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Bounds for quadratic Waring’s problem
by

MyunG-HWAN KiM (Seoul) and BYEONG-KWEON OH (Columbus, OH)

1. Introduction. In 1770, Lagrange [L] proved the famous four square
theorem, i.e., for every positive integer n, there exists an integer solution of
the equation

x2+y2+z2+w2 =n.

After Lagrange, this theorem was generalized in many directions. One
interesting generalizations concerns the so-called new (or quadratic) War-
ing’s problem due to L. J. Mordell [M1], which is about sums of squares
that represent all positive integral quadratic forms of given rank. In par-
ticular, Mordell proved that every binary positive integral quadratic form
can be represented by a sum of five squares. Later, C. Ko [K1] proved that
every ternary (quaternary or quinary) positive integral quadratic form can
be represented by a sum of six (seven or eight, respectively) squares. So,
they naturally expected that every positive n-ary integral quadratic form
could be represented by a sum of n + 3 squares. This, however, turned out
to be false. The quadratic form defined by the root lattice Eg cannot be
represented by sums of squares (see [M2], [CS2] and [Pl]). After Mordell
found this, several authors tried to determine the minimum number g[n] of
squares whose sum represents all positive integral quadratic forms of rank
n that are representable by sums of squares.

We adopt lattice-theoretic language. A Z-lattice L is a finitely generated
free Z-module in R™ equipped with a non-degenerate symmetric bilinear
form B such that B(L, L) C Z. The corresponding quadratic map is denoted
by @Q, ie., Q(e) = B(e,e) for every e € L. The ideal of Z generated by
B(e;, ej)’s is called the scale of L, denoted by s(L). For a Z-lattice

L=7e+...4+7Ze,,
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with basis {ei,..., e}, we define the corresponding matrix
My, = (B(e;, €;)),

which is an m X m symmetric integer matrix. We often identify a Z-lattice
L with its corresponding matrix M. If My, is diagonal, we often write

L=(Q(e1),...,Q(en)) = (Q(e1)) L ... L(Q(en)).
For a € R*, we let
al :=Z(ae1) + ...+ Z(aey,).
The lattice Z" equipped with the standard inner product is denoted by I,,.
A Z-lattice L is said to be positive definite or simply positive if Q(e) > 0

for every e € L,e # 0. In this paper, we always assume the following unless
stated otherwise:

(1) Every Z-lattice considered is positive definite.

A Z-lattice L is said to be even when Q(L) C 2Z, and odd, otherwise.
As usual,
det L := det(B(e;, €;))

is called the discriminant of L. A Z-lattice L is said to be unimodular if
det L = 1. For a Z-lattice L and a prime p,

Ly :=7,L =7,%;L

is a Zjy-lattice called the localization of L at p, where Z,, is the p-adic integer
ring.

Let ¢, L be Z-lattices. We say that L represents £ if there is an injective
Z-linear map from ¢ into L that preserves the bilinear forms, and write
¢ — L. Such a map is called a representation. A representation is called
an tsometry if it is surjective. We say that ¢ and L are isometric and write
¢ ~ L if there exists an isometry between them. For a Z-lattice L, we define
the class and genus of L by

cls(L) := {K : Z-lattice | K ~ L over Z},

gen(L) := {K : Z-lattice | K, ~ L,, over Z, for all p}.
It is well known that gen(L) contains a finite number of distinct classes.
This number is called the class number of L, denoted by h(L). If ¢, — L,
for all p, or equivalently ¢ — gen(L), then it is known that { — K for some
K € gen(L).

Let

S,, = {{ : Z-lattice | { — I, for some g, rank(¢) = n},

and

(2) g[n] :=min{g | £ — I, for every £ € &,,}.



Bounds for quadratic Waring’s problem 157

Applying the results in [HKK], one can easily prove that g[n] exists for
all n. The four-square theorem of Lagrange, and the results of Mordell and
Ko mentioned above can be summarized as follows:

(3) glnj=n+3 forl<n<5.

In fact, this is an immediate consequence of the fact that the class number
of I, is 1 for 1 < n < 8 and of the local representation theory. The following
question arises quite naturally:

Is glnj]=n+3 foralln>17?
Concerning this question, Ko conjectured in [K2] that ¢g[6] = 9. However,
the authors proved recently [KO1,2] that
(4) gln] > [3n/2|+1>n+3 foralln>6, g[6]=10.

