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Bounds for quadratic Waring’s problem

by

Myung-Hwan Kim (Seoul) and Byeong-Kweon Oh (Columbus, OH)

1. Introduction. In 1770, Lagrange [L] proved the famous four square
theorem, i.e., for every positive integer n, there exists an integer solution of
the equation

x2 + y2 + z2 + w2 = n.

After Lagrange, this theorem was generalized in many directions. One
interesting generalizations concerns the so-called new (or quadratic) War-
ing’s problem due to L. J. Mordell [M1], which is about sums of squares
that represent all positive integral quadratic forms of given rank. In par-
ticular, Mordell proved that every binary positive integral quadratic form
can be represented by a sum of five squares. Later, C. Ko [K1] proved that
every ternary (quaternary or quinary) positive integral quadratic form can
be represented by a sum of six (seven or eight, respectively) squares. So,
they naturally expected that every positive n-ary integral quadratic form
could be represented by a sum of n + 3 squares. This, however, turned out
to be false. The quadratic form defined by the root lattice E6 cannot be
represented by sums of squares (see [M2], [CS2] and [Pl]). After Mordell
found this, several authors tried to determine the minimum number g[n] of
squares whose sum represents all positive integral quadratic forms of rank
n that are representable by sums of squares.

We adopt lattice-theoretic language. A Z-lattice L is a finitely generated
free Z-module in Rn equipped with a non-degenerate symmetric bilinear
form B such that B(L,L) ⊂ Z. The corresponding quadratic map is denoted
by Q, i.e., Q(e) = B(e, e) for every e ∈ L. The ideal of Z generated by
B(ei, ej)’s is called the scale of L, denoted by s(L). For a Z-lattice

L = Ze1 + . . .+ Zem
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with basis {e1, . . . , em}, we define the corresponding matrix

ML := (B(ei, ej)),

which is an m×m symmetric integer matrix. We often identify a Z-lattice
L with its corresponding matrix ML. If ML is diagonal, we often write

L = 〈Q(e1), . . . , Q(en)〉 = 〈Q(e1)〉 ⊥ . . . ⊥ 〈Q(en)〉.
For a ∈ R×, we let

aL := Z(ae1) + . . .+ Z(aen).

The lattice Zn equipped with the standard inner product is denoted by In.
A Z-lattice L is said to be positive definite or simply positive if Q(e) > 0
for every e ∈ L, e 6= 0. In this paper, we always assume the following unless
stated otherwise:

(1) Every Z-lattice considered is positive definite.

A Z-lattice L is said to be even when Q(L) ⊂ 2Z, and odd, otherwise.
As usual,

detL := det(B(ei, ej))

is called the discriminant of L. A Z-lattice L is said to be unimodular if
detL = 1. For a Z-lattice L and a prime p,

Lp := ZpL = Zp ⊗Z L
is a Zp-lattice called the localization of L at p, where Zp is the p-adic integer
ring.

Let `, L be Z-lattices. We say that L represents ` if there is an injective
Z-linear map from ` into L that preserves the bilinear forms, and write
` → L. Such a map is called a representation. A representation is called
an isometry if it is surjective. We say that ` and L are isometric and write
` ' L if there exists an isometry between them. For a Z-lattice L, we define
the class and genus of L by

cls(L) := {K : Z-lattice | K ' L over Z},
gen(L) := {K : Z-lattice | Kp ' Lp over Zp for all p}.

It is well known that gen(L) contains a finite number of distinct classes.
This number is called the class number of L, denoted by h(L). If `p → Lp
for all p, or equivalently `→ gen(L), then it is known that `→ K for some
K ∈ gen(L).

Let

Sn := {` : Z-lattice | `→ Ig for some g, rank(`) = n},
and

(2) g[n] := min{g | `→ Ig for every ` ∈ Sn}.
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Applying the results in [HKK], one can easily prove that g[n] exists for
all n. The four-square theorem of Lagrange, and the results of Mordell and
Ko mentioned above can be summarized as follows:

(3) g[n] = n+ 3 for 1 ≤ n ≤ 5.

In fact, this is an immediate consequence of the fact that the class number
of In is 1 for 1 ≤ n ≤ 8 and of the local representation theory. The following
question arises quite naturally:

Is g[n] = n+ 3 for all n ≥ 1?

