need the following lemma.
Lemma 2.5. We have

$$
r \equiv \begin{cases}1\left(\bmod 3^{3}\right) & \text { if } m \equiv 1(\bmod 3) \\ -10\left(\bmod 3^{3}\right) & \text { if } m \equiv 2(\bmod 3) \\ -2 \cdot 3^{3}\left(\bmod 3^{5}\right) & \text { if } m \equiv 3(\bmod 9) \\ -3\left(\bmod 3^{2}\right) & \text { otherwise }\end{cases}
$$

Proof. When $m \equiv 1(\bmod 3)$, we have

$$
r \equiv m(4 m-3)^{2}=(m-1)(4 m-1)^{2}+1 \equiv 1(\bmod 27)
$$

If $m \equiv 2(\bmod 3)$, then $r \equiv m(4 m+12)^{2}=16(m+1)^{2}(m+4)-64 \equiv-10$ $(\bmod 27)$. Assume $m \equiv 3(\bmod 9)$. Then we have $r / 3^{3}=(m / 3)(n / 3)^{2} \equiv$ $16(m / 3)^{3}(\bmod 9)$. It follows from $m / 3 \equiv 1(\bmod 3)$ that $(m / 3)^{3} \equiv 1$ $(\bmod 9)$. Thus, $r / 3^{3} \equiv-2(\bmod 9)$ and $r \equiv-2 \cdot 3^{3}\left(\bmod 3^{5}\right)$. For the case $m \equiv 6(\bmod 9)$, we have $r \equiv m \equiv-3(\bmod 9)$.

Proof of Lemma 2.4. We first assume $m \equiv 1(\bmod 3)$. By the definition, $t \equiv 4$ or $7(\bmod 9)$. Then $c=t^{2}-r \equiv 0(\bmod 3)$ and $c \not \equiv 0(\bmod 9)$. This means $v_{3}(c)=1$. On the other hand, $u \equiv t^{3}+3 t(\bmod 27)$ and $w \equiv 3 t^{2}+1$ $(\bmod 27)$. Thus we have $a \equiv b \equiv(t-1)^{3} \equiv 0(\bmod 27)$, that is, $v_{3}(a) \geq 3$ and $v_{3}(b) \geq 3$. It follows from Lemmas 2.1 and 2.2 that $f_{1}(Z)$ and $f_{2}(Z)$ satisfy the assumptions of Proposition LN. Hence Proposition LN(i) shows that $K_{f_{1}} / k_{f_{1}}$ and $K_{f_{2}} / k_{f_{2}}$ are both unramified.

When $m \equiv 2(\bmod 3)$, we have $r \equiv-10(\bmod 27)$ and $t \equiv 3(\bmod 9)$. This implies that $a \equiv 1(\bmod 27), b \equiv-1(\bmod 27)$ and $c \equiv 1(\bmod 9)$. Thus $K_{f_{1}} / k_{f_{1}}$ and $K_{f_{2}} / k_{f_{2}}$ are both unramified by Proposition LN(iii).

If $m \equiv 3(\bmod 9)$, then $v_{3}(a) \geq 3, v_{3}(b) \geq 3$ and $v_{3}(c)=2$. Put $r_{0}=r / 3^{3}$ and $t_{0}=t / 3$. Then $r_{0} \equiv-2(\bmod 9)$ and $t_{0} \equiv-1(\bmod 9)$. This means that $a / 3^{3}=t_{0}^{3}-t_{0}^{2}+9 t_{0} r_{0}-r_{0} \equiv 0(\bmod 9)$ and $c / 3^{2}=t_{0}^{2}-3 r_{0} \equiv 1$ $(\bmod 3)$. Proposition $\mathrm{LN}(i i)$ implies that $K_{f_{1}} / k_{f_{1}}$ is unramified. On the other hand, we have $b / 3^{3} \equiv t_{0}^{3}+9 t_{0} r_{0}(\bmod 27)$. Then $\left(2 b / 3^{3}\right)^{2}-3 c / 3^{2}-1 \equiv$ $4\left(t_{0}^{6}+18 t_{0}^{4} r_{0}\right)-3 t_{0}^{2}+9 r_{0}-1=\left(t_{0}^{2}-1\right)\left(2 t_{0}^{2}+1\right)^{2}+9\left(8 t_{0}^{4}+1\right) r_{0} \equiv 0(\bmod 27)$. Thus Proposition LN(iii) shows that $K_{f_{2}} / k_{f_{2}}$ is unramified.