The first explicit upper bound for g[n| was given by Icaza [Ic]. She ob-
tained her bound by computing the so-called HKK-constant. But her bound
is huge containing a factor

nn+124h(1n+3)’

where h(I,) = n®®?), Recently, the authors improved the bounds of g[n] as
follows:

(5) on — [logyn] —2<g[n] <3-3"27,3+n+4

for n > 14 where

k
T = _[2logyi] — k+ 18 = O(klogk)
i=17
for k > 17 (see [KO3]). For small n’s, Oh [Oh] proved
(6) gln] <n(n+1)/24+n+3

for 7 <n <11, and Sasaki [Sa] recently showed that:

2.3"4+n+6 forl2<n<13
< - = ’ <
(7) 9["]—{3-4n+n+3 for14<n<20 IMN=2

In this article, we provide sharper bounds of g[n] for 12 < n < 20. More
precisely, we prove

(8) g[n] < 5n?/2
for 12 < n < 20. We also prove
(9) 11 <g[1] <24, 13 <g[8] < 37.

For the minimal rank u[n] among the ranks of all positive Z-lattices
L that represent all n-ary positive Z-lattices, see [KKO]. Finally, we refer
the readers to O’Meara [O’M1], Conway and Sloane [CS1] for unexplained
terminology, notation, and basic facts about Z-lattices.
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2. Lemmas. Let { = Zxy + ...+ Zx, C I, be a Z-lattice, where x; =
(@i1,-..,ai) for 1 <i<n.For1l<j<g, define
Vj = t(alj,agj, e ,anj),

where *A is the transpose of a matrix or a vector A. Since these v;’s also
characterize ¢, we may write

(10) ¢ = Z-span,(v1,...,vy) C Iy,
where Z-span,,(vi,...,Vvy) denotes the lattice spanned over Z by the n-
vectors v, ..., V4. Note that for positive integers si, ..., s,
51 times 54 times
U= Zespan, (1, V2o, Vgr o v9) C Lo i,

of rank n is represented by the Z-lattice (s;) L ... L (s4) of rank g.

Conway and Sloane [CS2] called a Z-lattice ¢ of rank n s-integrable if
/s ¢ can be represented by a sum of squares, i.e., \/s{ € &,, where s is a
positive integer. Define

(11)  ¢(s) :=min{n | 3 a Z-lattice ¢ of rank n such that /s{ ¢ &,}.
It is known [CS2], [KO3] that

(12) (1) =6, ¢(2)=12, ¢(3)=14, ...
and that for large enough s,
Ins
13 .
(13) és) > 8lnlns
Let Fy = {0, 1} be the field of 2 elements and Sym,, (F2) be the set of all
n X n symmetric matrices over Fsy. For a vector a = (a,..., ag) IS Fg, we

define wt(a), the weight of a, to be the number of indices i such that a; = 1.

LEMMA 2.1. Let V be an m-dimensional subspace of F5. Then there
exists x € V' such that wt(x) > m.

Proof. Let {ui,...,u,,} be a basis of V, where u; = (u1,...,u;q) for
i =1,...,m. Then reduce the m x g matrix U = (u;;) to the row echelon
matrix U’ by applying elementary row operations. Since the rank of U is m,
each row of U’ contains the leading 1, which is the only nonzero entry in its
column. Let the rows of U" be uf,...,u), and let x =u} + ...+ u},. Then
x € V and wt(x) > m. =

Let ¢ = Z-span,,(v1,...,Vvy) C I, be a Z-sublattice of rank n. Let H =
{i1,...,in} CG={1,...,g}. We define

(14) lp = Z-span,, (Vi,, ..., Vi, ) C Ip.

Note that the rank of /5 is obviously less than or equal to min{n,h} and
that /g is not necessarily a sublattice of /.
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LEMMA 2.2. For a sublattice ¢ C I, of rank n with g > n(n+1)/2, there
exists an H C G such that

n(n+ 1)

|H‘ < and E(EH/) C 27,

where H' is the complement of H in G.

