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On the height constant for curves of genus two, II
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1. Introduction. When investigating the arithmetic of a curve and its
Jacobian over the rationals (or a number field), it is often required to deter-
mine the canonical height of a point on the Jacobian. This is in particular
necessary when one wants to find explicit generators of the Mordell–Weil
group. It has been a routine matter for some time to compute heights on
an elliptic curve. The obvious next step was to consider Jacobians of genus
two curves. Flynn and Smart [2, 3] have developed the necessary theory, and
they also present an algorithm for computing the canonical height. This al-
gorithm avoids factorisation of integers, but it turns out to be impractical
in certain cases. Since this observation was the starting point for the present
paper, we give a short sketch of the difficulty.

Let C be a curve of genus two over Q, and let J denote its Jacobian.
We choose a point P ∈ J(Q) and want to compute its canonical height with
Flynn and Smart’s algorithm. Its first step consists in finding a so-called
“good multiple” nP of the given point, by computing 2P , 3P , and so on,
until we find an n such that εp(nP ) = 0 for all finite primes p. Here, εp(P )
is defined as follows. Let x = (x1, x2, x3, x4) be projective coordinates for
the image of P ∈ J(Q) on the Kummer surface K ⊂ P3. Then (with the
notation vp(x) = min{vp(x1), . . . , vp(x4)})

εp(P ) = vp(δ(x))− 4vp(x),

where vp is the additive p-adic valuation (such that vp(p) = 1) and where δ
is the duplication map on K as defined in [1]; see Section 2 below.

Now take for example the curve given by the affine equation

y2 = 4x6 + 4x5 + 3x4 − 3x3 − x− 6.

Let∞± denote the two points at infinity (the sign corresponds to the sign of
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y/x3). Then we have rational points P and Q on the Jacobian, represented
by the divisors ∞+ −∞− and (−1,−1) −∞−, respectively. When we try
to find the canonical height of their sum P + Q, it turns out that the first
“good multiple” is 60(P+Q). This means that we have to compute all points
n(P + Q), along with their doubles, up to n = 60. The largest point that
occurs in this computation, which is 120(P + Q), has coordinates on the
Kummer surface of more than 25000 decimal digits. It is therefore not very
surprising that this computation requires an insufferable amount of time.

In this paper, we investigate the functions εp more closely. For this pur-
pose, we replace our base field Q by some p-adic field (or, more generally, a
non-archimedean local field of characteristic different from 2) k with additive
valuation v. We define the function ε on J(k) as above by

ε(P ) = v(δ(x))− 4v(x),

where x = (x1, x2, x3, x4) is some set of Kummer coordinates of P (meaning
projective coordinates for the image of P on K). Our main result is the
following.

Theorem 1.1. Let U = {P ∈ J(k) | ε(P ) = 0}. Then U is a subgroup
of finite index in J(k), and ε(P ) depends only on the coset of P mod U .

The first part proves that Flynn and Smart’s algorithm is correct. Both
statements together lead to an improved algorithm for the height computa-
tion.

In the first paper of this series [7], we used representation theory to
obtain general bounds on the height constant

γ = max
P∈J(k)

ε(P ),

in terms of the discriminant of the curve. As a by-product of the results de-
rived in the present paper, we can get considerable improvements in bound-
ing γ. This can be applied in order to find generators of the Mordell–Weil
group of the Jacobian of a genus two curve over Q. We discuss this in some
detail in Section 7; two examples (of ranks 7 and 12, respectively) are given
to demonstrate the method.

It should be noted that similar results hold for elliptic curves. See for
example Siksek [5], where this approach is used to get good bounds for the
height constant.

Acknowledgements. I wish to thank the anonymous referee for mak-
ing some useful suggestions. The example given above of the point with the
large good multiple was communicated to me by Colin Stahlke.

The computations involved in the proof of Proposition 3.1 have been
done using the MAGMA system for Computer Algebra [10].
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2. Basics. Let k be an arbitrary field. Let F ∈ k[X,Z] be homogeneous
of degree 6 (F = 0 is allowed). We write

F (X,Z)

= f6X
6 + f5X

5Z + f4X
4Z2 + f3X

3Z3 + f2X
2Z4 + f1XZ

5 + f0Z
6.