Finally we consider the case $m \equiv 6(\bmod 9)$. It follows from $t \equiv \pm(r / 3)^{2}$ $(\bmod 9)$ that $t^{2} \equiv(r / 3)^{4}(\bmod 9)$. By Lemma 2.5 we have $r / 3 \equiv-1(\bmod 3)$ and $(r / 3)^{3} \equiv-1(\bmod 9)$. Thus, $t^{2} \equiv-r / 3(\bmod 9)$ and $r \equiv-3 t^{2}(\bmod 27)$. This implies that $a \equiv b \equiv-8 t^{3}(\bmod 27)$ and $c \equiv 4 t^{2}(\bmod 27)$. Then we have $4 a^{2}-3 c-1 \equiv 4 b^{2}-3 c-1 \equiv 13 t^{6}-12 t^{2}-1=\left(t^{2}-1\right)\left(2 t^{2}+1\right)^{2}+$ $9 t^{2}\left(t^{4}-1\right) \equiv 0(\bmod 27)$. Hence $K_{f_{1}} / k_{f_{1}}$ and $K_{f_{2}} / k_{f_{2}}$ are both unramified from Proposition LN(iii).

By the definition we have

$$
\begin{aligned}
4(3 c)^{3}-27(2 a)^{2} & =108\left(3 t^{2}+r\right)\left(2 t^{3}-3(r+1) t^{2}+6 r t-r(r+1)\right) \\
& =54^{2} D_{r}(t), \\
4(3 c)^{3}-27(2 b)^{2} & =108 r\left(3 t^{2}+r\right)\left(2 t^{3}-3(r+1) t^{2}+6 r t-r(r+1)\right) \\
& =(54 n)^{2} m D_{r}(t) .
\end{aligned}
$$

Thus, $k_{f_{1}}=\mathbb{Q}\left(\sqrt{D_{r}(t)}\right)$ and $k_{f_{2}}=\mathbb{Q}\left(\sqrt{m D_{r}(t)}\right)$. Lemma 2.4 and class field theory imply

Proposition 2.6. The class numbers of $\mathbb{Q}\left(\sqrt{D_{r}(t)}\right)$ and $\mathbb{Q}\left(\sqrt{m D_{r}(t)}\right)$ are both divisible by 3 for every $t \in T$.

Recall that $\mathcal{F}(S)$ is the family $\left\{\mathbb{Q}\left(\sqrt{D_{r}(t)}\right) \mid t \in S\right\}$ for $S \subset \mathbb{Z}$. We next show

Proposition 2.7. The families $\mathcal{F}\left(T_{1}\right), \mathcal{F}\left(T_{2}\right)$ and $\mathcal{F}(T)$ each include infinitely many quadratic fields.

Proof. Assume $S \neq \emptyset$ is a subset of T such that $\mathcal{F}(S)$ is finite. We will choose t_{0} from T so that $\mathcal{F}(S) \subsetneq \mathcal{F}\left(S \cup\left\{t_{0}\right\}\right)$. Let M_{S} be the composite field of all quadratic fields which belong to $\mathcal{F}(S)$, and P_{S} the set of prime numbers ramifying in M_{S} / \mathbb{Q}. We note that P_{S} is finite since M_{S} / \mathbb{Q} is of finite degree. Thus there exists a prime number q such that $q \notin P \cup P_{S} \cup\{3\}$ and $3 x^{2}+r \equiv 0(\bmod q)$ for some $x \in \mathbb{Z}$. Taking such a q with x, we define $x_{0}=x$ or $x_{0}=x+q$ according to whether $3 x^{2}+r \not \equiv 0\left(\bmod q^{2}\right)$ or not. This implies that $3 x_{0}^{2}+r \equiv 0(\bmod q)$ and $3 x_{0}^{2}+r \not \equiv 0\left(\bmod q^{2}\right)$.