Concerning this question, Ko conjectured in [K2] that g[6] = 9. However,
the authors proved recently [KO1,2] that

(4) g[n] ≥ b3n/2c+ 1 > n+ 3 for all n ≥ 6, g[6] = 10.

The first explicit upper bound for g[n] was given by Icaza [Ic]. She ob-
tained her bound by computing the so-called HKK-constant. But her bound
is huge containing a factor

nn+12 4h(In+3),

where h(In) = nΘ(n2). Recently, the authors improved the bounds of g[n] as
follows:

(5) 2n− dlog2 ne − 2 ≤ g[n] ≤ 3 · 3n/2 τn+3 + n+ 4

for n ≥ 14 where

τk :=
k∑

i=17

b2 log2 ic − k + 18 = O(k log k)

for k ≥ 17 (see [KO3]). For small n’s, Oh [Oh] proved

(6) g[n] ≤ n(n+ 1)/2 + n+ 3

for 7 ≤ n ≤ 11, and Sasaki [Sa] recently showed that:

(7) g[n] ≤
{

2 · 3n + n+ 6 for 12 ≤ n ≤ 13,
3 · 4n + n+ 3 for 14 ≤ n ≤ 20,

g[7] ≤ 25.

In this article, we provide sharper bounds of g[n] for 12 ≤ n ≤ 20. More
precisely, we prove

(8) g[n] ≤ 5n3/2

for 12 ≤ n ≤ 20. We also prove

(9) 11 ≤ g[7] ≤ 24, 13 ≤ g[8] ≤ 37.

For the minimal rank u[n] among the ranks of all positive Z-lattices
L that represent all n-ary positive Z-lattices, see [KKO]. Finally, we refer
the readers to O’Meara [O’M1], Conway and Sloane [CS1] for unexplained
terminology, notation, and basic facts about Z-lattices.
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2. Lemmas. Let ` = Zx1 + . . .+ Zxn ⊂ Ig be a Z-lattice, where xi =
(ai1, . . . , aig) for 1 ≤ i ≤ n. For 1 ≤ j ≤ g, define

vj := t(a1j , a2j , . . . , anj),

where tA is the transpose of a matrix or a vector A. Since these vj ’s also
characterize `, we may write

(10) ` = Z-spann(v1, . . . ,vg) ⊂ Ig,
where Z-spann(v1, . . . ,vg) denotes the lattice spanned over Z by the n-
vectors v1, . . . ,vg. Note that for positive integers s1, . . . , sg,

˜̀= Z-spann(
s1 times︷ ︸︸ ︷

v1, . . . ,v1, . . . ,

sg times︷ ︸︸ ︷
vg, . . . ,vg) ⊂ Is1+...+sg

of rank n is represented by the Z-lattice 〈s1〉 ⊥ . . . ⊥ 〈sg〉 of rank g.
Conway and Sloane [CS2] called a Z-lattice ` of rank n s-integrable if√

s ` can be represented by a sum of squares, i.e.,
√
s ` ∈ Sn, where s is a

positive integer. Define

(11) φ(s) := min{n | ∃ a Z-lattice ` of rank n such that
√
s ` 6∈ Sn}.

It is known [CS2], [KO3] that

(12) φ(1) = 6, φ(2) = 12, φ(3) = 14, . . .

and that for large enough s,

(13) φ(s) >
ln s

8 ln ln s
.

Let F2 = {0, 1} be the field of 2 elements and Symn(F2) be the set of all
n × n symmetric matrices over F2. For a vector a = (a1, . . . , ag) ∈ Fg2, we
define wt(a), the weight of a, to be the number of indices i such that ai = 1.

Lemma 2.1. Let V be an m-dimensional subspace of Fg2. Then there
exists x ∈ V such that wt(x) ≥ m.

Proof. Let {u1, . . . ,um} be a basis of V , where ui = (ui1, . . . , uig) for
i = 1, . . . ,m. Then reduce the m × g matrix U = (uij) to the row echelon
matrix U ′ by applying elementary row operations. Since the rank of U is m,
each row of U ′ contains the leading 1, which is the only nonzero entry in its
column. Let the rows of U ′ be u′1, . . . ,u

′
m and let x = u′1 + . . .+ u′m. Then

x ∈ V and wt(x) ≥ m.