In Cassels and Flynn [1], which is our basic reference for the following, the
authors define surfaces J ⊂ P15 and K ⊂ P3 associated to such a polyno-
mial F . (Cassels and Flynn require F to have no multiple factors. However,
their definitions still make sense for arbitrary polynomials as above.) The
latter is defined by a quartic equation κ = 0. There are homogeneous poly-
nomials δ = (δ1, δ2, δ3, δ4) of degree 4 such that δ(x) is again a point on K
if x = (x1, x2, x3, x4) ∈ K and δ(x) 6= 0. (Here and in the following, 0 is
used as a shorthand for the origin of affine space.) Furthermore, there are
biquadratic forms Bij (i, j ∈ {1, 2, 3, 4}) in two sets of four homogeneous
variables such that if x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) are points
on K and if some Bij is non-zero, then there are homogeneous coordinates
w = (w1, w2, w3, w4) and z = (z1, z2, z3, z4) (which are uniquely determined
up to scaling and interchanging w and z) such that wizi = Bii(x, y) and
wizj + wjzi = 2Bij(x, y) for all i, j ∈ {1, 2, 3, 4}. Furthermore, the points w
and z are again on K. If x and y are defined over k, then w and z are either
defined over k or over a quadratic extension of k and conjugate. (Explicit
expressions for all these polynomials can be obtained from [9].)

When F has no multiple factors, we define f(X) = F (X, 1). Then the
affine equation

Y 2 = f(X)(2.1)

defines a curve of genus two, and we let C be its smooth projective model
over k. Then J as defined above is the Jacobian of C, which is an abelian
surface defined over k. Its quotient by the negation map P 7→ −P is the
associated Kummer surface; it is the same as K defined above. Since multi-
plication by 2 on J commutes with negation, it descends to give a morphism
on K. This duplication map on K is given by the polynomials δ. The addi-
tion map itself cannot be defined on the Kummer surface, since we cannot
distinguish between P+Q and P−Q. But the unordered pair {P+Q,P−Q}
is defined. The biquadratic forms Bij do not all vanish when evaluated on
two sets of homogeneous coordinates for points on K, and the coordinates
w and z defined above correspond to the points P + Q and P − Q if the
coordinates x and y correspond to P and Q.

In order to simplify notation, we write B for the 4-by-4 matrix with
diagonal entries Bii and other entries 2Bij .

3. Some applied computer algebra. In this section, we will sketch
a proof of the following result.
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Proposition 3.1. Let k be an arbitrary field , and let F ∈ k[X,Z] be
homogeneous of degree 6 (F = 0 is allowed). Consider the objects K, δ, B
defined above with respect to F .

(1) Let x = (x1, x2, x3, x4) be homogeneous coordinates of a point on K.
Then if δ(δ(x)) = 0, we must already have δ(x) = 0.

(2) Let x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) be homogeneous coor-
dinates of points on K. Then if B(x, y) = 0, we have δ(x) = δ(y) = 0.

Note that the expression “homogeneous coordinates” is meant to include
the assertion that the coordinates do not all vanish.

We will apply this result to the reduction mod p of the model K of the
Kummer surface associated to a given model of a genus two curve. Since we
do not want to put restrictions on this reduction, we need the full generality
of this result.

In principle, we can prove these assertions working generically, i.e., by re-
placing k with the ring Z[f ] = Z[f0, . . . , f6], where the fj are the coefficients
of F , which are taken to be independent indeterminates. Let

√
I denote the

radical of an ideal I. Then we have to show that

δ1(x), δ2(x), δ3(x), δ4(x) ∈
√

(κ(x), δ(δ(x)))(3.1)

in the polynomial ring Z[f, x] and that

δj(x)xrys ∈
√

(κ(x), κ(y), B(x, y))(3.2)

in the polynomial ring Z[f, x, y], for all j, r, s ∈ {1, 2, 3, 4} (we need not also
check the corresponding statement for δj(y)xrys for reasons of symmetry).