Now we put $g_{r}(X)=2 X^{3}-3(r+1) X^{2}+6 r X-r(r+1)$. Then $D_{r}(X)=$ $\left(3 X^{2}+r\right) g_{r}(X) / 27$ and $3 g_{r}(X)=(2 X-3 r-3)\left(3 X^{2}+r\right)+16 r X$. When
$g_{r}\left(x_{0}\right) \equiv 0(\bmod q)$, we have $16 r x_{0} \equiv 0(\bmod q)$, which contradicts the assumption on q and x. Hence, $D_{r}\left(x_{0}\right) \equiv 0(\bmod q)$ and $D_{r}\left(x_{0}\right) \not \equiv 0\left(\bmod q^{2}\right)$. On the other hand, there exists $t_{0} \in T$ such that $t_{0} \equiv x_{0}\left(\bmod q^{2}\right)$ by $q \notin P \cup\{3\}$ and the Chinese remainder theorem. Then we have $D_{r}\left(t_{0}\right) \equiv$ $D_{r}\left(x_{0}\right) \equiv 0(\bmod q)$ and $D_{r}\left(t_{0}\right) \equiv D_{r}\left(x_{0}\right) \not \equiv 0\left(\bmod q^{2}\right)$. This shows that q ramifies in $\mathbb{Q}\left(\sqrt{D_{r}\left(t_{0}\right)}\right) / \mathbb{Q}$ and in $M_{S}\left(\sqrt{D_{r}\left(t_{0}\right)}\right) / \mathbb{Q}$. Since M_{S} / \mathbb{Q} is not ramified at q, we have $M_{S} \subsetneq M_{S}\left(\sqrt{D_{r}\left(t_{0}\right)}\right)$ and $\mathcal{F}(S) \subsetneq \mathcal{F}\left(S \cup\left\{t_{0}\right\}\right)$.

Here the family $\mathcal{F}\left(S \cup\left\{t_{0}\right\}\right)$ is also finite. Hence we may construct an infinite increasing sequence of subsets S_{i} of T such that $\mathcal{F}(S) \subsetneq \mathcal{F}\left(S_{1}\right) \subsetneq$ $\mathcal{F}\left(S_{2}\right) \subsetneq \ldots$ where $S \subsetneq S_{1} \subsetneq S_{2} \subsetneq \ldots$ This means that $\mathcal{F}(T)$ is infinite. In the same way we show that $\mathcal{F}\left(T_{1}\right)$ and $\mathcal{F}\left(T_{2}\right)$ are also infinite.

Remark 2.8. By using Siegel's theorem (cf. [Si] or [Sil]) we can prove Proposition 2.7 in the same manner as in $[\mathrm{K}]$.

Finally we study when $\mathbb{Q}\left(\sqrt{D_{r}(t)}\right)$ and $\mathbb{Q}\left(\sqrt{m D_{r}(t)}\right)$ are both real (or both imaginary). If $m<0$, then one of $\mathbb{Q}\left(\sqrt{D_{r}(t)}\right)$ and $\mathbb{Q}\left(\sqrt{m D_{r}(t)}\right)$ is real, and the other imaginary. For the case $m>0$, we have the following criterion:

Proposition 2.9. Assume $m>0$. Then $\mathbb{Q}\left(\sqrt{D_{r}(t)}\right)$ and $\mathbb{Q}\left(\sqrt{m D_{r}(t)}\right)$ are both real (resp. both imaginary) if $t \in T_{1}$ (resp. $t \in T_{2}$).

This follows immediately from
Lemma 2.10. When $r \geq 2$, we have $D_{r}(t)>0$ if and only if $t \geq 3 r / 2$.
Proof. Recall that $D_{r}(t)=\left(3 t^{2}+r\right) g_{r}(t) / 27$ where $g_{r}(t)=2 t^{3}-3(r+1) t^{2}$ $+6 r t-r(r+1)$. Since r is positive, the sign of $D_{r}(t)$ coincides with that of $g_{r}(t)$. The derivative of $g_{r}(X)$ is equal to $\partial g_{r}(X) / \partial X=6(X-1)(X-r)$. It is easily seen that $g_{r}(1)=-(r-1)^{2}<0$. This means that $g_{r}(X)=0$ has only one real root. By some calculation we find that $g_{r}(3 r / 2-1 / 2)=$ $-(r-1)^{2}<0$ and $g_{r}(3 r / 2)=r(5 r-4) / 4>0$. This shows that $g_{r}(t)>0$ if and only if $t \geq 3 r / 2$. Hence $D_{r}(t)>0$ is equivalent to $t \geq 3 r / 2$.