Proof. Put ¢ = Z-span,,(vi,...,vy), where v; = *(ayj,...,a,;). We
define a group homomorphism
(15) P(() : F5 — Sym,, (F2)

such that the (4, j)-entry of @(£)(s1,...,84) 18 Y 7_; Skaika;x (mod2) for all
1 <14,7 < n. Note that if we let

a11 aig
Vie= N
QAn1 Gng
then
s1 ... O
DU)(51,...,8)=Ve | = . 1 | "V (mod?2).
0 ... s4

Since dim(Sym,, (F2)) = n(n +1)/2, we get
dim(ker(®(¢))) > g —n(n+1)/2.
Hence there exists an x € ker(®(¢)) such that
wt(x) > g—n(n+1)/2
by Lemma 2.1. Let H be the set of all indices ¢ for which the ith component
of x is zero. Then |H| <n(n+1)/2 and s({g/) C 27Z as desired. m
Any sublattice £ of L 1 M is of the form
C=7(x1+y1)+ ...+ Z(xp + yn)
for x; € L and y; € M. We define sublattices
L) =7Zxy+...+Zx, C L,
M) :=Zy,+ ...+ Zy, C M.

Even when o : ¢ — L 1 M, we use ¢(L) and ¢(M) instead of o(¢)(L) and
o(£)(M), respectively, by abuse of notation.

LEMMA 2.3. Forn = 17,8, let ¢ be the Z-lattice of rank n such that the
rank of the unimodular component of £5 in 2-adic Jordan decomposition is
less than or equal to 11 —n. Then £ — I 13.

(16)

Proof. We prove only the case when n = 7. The other case can be proved
in a similar manner. Let (¢2)¢ be the unimodular component of ¢5 in 2-adic
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Jordan decomposition. If the rank of (¢2)p is < 5 and ¢ — FEg, then ¢ — I3
by Theorem 2 of [O’M2]. Recall the following fact:
gen(Ilo) = {Il(],Eg i 12}

Since ¢, is represented by (I1¢), for every p, £ is represented by gen(Iyy),
which means /¢ is represented by either Iy or by Eg 1 Is. Suppose £ —
FEg | I,. We may further assume that ¢ = Zz,+...+Zz; C Fg 1 I3, where
Z; = X; + (ailel + aigeg) with x; € Eg,a;1€1 + a;nes € I for all 1, and that
B(z;,¢) =0 (mod 2) for 1 < i < 3. So, the rank of (¢(Eg)2)o < 5 and hence
((Eg) — Ig. This implies ¢ — [1o. =

3. Bounds of g[n] for 7 < n < 20. In this section, we provide bounds
of g[n] for small n’s, which improves Sasaki’s bounds.

THEOREM 3.1. For 7 <n < 11,
gln] <n(n+1)/2+n+3.

Proof. Let £ C I, be a Z-sublattice of rank n, where g > n(n + 1)/2.
Let H, H' be the subsets of G satisfying the conditions in Lemma 2.2. Since
#(2) = 12, every Z-lattice of rank n is represented by (1/v/2)I,.3. So,
s(ly/) C 27 implies £y — I,13. The theorem follows immediately. (See
[Oh].) m

Note that the above proof cannot be applied to higher ranks because
#(2) = 12. For 12 < n < 20, let a(n), S(n) be integers satisfying

(17) <a<1n>) + (a(Q")> T (ggg) > gn(n+1)/2,

THEOREM 3.2. For 12 < n < 20,
gln] < nfn+ 1)B(n) + a(n) +n+2
where a(n), B(n) are any integers satisfying inequality (17).

Proof. Let £ € &, such that £ C I;. Then we may write ¢ as in (10). By
(17) and the pigeonhole principle applied to Sym,, (F3) via the map @(¢) of
(15), we may assume that

K = Z—spann(ul, ey W, VI, .. 7V1j17- oy Vgl,... 7V5j5)7

where s(Z-span,, (Vii, Vi2, ..., Vij,)) C 2Z, 1 < jip < 23(n) for all & =
1,...,s,and 0 < t < a(n) — 1. Note that t + j; + ... + js = g. Here, s
may be 0, which makes ¢t = g < a(n) — 1. So, we may assume that s # 0.
For each ¢, = Z-span,,(Vi1,Vi2,..., Vi), 1 < k <'s, we let 2Mj, be the
corresponding symmetric matrix. Define

¢ :F; — Sym,, (F2) by @((ag,...,as)) = ZakMk-
k=1
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Then by a similar reasoning to Lemma 2.2, we may conclude that there exists
a subset K C {(17 1)7 ) (le)a (27 1)) ) (27j2)7 SRR (57 1)7 R (Sajs)} such
that

|K| <n(n+1)B(n) and s((¢1 L... L l)x) C4Z,

where
61 4 ... L gs = Z—spann(vn,. .. 7V1j17V217- .. ,V2j27 ey Vg, 7Vsjs).
Therefore the desired inequality follows from Theorem 18 of [CS2]. m

REMARK. The inequality (17) is satisfied by a(n)=n3,3(n)=[13n/10]
for 12 < n < 20. So, from Theorem 3.2 it follows that

(18) gln] < 5n*/2
for 12 < n < 20.