Using MAGMA [10], we have indeed succeeded in proving the proposition
in this way in the special case that k has characteristic 2 (with Z replaced
by F2 in the above). This task is simplified by the fact that δ1 = δ2 = δ3 = 0
on K, and that δ4, κ,Bii are all squares (the Bij with i 6= j do not come
into play since they are multiplied by 2). The general case, however, is far
too complex to be attacked in this way (we did not succeed even with F3 in
place of Z). Hence we must look for simplifications.

The statement is geometric in nature, therefore we can assume that the
field k is algebraically closed. When we act on F by a (non-singular) linear
transformation of the variables X and Z, we get an isomorphism between
the “Kummer surfaces” associated to the old and to the new F , together
with their additional structure. This means that we only need to consider
one polynomial F in each orbit of the homogeneous polynomials of degree 6
under GL2(k). We can choose the following representatives:

0, Z6, XZ5, X2Z4, X3Z3, X(X − Z)Z4,

X2(X − Z)Z3, X2(X − Z)2Z2, X(X − Z)(X − aZ)Z3,

X2(X − Z)(X − aZ)Z2, X(X − Z)(X − aZ)(X − bZ)Z2
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with a, b ∈ k\{0, 1} distinct. We have left out representatives for the orbits of
polynomials without multiple factors, since in this case the claim is trivially
true (we are in the situation of a genuine Jacobian and Kummer surface,
hence δ and B never vanish at points on K).

We now go back and use the ring Z[1/2] (or Z[1/2, a] or Z[1/2, a, b]) as
the base and prove assertions (3.1) and (3.2). We do not give full details here,
which would make for very dull reading, but we sketch a few of the cases to
give an impression of the arguments involved, which are fairly elementary.

Case 1: F = 0. We have δ4 = x4
4 and δj = 4xjx3

4 for j ∈ {1, 2, 3}. Hence
δ = 0 ⇔ x4 = 0 ⇔ δ4 = 0. This already implies assertion (1). We also
have B44(x, y) = x2

4y
2
4. If (for example) x4 = 0, we see upon substitution into

B that we must have either y4 = 0 also (which implies that δ(x) = δ(y) = 0)
or x = 0, which is excluded.

Case 2: F = X(X−Z)Z4. We have again δ4 = x4
4. The Kummer surface

equation is κ = x4
1 + x4R with some polynomial R. Hence x4 = 0 implies

x1 = 0 for a point on K. If x1 = x4 = 0, then all δj vanish. This means that
we again have δ = 0 ⇔ x4 = 0 ⇔ δ4 = 0. We also have B44(x, y) = x2

4y
2
4,

and the argument can be finished as in Case 1.

Case 3: F = X(X −Z)(X − aZ)Z3 (with a 6∈ {0, 1}). We have δ1(x) =
4x1x4(x1 − x4)(ax1 − x4) and δ4(x) = (ax2

1 − x2
4)2. If both vanish, then

x1 = x4 = 0, which implies that all δj vanish. Hence δ = 0 ⇔ x1 = x4 =
0 ⇔ δ1 = δ4 = 0, which implies assertion (1).

Similarly, B11(x, y) = (x1y4 − x4y1)2 and B44(x, y) = (ax1y1 − x4y4)2.
If we assume that x1 = 0, we see that B(x, y) = 0 implies x4 = 0 or
y1 = y4 = 0. By symmetry, we can assume x1 = x4 = 0. This already
implies δ(x) = 0.

Setting x1 = x4 = 0 in B, we find that B22 = (x2y4 − x3y1)2 and that
B33 = (ax2y1 − x3y4)2. If y1 = 0, then also y4 = 0 and δ(y) = 0. Otherwise,
we can assume y1 = 1 and so x3 = x2y4. Then from B23, we must have
either y4 ∈ {0, 1, a} or x2 = 0, and from B33, we must have either y2

4 = a
or x2 = 0. Since a 6∈ {0, 1}, the conditions on y4 are incompatible, and we
must have x2 = 0, hence x = 0, a contradiction.