Concerning the $D_{r}(X)$, we make the following remark. Generally $D_{r}(x)$ is not an integer for some $x \in \mathbb{Z}$. However,

Lemma 2.11. For every m and every $t \in T, D_{r}(t)$ is an integer.
Proof. If $m \equiv 1$ or $2(\bmod 3)$, then $g_{r}(t) \equiv 0(\bmod 27)$ from Lemma 2.5 and the definition of t in the introduction. When $m \equiv 3(\bmod 9)$, we have $3 t^{2}+r \equiv 0(\bmod 27)$ since $27 \mid r$ and $3 \mid t$. For the case $m \equiv 6(\bmod 9)$, it is already shown in the proof of Lemma 2.4 that $3 t^{2}+r \equiv 0(\bmod 27)$. Hence $D_{r}(t)=\left(3 t^{2}+r\right) g_{r}(t) / 27 \in \mathbb{Z}$.

Propositions 2.6, 2.7 and 2.9 imply Theorem B.
3. Some examples and remarks pertaining to Theorem B. For each square-free integer $m \neq 1$ in a range of m we calculated the smallest l, the smallest $|n|$ and several $t \in T$ as in the introduction. Table 3.1 contains the results for the case $1<m \leq 10$. Here we take the integers t from T_{1} and T_{2} nearest to $3 r / 2$. In Table $3.2,-10<m \leq-1$. For each m in Table 3.2, t is the smallest positive integer in T. We set $P_{0}=P \backslash\{2, l\}$.

Table $3.1(m>0)$

m	l	n	r	P_{0}	t	$D_{r}(t)$
2		747	4418	\{47, 631 $\}$	$\left\{\begin{array}{l}6663 \\ 6537\end{array}\right.$	$\begin{array}{r} 15886218131390125 \\ -36400989613740975 \end{array}$
3		342	5292	\{7, 11, 37\}	$\left\{\begin{array}{l}8475 \\ 7773\end{array}\right.$	615850683070207599 -133604270796204909
5		959	17405	\{5, 59, 229\}	$\left\{\begin{array}{l}26238 \\ 25896\end{array}\right.$	13772800490106893922 -21107438412836157274
6		94	96	\{5\}	$\left\{\begin{array}{r}227 \\ -115\end{array}\right.$	48814901243 -10260589521
7	19	983	48223	\{7, 47, 83\}	$\left\{\begin{array}{l}72484 \\ 72256\end{array}\right.$	$\begin{array}{r} 918746050940607703528 \\ -473811154617323131552 \end{array}$
10		337	13690	\{5, 37\}	$\left\{\begin{array}{l} 20617 \\ 20383 \end{array}\right.$	$\begin{array}{r} 3303268105263818329 \\ -5819433986897632763 \end{array}$

Table $3.2(m<0)$

m	l	n	r	P_{0}	t	$D_{r}(t)$
-1	13	8	-64	$\{5\}$	129	13637284103
-2	19	16	-512	\emptyset	151	103381223923
-3	7	4	-48	\emptyset	13	377791
-5	7	23	-2645	$\{5,23\}$	34	52276960
-6	7	57	-19494	$\{5,19,557\}$	699	1542419323812333
-7	37	124	-107632	$\{7,31,2909\}$	813	14056744007830975

Remark 3.1. Tables 3.1 and 3.2 enable us to guess that the absolute values $\left|D_{r}(t)\right|$ would be too big in general. We could probably find D smaller than $\left|D_{r}(t)\right|$ such that both $3 \mid h(\mathbb{Q}(\sqrt{D}))$ and $3 \mid h(\mathbb{Q}(\sqrt{m D}))$.