4. Sharper bounds for ¢[7] and ¢[8]. In this section, we restrict our-
selves to the case when n =7 or 8.

THEOREM 4.1. We have
11 < g[7] < 24.

Proof. The lower bound comes from (4). Let £ = Zx; + ...+ Zx7 C I,
for sufficiently large g, where x; = (a;1,...,a;4) for 1 < i < 7. Let v; =
“(aij,...,az;) for 1 < j < g so that £ = Sz(vi,...,vy) C I,. For a subset
T ={t1,...,ts} € S={1,...,7}, we define a sublattice

T = Txy, + ...+ Txy,

of £ and let v] :="(as,j, a1y, - - -, a55). Then by Lemma 2.2, there exists a
subset H such that |[H| < 15 and s(¢%;,) C 2Z. Note that (7, C {g. After
a suitable base change, this implies that

0 0 00 0 % =

0 0 0 0 0 % =

00 0 0 0 * =
My,=10 0 0 0 0 % x [ (mod2).

00 0 0 0 * =

ok ok k% k%

X ok ok ok % kK

Therefore the rank of the unimodular component of (¢g)s is less than or
equal to 4. Hence by Lemma 2.3,

{ — KH/ 1 115 — 125.

We now fix g = 25 so that £ = S7(vy,...,vas). We may assume that ¢ is
a primitive sublattice of I>5. Suppose that £ is not represented by Io4. Then
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for any subset T' C S with |T'| = 5, we have
dim(@(¢T)(F2%)) = 15,  dim(ker(®(¢7))) = 10,

and the maximal weight among the vectors in ker(®) must be 10. So, we may
further assume that ®(¢7)(e;)’s for 1 < j < 15 form a basis of Symg(Fz)

and
25

PR GICHE

k=16
For each 16 < kg < 25,

(") (en,) = Y (") (ex) Zaj

k£ko
implies that ®(¢T)(ey,) is either 0 or @((T)(ej) for some 1 < j < 15. Con-
sequently, there are exactly 15 distinct non-zero vectors in {v{,...,vi}

(mod 2) and the number of the same non-zero vectors (mod 2) in the set is
always odd.

We now show that there exists a set T violating the above condition.
Note that > _px, # 0 (mod?2) for any subset R C {1,...,7}. We may
choose T' = {1,...,5} and assume that ®#(¢7)(e;)’s for 1 < j < 15 form a
basis of Sym;(F3). By a suitable base change and rearrangement, we may
assume that for 1 < j <5,

v, =1, vau=fs, v =£; (mod2),

where f; is the transpose of the jth standard basis vector of F3.

Table 4.1
x1 =1,0,0,0,0,a16,...,a1,15; a1,16,- - -,01,23,0,0 (mod 2)
x2 =0,1,0,0,0,a%,...,a2,15; 62,16, - - -, 02,23,0,0 (mod 2)
x3 =0,0,1,0,0,as6, .. .,a3,15; 43,16, - - -,a3,23,0,0 (mod2)
X4 = 070707 1,07(146, <. 04155 A4,16, - - .704’237070 (HlOd 2)
X5 = 07070707 170’567 --+,0515; 4516, - - 'aa5,237070 (mOd 2)
X6 = 0707070707a667 --+,06,15; 06,16, - - -7(16,237170 (mod 2)
X7 = 07070707070’767 <+, A7155 A7.16, - - 'aa7,257071 (mOd 2)

Note that for every j, 6 < j < 15, there exists an i, 1 < ¢ < 4, such
that a;; # 0 (mod 2). For each given j, 1 < j < 5, the number of k’s,
16 < k < 23, such that vi| = f (mod 2) is even. Hence we may assume
that

if asp =1 (mod2), then a; =1 (mod2)
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for at least one ¢, 1 < ¢ < 4. Let a, b, ¢, d be the numbers of v’s, 16 < k < 23,
such that
vi=0, vip=15 vi=1%, viy=»Ff+1,

respectively. If we replace x5 by X5 + Xg or x5 + x7, then the number of j’s,
1 < j <25, such that v =f (mod2) has to be odd. Therefore

(19) a+b+c+d=0, b+d+1=1, c+d+1=1(mod2).