Now assume that x1 6= 0, so without loss of generality x1 = 1 and hence
y4 = x4y1. From B14, we get x4 ∈ {0, 1, a} or y1 = 0, and from B44, we have
x2

4 = a or y1 = 0. Hence y1 = 0, and after interchanging x and y, we are in
a situation already considered.

Arguing in a similar manner, we obtain Table 1. It lists for each of our
chosen representative polynomials two conditions (“Cond. 1” and “Cond. 2”)
that are each equivalent to δ(x) = 0 for a point x on K. A point in P3

satisfying Condition 2 is on K if and only if it also satisfies the condition
listed under the heading “Additional”.



170 M. Stoll

Table 1. Conditions for the vanishing of δ(x)

No. F Cond. 1 Cond. 2 Additional

1 0 δ4 = 0 x4 = 0

2 Z6 δ4 = 0 x4 = 0

3 XZ5 δ4 = 0 x4 = 0 x1 = 0

4 X2Z4 δ4 = 0 x4 = 0

5 X3Z3 δ4 = 0 x4 = 0 x1x3 = 0

6 X(X − Z)Z4 δ4 = 0 x4 = 0 x1 = 0

7 X2(X − Z)Z3 δ4 = 0 x4 = 0 x1x3 = 0

8 X2(X − Z)2Z2 δ4 = 0 x4 = 0

9 X(X − Z)(X − aZ)Z3 δ1 = δ4 = 0 x1 = x4 = 0

10 X2(X − Z)(X − aZ)Z2 δ4 = 0 x4 = 0 x1x3 = 0

11 X(X − Z)(X − aZ)(X − bZ)Z2 δ1 = δ4 = 0 x1 = x4 = 0

The fact that Condition 1 can be obtained from Condition 2 by replacing
xj with δj amounts to a proof of statement (1) in Proposition 3.1.

This completes the sketch of the proof. For the applications, we will also
need the following somewhat technical lemma.

Lemma 3.2. Let x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) be homoge-
neous coordinates for points on K and suppose that B(x, y) 6= 0. Let w =
(w1, w2, w3, w4) and z = (z1, z2, z3, z4) be homogeneous coordinates such that
wizi = Bii(x, y) and wizj + wjzi = 2Bij(x, y) for all i, j ∈ {1, 2, 3, 4}. Then
Bii(δ(x), δ(y)) = δi(w)δi(z) and 2Bij(δ(x), δ(y)) = δi(w)δj(z) + δj(w)δi(z)
for all i, j ∈ {1, 2, 3, 4}.

Proof. We can treat this generically—we assume the coefficients of F to
be independent indeterminates. Then K is the Kummer surface of a Jaco-
bian, and from 2(P ± Q) = (2P ) ± (2Q), we see that the set of equalities
must hold at least projectively. The expressions δi(w)δi(z) and δi(w)δj(z) +
δj(w)δi(z) are bihomogeneous of bidegree (4, 4) and symmetric in w and z,
therefore they can be expressed in terms of B(x, y). This gives bihomoge-
neous polynomials in x and y of bidegree (8, 8). Since B(δ(x), δ(y)) is also
given by bihomogeneous polynomials of bidegree (8, 8), the constant of pro-
jectivity must be in the base field, i.e., independent of x and y. Specialising
both points to the origin (0 : 0 : 0 : 1), we see that the constant is 1.

4. The main result. We will now deduce the main result of this paper.
We let k be a non-archimedean local field with char(k) 6= 2. We denote
by v the additive valuation on k (normalised to have image Z) and by
O = {α ∈ k | v(α) ≥ 0} the valuation ring. We assume that F is in O[X,Z]
and has no multiple factors. Hence J is an abelian surface, the Jacobian of
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the curve defined by F . We define the map ε : J(k)→ Z by

ε(P ) = v(δ(x))− 4v(x),

where (as always) x is a set of homogeneous coordinates for the image of P
on the Kummer surface K. It is clear that this does not depend on the homo-
geneous coordinates chosen. Since the coefficients of the δj are polynomials
with integral coefficients in the coefficients of F , we always have ε(P ) ≥ 0.