For each integer $m \neq 0$, let \mathfrak{D}_{m} be the set of integers D such that $3 \mid h(\mathbb{Q}(\sqrt{D}))$ and $3 \mid h\left(\mathbb{Q}(\sqrt{m D})\right.$. Put $\mathfrak{D}_{m}^{+}=\left\{D \in \mathfrak{D}_{m} \mid D>0\right\}$ and $\mathfrak{D}_{m}^{-}=$ $\left\{D \in \mathfrak{D}_{m} \mid D<0\right\}$. Theorem B implies that \mathfrak{D}_{m}^{+}and \mathfrak{D}_{m}^{-}are both infinite. Some values of $D_{m}^{+}=\min \mathfrak{D}_{m}^{+}$and $D_{m}^{-}=\max \mathfrak{D}_{m}^{-}$are given in Table 3.3.

Remark 3.2. Theorem B presents an infinite family of pairs of quadratic fields $k_{1}=\mathbb{Q}(\sqrt{D})$ and $k_{2}=\mathbb{Q}(\sqrt{m D})$ which have unramified cyclic cubic extensions K_{1} and K_{2} satisfying the condition that any prime ideals of k_{1} and k_{2} above the fixed l are inert in K_{1} / k_{1} and K_{2} / k_{2}, respectively (cf. Lemma 2.2). Without this condition we may find D smaller than in Table 3.3.

Table 3.3

| m | D_{m}^{+} | D_{m}^{-} | | | |
| ---: | ---: | ---: | ---: | :--- | ---: | ---: | | m | D_{m}^{+} | D_{m}^{-} | | | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 761 | -53 | | -1 | 473 |
| 3 | 1478 | -29 | | -2 | 359 |
| 5 | 934 | -139 | | -393 | |
| 6 | 1229 | -29 | | -5 | 229 |
| 7 | 733 | -26 | | -107 | |
| 10 | 223 | -61 | | -7 | 229 |

References

[A-C] N. C. Ankeny and S. Chowla, On the divisibility of the class number of quadratic fields, Pacific J. Math. 5 (1955), 321-324.
[H1] P. Hartung, Explicit construction of a class of infinitely many imaginary quadratic fields whose class number is divisible by 3, J. Number Theory 6 (1974), 279-281.
[H2] —, Proof of the existence of infinitely many imaginary quadratic fields whose class number is not divisible by 3, ibid., 276-278.
[Ho] T. Honda, On real quadratic fields whose class numbers are multiples of 3, J. Reine Angew. Math. 233 (1968), 101-102.
$[\mathrm{K}] \quad \mathrm{T}$. Komatsu, A family of infinite pairs of quadratic fields $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{-D})$ whose class numbers are both divisible by 3, Acta Arith. 96 (2001), 213-221.
[L-N] P. Llorente and E. Nart, Effective determination of the decomposition of the rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579-585.
[N] T. Nagel, Über die Klassenzahl imaginär-quadratischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg 1 (1922), 140-150.
[R] H. Reichardt, Arithmetische Theorie der kubischen Körper als Radikalkörper, Monatsh. Math.-Phys. 40 (1933), 323-350.
[Sc] A. Scholz, Über die Beziehung der Klassenzahlen quadratischer Körper zueinander, J. Reine Angew. Math. 166 (1932), 201-203.
[Si] C. Siegel, Über einige Anwendungen diophantischer Approximationen, in: Collected Works, Springer, 1966, 209-266.
[Sil] J. H. Silverman, The Arithmetic of Elliptic Curve, Springer, New York, 1986.
[T] N. Tschebotareff [N. Chebotarev], Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören, Math. Ann. 95 (1926), 191-228.
[W] P. J. Weinberger, Real quadratic fields with class numbers divisible by n, J. Number Theory 5 (1973), 237-241.
[Y] Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57-76.

Department of Mathematics
Tokyo Metropolitan University
Minami-Ohsawa 1-1, Hachioji-shi
Tokyo 192-0397, Japan
E-mail: trkomatu@comp.metro-u.ac.jp

[^0]: 2000 Mathematics Subject Classification: Primary 11R29; Secondary 11R11.