Let ` = Z-spann(v1, . . . ,vg) ⊂ Ig be a Z-sublattice of rank n. Let H =
{i1, . . . , ih} ⊂ G = {1, . . . , g}. We define

(14) `H := Z-spann(vi1 , . . . ,vih) ⊂ Ih.
Note that the rank of `H is obviously less than or equal to min{n, h} and
that `H is not necessarily a sublattice of `.
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Lemma 2.2. For a sublattice ` ⊂ Ig of rank n with g > n(n+1)/2, there
exists an H ⊂ G such that

|H| ≤ n(n+ 1)
2

and s(`H′) ⊂ 2Z,

where H ′ is the complement of H in G.

Proof. Put ` = Z-spann(v1, . . . ,vg), where vj = t(a1j , . . . , anj). We
define a group homomorphism

(15) Φ(`) : Fg2 → Symn(F2)

such that the (i, j)-entry of Φ(`)(s1, . . . , sg) is
∑g
k=1 skaikajk (mod 2) for all

1 ≤ i, j ≤ n. Note that if we let

V` =



a11 . . . a1g
...

. . .
...

an1 . . . ang


 ,

then

Φ(`)(s1, . . . , sg) ≡ V`



s1 . . . 0
...

. . .
...

0 . . . sg


 tV` (mod 2).

Since dim(Symn(F2)) = n(n+ 1)/2, we get

dim(ker(Φ(`))) ≥ g − n(n+ 1)/2.

Hence there exists an x ∈ ker(Φ(`)) such that

wt(x) ≥ g − n(n+ 1)/2

by Lemma 2.1. Let H be the set of all indices i for which the ith component
of x is zero. Then |H| ≤ n(n+ 1)/2 and s(`H′) ⊂ 2Z as desired.

Any sublattice ` of L ⊥M is of the form

` = Z(x1 + y1) + . . .+ Z(xn + yn)

for xi ∈ L and yi ∈M . We define sublattices

(16)
`(L) := Zx1 + . . .+ Zxn ⊂ L,
`(M) := Zy1 + . . .+ Zyn ⊂M.

Even when σ : ` → L ⊥ M , we use `(L) and `(M) instead of σ(`)(L) and
σ(`)(M), respectively, by abuse of notation.

Lemma 2.3. For n = 7, 8, let ` be the Z-lattice of rank n such that the
rank of the unimodular component of `2 in 2-adic Jordan decomposition is
less than or equal to 11− n. Then `→ In+3.

Proof. We prove only the case when n = 7. The other case can be proved
in a similar manner. Let (`2)0 be the unimodular component of `2 in 2-adic
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Jordan decomposition. If the rank of (`2)0 is ≤ 5 and `→ E8, then ` → I8
by Theorem 2 of [O’M2]. Recall the following fact:

gen(I10) = {I10, E8 ⊥ I2}.
Since `p is represented by (I10)p for every p, ` is represented by gen(I10),
which means ` is represented by either I10 or by E8 ⊥ I2. Suppose ` →
E8 ⊥ I2. We may further assume that ` = Zz1 + . . .+Zz7 ⊂ E8 ⊥ I2, where
zi = xi + (ai1e1 + ai2e2) with xi ∈ E8, ai1e1 + ai2e2 ∈ I2 for all i, and that
B(zi, `) ≡ 0 (mod 2) for 1 ≤ i ≤ 3. So, the rank of (`(E8)2)0 ≤ 5 and hence
`(E8)→ I8. This implies `→ I10.

3. Bounds of g[n] for 7 ≤ n ≤ 20. In this section, we provide bounds
of g[n] for small n’s, which improves Sasaki’s bounds.

Theorem 3.1. For 7 ≤ n ≤ 11,

g[n] ≤ n(n+ 1)/2 + n+ 3.

Proof. Let ` ⊂ Ig be a Z-sublattice of rank n, where g > n(n + 1)/2.
Let H,H ′ be the subsets of G satisfying the conditions in Lemma 2.2. Since
φ(2) = 12, every Z-lattice of rank n is represented by (1/

√
2)In+3. So,

s(`H′) ⊂ 2Z implies `H′ → In+3. The theorem follows immediately. (See
[Oh].)

Note that the above proof cannot be applied to higher ranks because
φ(2) = 12. For 12 ≤ n ≤ 20, let α(n), β(n) be integers satisfying

(17)
(
α(n)

1

)
+
(
α(n)

2

)
+ . . .+

(
α(n)
β(n)

)
≥ 2n(n+1)/2.