With this definition, our result is the following.

Theorem 4.1. Let U = {P ∈ J(k) | ε(P ) = 0}. Then U is a subgroup
(of finite index ) in J(k), and ε factors through J(k)/U . Furthermore, ε(P ) =
ε(−P ).

The subgroup is of finite index since it contains the kernel of reduction
with respect to the given model (cf. [1, §7.5]). That ε vanishes on the kernel
of reduction can be seen as follows. If P ∈ K reduces to P̃ = (0 : 0 : 0 : 1)
mod p, then we have δ̃(P ) = δ(P̃ ) = (0 : 0 : 0 : 1), and so v(δ(x)) = v(x) = 0
for suitably chosen projective coordinates x of P . The last statement is
clear, since ε is defined via the Kummer surface, which does not distinguish
between P and −P .

We note that this result is an immediate corollary of the following propo-
sition.

Proposition 4.2. Let P,Q be points in J(k). Then ε(P ) = 0 implies
that ε(P +Q) = ε(Q).

Proof. We first note the following simple fact:

min{v(aibi), v(aibj + ajbi) | i, j ∈ {1, 2, 3, 4}} = v(a) + v(b).(4.1)

Let P , Q be two points on J(k) and let x, y be homogeneous coordinates
for their images on K. Then we define

ε(P,Q) = v(B(x, y))− 2v(x)− 2v(y).

Lemma 3.2 and the simple fact (4.1) together imply that

ε(2P, 2Q) + 2ε(P ) + 2ε(Q) = ε(P +Q) + ε(P −Q) + 4ε(P,Q).(4.2)

If we choose homogeneous coordinates that are normalised in such a way
that they are in O with one of them being a unit, then we see by applying
Proposition 3.1 to the reductions P̃ , Q̃ ∈ J(k̃), where k̃ is the residue field
of k, that for all points P,Q ∈ J(k), ε(P ) = 0 implies ε(2P ) = 0 and
ε(P,Q) = 0. If we plug this into equation (4.2), we see that ε(P ) = 0 implies

2ε(Q) = ε(P +Q) + ε(P −Q) = ε(Q+ P ) + ε(Q− P )(4.3)

for all points Q. Let an = ε(Q + nP ) (for n ∈ Z). Replacing Q in (4.3)
by Q + nP , we obtain the recurrence relation 2an = an+1 + an−1 for all
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n ∈ Z. Its solutions are of the form an = α+ βn. Since ε takes on only non-
negative values, β must be zero, hence an = α is constant. In particular,
ε(P +Q) = a1 = a0 = ε(Q).

5. Improvement of the height constant. We can use the explicit
results of Section 3 to improve the bound on the local height constant
γ = maxP∈J(k) ε(P ). In [7], it was shown that γ ≤ v(24 disc(F )), and some
possible improvements were discussed. The main disadvantages of the ap-
proach followed there are that it always produces a bound that is valid for
all algebraic points on the Kummer surface. But we only need a bound that
is valid for all k-rational points on the Jacobian itself. It is obvious that
there is room for improvement here. The following result shows that we can
indeed gain something in many cases.

We first remark that a point x = (x1, x2, x3, x4) on K can lift to J only
if the following two expressions are squares in k:

s1(x) = x3
1x4 + f2x

4
1 + f3x

3
1x2 + f4x

2
1x

2
2(5.1)

+ f5x1x2(x2
2 − x1x3) + f6(x2

2 − x1x3)2,

s2(x) = x2
1x3x4 + f0x

4
1 + f4x

2
1x

2
3 + f5x1x2x

2
3 + f6x

2
2x

2
3.(5.2)

(Generically, s1 and s2 are the squares of the coefficients a and b in the
equation y = ax + b of the line joining the two points on the curve that
represent a corresponding point on J . We therefore get an equivalence when
we have two affine points. If one or both of the points are at infinity, we get
a weaker condition.)