Since (19) holds for any choice of T', either the number of j’s such that
v; = f}, is always even for any k,1 < k < 7, or the number of j’s such that
v; = fj is always odd for any k,1 < k < 7, and there exists v such that
v =f; +f; for any k,[, 1 < k,l < 7. Note that the latter case cannot occur.
In the former case, there exists an H C {1,...,25} such that |H| < 11 and
s(¢g) C 27Z. This implies £ — I, which is not possible either. m

THEOREM 4.2.
13 < ¢[8] < 37.

Proof. The lower bound comes from (4). Let ¢ = Sg(v1,...,v,) C I, be
of rank 8. Let

W= A{M = (mi;) € Symy(Fz) [ mi; = 0if (i,5) # (7,7)}.
For any subset T' C {1,...,8} with |T| = 7, we can define a linear map
o(LT) : F§ — Sym,(Fy)/W

via factoring the map defined in (15). Note that dim(Sym,(F3)/W) = 27.
Then by a similar reasoning to Lemma 2.2, one can show that there exists
a subset H C G = {1,...,9} with |H| < 27 such that the rank of the
unimodular component of (£g)2 is less than or equal to 3. Therefore by
Lemma 2.3, g+ — I;; and hence ¢ — I3g. The rest (for improving the
upper bound by 1) is almost identical to the case when n =7. =

References

[CS1] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups,
Springer, 1999.

[CS2] —, —, Low dimensional lattices V. Integral coordinates for integral lattices, Proc.
Roy. Soc. London Ser. A 426 (1989), 211-232.

[HKK] J. S. Hsia, Y. Kitaoka and M. Kneser, Representation of positive definite quad-
ratic forms, J. Reine Angew. Math. 301 (1978), 132-141.

[Ic] M. 1. Icaza, Sums of squares of integral linear forms, Acta Arith. 74 (1996),
231-240.

[KKO] B.M. Kim, M.-H. Kim and B.-K. Oh, 2-universal positive definite integral quin-
ary quadratic forms, in: Contemp. Math. 249, Amer. Math. Soc., 1999, 51-62.

[KO1] M.-H. Kim and B.-K. Oh, A lower bound for the number of squares whose sum
represents integral quadratic forms, J. Korean Math. Soc. 33 (1996), 651-655.



164 M.-H. Kim and B.-K. Oh

[KO2] M.-H. Kim and B.-K. Oh, Representation of positive definite senary integral
quadratic forms by a sum of squares, J. Number Theory 63 (1997), 89-100.

[KO3]  —, —, Representation of integral quadratic forms by sums of squares, preprint.

[K1] C. Ko, On the representation of a quadratic form as a sum of squares of linear
forms, Quart. J. Math. Oxford 8 (1937), 81-98.

[K2] —, On the decomposition of quadratic forms in six variables, Acta Arith. 3
(1939), 64-78.

[L] J. L. Lagrange, Ocuvres, III, Paris, 1869, 189-201.

[M1] L. J. Mordell, A new Waring’s problem with squares of linear forms, Quart. J.
Math. Oxford 1 (1930), 276-288.

[M2] —, The representation of a definite quadratic form as a sum of two others, Ann.

of Math. 38 (1937), 751-757.
[Oh] B.-K. Oh, On universal forms, Ph.D. thesis, Seoul National Univ., 1999.
[O’M1] O. T. O’Meara, Introduction to Quadratic Forms, Springer, 1973.

[O’M2] —, The integral representations of quadratic forms over local fields, Amer. J.
Math. 80 (1958), 843-878.

[P]] W. Plesken, Additively indecomposable positive integral quadratic forms, J. Num-
ber Theory 47 (1994), 273-283.

[Sa] H. Sasaki, Sums of squares of integral linear forms, J. Austral. Math. Soc. Ser. A

69 (2000), 298-302.

School of Mathematics Department of Mathematics
Seoul National University Ohio State University
Seoul 151-742, South Korea Columbus, OH 43210, U.S.A.
E-mail: mhkim@math.snu.ac.kr E-mail: bkoh@ohio-state.edu

Received on 28.3.2001
and in revised form on 10.12.2001 (4008)