Theorem 3.2. For 12 ≤ n ≤ 20,

g[n] ≤ n(n+ 1)β(n) + α(n) + n+ 2

where α(n), β(n) are any integers satisfying inequality (17).

Proof. Let ` ∈ Sn such that ` ⊂ Ig. Then we may write ` as in (10). By
(17) and the pigeonhole principle applied to Symn(F2) via the map Φ(`) of
(15), we may assume that

` = Z-spann(u1, . . . ,ut,v11, . . . ,v1j1 , . . . ,vs1, . . . ,vsjs),

where s(Z-spann(vk1,vk2, . . . ,vkjk)) ⊂ 2Z, 1 ≤ jk ≤ 2β(n) for all k =
1, . . . , s, and 0 ≤ t ≤ α(n) − 1. Note that t + j1 + . . . + js = g. Here, s
may be 0, which makes t = g ≤ α(n) − 1. So, we may assume that s 6= 0.
For each `k = Z-spann(vk1,vk2, . . . ,vkjk), 1 ≤ k ≤ s, we let 2Mk be the
corresponding symmetric matrix. Define

Φ : Fs2 → Symn(F2) by Φ((α1, . . . , αs)) =
s∑

k=1

αkMk.
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Then by a similar reasoning to Lemma 2.2, we may conclude that there exists
a subset K ⊂ {(1, 1), . . . , (1, j1), (2, 1), . . . , (2, j2), . . . , (s, 1), . . . , (s, js)} such
that

|K| ≤ n(n+ 1)β(n) and s((`1 ⊥ . . . ⊥ `s)K′) ⊂ 4Z,

where

`1 ⊥ . . . ⊥ `s = Z-spann(v11, . . . ,v1j1 ,v21, . . . ,v2j2 , . . . ,vs1, . . . ,vsjs).

Therefore the desired inequality follows from Theorem 18 of [CS2].

Remark. The inequality (17) is satisfied by α(n)=n3, β(n)=b13n/10c
for 12 ≤ n ≤ 20. So, from Theorem 3.2 it follows that

(18) g[n] < 5n3/2

for 12 ≤ n ≤ 20.

4. Sharper bounds for g[7] and g[8]. In this section, we restrict our-
selves to the case when n = 7 or 8.

Theorem 4.1. We have

11 ≤ g[7] ≤ 24.

Proof. The lower bound comes from (4). Let ` = Zx1 + . . .+ Zx7 ⊂ Ig
for sufficiently large g, where xi = (ai1, . . . , aig) for 1 ≤ i ≤ 7. Let vj =
t(a1j , . . . , a7j) for 1 ≤ j ≤ g so that ` = S7(v1, . . . ,vg) ⊂ Ig. For a subset
T = {t1, . . . , t5} ⊂ S = {1, . . . , 7}, we define a sublattice

`T := Zxt1 + . . .+ Zxt5
of ` and let vTj := t(at1j , at2j , . . . , at5j). Then by Lemma 2.2, there exists a
subset H such that |H| ≤ 15 and s(`TH′) ⊂ 2Z. Note that `TH′ ⊂ `H′ . After
a suitable base change, this implies that

M`H′ ≡




0 0 0 0 0 ∗ ∗
0 0 0 0 0 ∗ ∗
0 0 0 0 0 ∗ ∗
0 0 0 0 0 ∗ ∗
0 0 0 0 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗




(mod 2).

Therefore the rank of the unimodular component of (`H′)2 is less than or
equal to 4. Hence by Lemma 2.3,

`→ `H′ ⊥ I15 → I25.

We now fix g = 25 so that ` = S7(v1, . . . ,v25). We may assume that ` is
a primitive sublattice of I25. Suppose that ` is not represented by I24. Then
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for any subset T ⊂ S with |T | = 5, we have

dim(Φ(`T )(F25
2 )) = 15, dim(ker(Φ(`T ))) = 10,

and the maximal weight among the vectors in ker(Φ) must be 10. So, we may
further assume that Φ(`T )(ej)’s for 1 ≤ j ≤ 15 form a basis of Sym5(F2)
and

25∑

k=16

Φ(`T )(ek) = 0.

For each 16 ≤ k0 ≤ 25,

Φ(`T )(ek0) =
∑

k 6=k0

Φ(`T )(ek) =
15∑

j=1

ajΦ(`T )(ej)

implies that Φ(`T )(ek0) is either 0 or Φ(`T )(ej) for some 1 ≤ j ≤ 15. Con-
sequently, there are exactly 15 distinct non-zero vectors in {vT1 , . . . ,vT25}
(mod 2) and the number of the same non-zero vectors (mod 2) in the set is
always odd.