Lemma 5.1. Let k be a p-adic field , f0, . . . , f6, x1, x2, x3, x4 ∈ O and
assume that v(x) = 0, where v is the normalised additive valuation on k.
Then the following set of conditions is contradictory :

(i) v(f6) = 1, v(f5) ≥ 1;
(ii) v(x1) ≥ 1, v(x4) ≥ 1;

(iii) the expressions s1(x) and s2(x) are squares in k.

Proof. We assume (i) and (ii) hold and derive a contradiction to (iii).
Let vj = v(xj). We must have v2 = 0 or v3 = 0. In the first case, all

terms but the last one in s1(x) have valuation at least 2, whereas the last
term has valuation 1. Hence v(s1(x)) = 1, and s1(x) cannot be a square.

In the second case, let us first assume that v1 ≤ v2. Then all terms but
the last one in s1(x) have valuation at least 3v1 + 1, whereas the last term
has valuation 2v1 + 1. Hence v(s1(x)) = 2v1 + 1 is again odd, and s1(x)
cannot be a square.

Finally, assume that v1 > v2. Then all terms but the last one in s2(x)
have valuation at least 2v2 + 2, whereas the last term has valuation 2v2 + 1.
Hence v(s2(x)) = 2v2 + 1 is odd, and s2(x) cannot be a square.
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This implies the following improvement in the bound for γ.

Proposition 5.2. Assume that the residue characteristic of k is odd
and that the reduction of F factors as hlm with h non-constant and square-
free, and l linear and not dividing h. Suppose further that the model of the
curve given by F is regular. Then the local height constant γ vanishes (i.e.,
U = J(k) in the notation of Theorem 4.1).

Proof. Since the assumptions are unaffected when we replace k with
its maximal unramified extension knr, we can assume that k = knr. The
assumption on F means that the reduction of F falls into the GL2-orbit of
one of cases 3, 6, 9 or 11 in Table 1 (unless F has square-free reduction,
in which case the claim holds trivially). Since the residue field of knr is
algebraically closed, we can invoke a suitable automorphism of P1

Ok in order
to transform the reduction of F into the given representative. In all these
cases, a point P on J(knr) with ε(P ) > 0 would have image on K satisfying
the contradictory conditions (i)–(iii) in the lemma above. The regularity
implies condition (i), from Table 1 we get condition (ii), and condition (iii)
is satisfied because the point lifts to J(knr).

Remark. The assumptions in Proposition 5.2 are certainly satisfied
when the residue characteristic p is odd and v(discF ) = 1. This shows
that for a “generic” curve over Q, most of the bad primes will not cause
trouble (especially the large ones), since one would expect its discriminant
to have only a few (and small) multiple prime factors.

More generally, when p is odd, the regularity assumption means that
v(discF ) = m− 1 in the notation of Proposition 5.2.

Example. We consider the curve

Y 2 = X5 + 16X4 − 274X3 + 817X2 + 178X + 1.

The discriminant of the polynomial on the right hand side factors as 1912 ·
9414. It turns out that the bounds γ2 ≤ 4 and γ191 ≤ 2 given by [7] are sharp.
At 941, however, we can improve on the bounds γ941 ≤ 4 or γ941 ≤ 2 (which
is the improved bound from [7] or the bound from [3] that was obtained by
looking at the Q941-rational points on K). Indeed, modulo 941, the polyno-
mial (in homogeneous form) factors as Z(X−185Z)5. Since v941(discF ) = 4,
the model must be regular. Hence our result shows that in fact γ941 = 0.
This means that the bound for the difference between the (logarithmic)
naive and canonical heights on J(Q) can be reduced to 5.84704 (using the
height constant at infinity as given by [7]) or even to 4.6 (if we are willing
to accept a numerical estimate of the height constant at infinity). We will
return to this example at the end of the paper, where we will determine the
Mordell–Weil group.
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In general, we can try to find γ exactly by searching through the points
in K(k) that lift to J(k), in a similar way to the program mentioned in [3].
Table 1 tells us where to start off the search.