We now show that there exists a set T violating the above condition.
Note that

∑
r∈R xr 6≡ 0 (mod 2) for any subset R ⊂ {1, . . . , 7}. We may

choose T = {1, . . . , 5} and assume that Φ(`T )(ej)’s for 1 ≤ j ≤ 15 form a
basis of Sym5(F2). By a suitable base change and rearrangement, we may
assume that for 1 ≤ j ≤ 5,

vj ≡ fj , v24 ≡ f6, v25 ≡ f7 (mod 2),

where fj is the transpose of the jth standard basis vector of F7
2.

Table 4.1

x1 ≡ 1, 0, 0, 0, 0, a16, . . . , a1,15; a1,16, . . . , a1,23, 0, 0 (mod 2)

x2 ≡ 0, 1, 0, 0, 0, a26, . . . , a2,15; a2,16, . . . , a2,23, 0, 0 (mod 2)

x3 ≡ 0, 0, 1, 0, 0, a36, . . . , a3,15; a3,16, . . . , a3,23, 0, 0 (mod 2)

x4 ≡ 0, 0, 0, 1, 0, a46, . . . , a4,15; a4,16, . . . , a4,23, 0, 0 (mod 2)

x5 ≡ 0, 0, 0, 0, 1, a56, . . . , a5,15; a5,16, . . . , a5,23, 0, 0 (mod 2)

x6 ≡ 0, 0, 0, 0, 0, a66, . . . , a6,15; a6,16, . . . , a6,23, 1, 0 (mod 2)

x7 ≡ 0, 0, 0, 0, 0, a76, . . . , a7,15; a7,16, . . . , a7,25, 0, 1 (mod 2)

Note that for every j, 6 ≤ j ≤ 15, there exists an i, 1 ≤ i ≤ 4, such
that aij 6≡ 0 (mod 2). For each given j, 1 ≤ j ≤ 5, the number of k’s,
16 ≤ k ≤ 23, such that vTk ≡ fTj (mod 2) is even. Hence we may assume
that

if a5k ≡ 1 (mod 2), then aik ≡ 1 (mod 2)
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for at least one i, 1 ≤ i ≤ 4. Let a, b, c, d be the numbers of vk’s, 16 ≤ k ≤ 23,
such that

vk = 0, vk = f6, vk = f7, vk = f6 + f7,

respectively. If we replace x5 by x5 + x6 or x5 + x7, then the number of j’s,
1 ≤ j ≤ 25, such that vTj ≡ fT5 (mod 2) has to be odd. Therefore

(19) a+ b+ c+ d ≡ 0, b+ d+ 1 ≡ 1, c+ d+ 1 ≡ 1 (mod 2).

Since (19) holds for any choice of T , either the number of j’s such that
vj = fk is always even for any k, 1 ≤ k ≤ 7, or the number of j’s such that
vj = fk is always odd for any k, 1 ≤ k ≤ 7, and there exists v such that
v = fk + fl for any k, l, 1 ≤ k, l ≤ 7. Note that the latter case cannot occur.
In the former case, there exists an H ⊂ {1, . . . , 25} such that |H| ≤ 11 and
s(`H′) ⊂ 2Z. This implies `→ I21, which is not possible either.

Theorem 4.2.
13 ≤ g[8] ≤ 37.

Proof. The lower bound comes from (4). Let ` = S8(v1, . . . ,vg) ⊂ Ig be
of rank 8. Let

W := {M = (mij) ∈ Sym7(F2) | mij = 0 if (i, j) 6= (7, 7)}.
For any subset T ⊂ {1, . . . , 8} with |T | = 7, we can define a linear map

Φ(`T ) : Fg2 → Sym7(F2)/W

via factoring the map defined in (15). Note that dim(Sym7(F2)/W ) = 27.
Then by a similar reasoning to Lemma 2.2, one can show that there exists
a subset H ⊂ G = {1, . . . , g} with |H| ≤ 27 such that the rank of the
unimodular component of (`H′)2 is less than or equal to 3. Therefore by
Lemma 2.3, `H′ → I11 and hence ` → I38. The rest (for improving the
upper bound by 1) is almost identical to the case when n = 7.
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