6. An improved canonical height algorithm. For definiteness, we
let k = Q in this section. Everything can be done for a general number
field as well, but the additional complexities would tend to obscure the main
point. We assume that F has coefficients in Z and no multiple factors. Given
a point P ∈ J(Q) and a set (x1, x2, x3, x4) of homogeneous coordinates for
its image on K, we define its (logarithmic) naive height to be

h(P ) =
∑

v

max{log |x1|v, log |x2|v, log |x3|v, log |x4|v},

where the sum is over the places of Q, and |·|v are the corresponding absolute
values, normalised in such a way that |p|p = p−1 at a finite place v = p and
such that |·|∞ is the usual archimedean absolute value. By the usual product
formula, h(P ) does not depend on the specific set of coordinates chosen.

The canonical height of P is then

ĥ(P ) = lim
n→∞

h(nP )
n2 = lim

n→∞
4−nh(2nP ).

For a prime p, we denote by εp the map from J(Q) to Z obtained by
first going from J(Q) into J(Qp) and then using the ε map defined in the
previous section. Similarly, we let

ε∞(P ) = log max{|δj(x)| | j ∈ {1, 2, 3, 4}} − 4 log max{|x1|, |x2|, |x3|, |x4|},
where again (x1, x2, x3, x4) are homogeneous coordinates for the image of P
on K.

From these definitions, we have immediately

h(2P ) = 4h(P ) + ε∞(P )−
∑

p

εp(P ) log p.

Hence

ĥ(P ) = h(P ) +
∞∑

n=0

4−n−1ε∞(2nP )−
∑

p

(log p)
∞∑

n=0

4−n−1εp(2nP ).(6.1)

Flynn and Smart [3] propose the following algorithm for the computation
of ĥ(P ).

1. Find an m ≥ 1 such that εp(mP ) = 0 for all p.
2. Compute ĥ(mP ) as h(mP ) +

∑∞
n=0 4−n−1ε∞(2nmP ).

3. Return ĥ(P ) = ĥ(mP )/m2.

Note that the condition in step 1 can be checked as follows. Choose
Kummer coordinates x for P in such a way that they are relatively prime
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integers. Then εp(P ) = 0 for all p is equivalent to the δj(x) being relatively
prime. In particular, no factorisation is required. The sum in step 2 can be
cut off as soon as the precision is high enough (which can be checked when
one has a bound on |ε∞|). The terms in the sum can be computed using
floating-point arithmetic by repeated application of δ.

For this algorithm to work it is necessary that εp(2P ) = 0 if εp(P ) = 0
(otherwise we could miss some terms εp(2nmP )). Flynn and Smart do not
prove this (they seem to have overlooked the necessity). It is, however, an
immediate consequence of our theorem. Hence the algorithm is correct.

There are several examples for which the algorithm in this form turns
out to be impractical. This is the case when the number m that has to be
found in step 1 is large. The length of the coordinates of mP grows roughly
as m2—the numbers grow very big even for fairly moderate values of m, and
it takes a very long time to compute these numbers; compare the example
given in the introduction. We therefore propose some improvements to the
canonical height algorithm that will cut down the number of multiples of P
that have to be computed.

Let us consider one prime p. We let Up = {P ∈ J(Q) | εp(P ) = 0}. Let
P ∈ J(Q) be some point. We know that Up is a subgroup of finite index in
J(Q), hence there is a smallest m ≥ 1 such that mP ∈ Up. By Theorem 4.1,
εp(nP ) then only depends on n mod m. When we compute the multiples of
P up to mP , we therefore construct a table of these values. Write m = 2rs
with s odd and let t be the order of 2 in the group (Z/sZ)×. Then we have
εp(2n+tP ) = εp(2nP ) as soon as n ≥ r. This means that we can write the
p-part on the right hand side of (6.1) as a finite number of terms plus a
finite number of geometric series. Namely,

∞∑

n=0

4−n−1εp(2nP ) =
r−1∑

n=0

4−n−1εp(2nP ) +
4−r−1

1− 4−t

t−1∑

n=0

4−nεp(2r+nP ).(6.2)

This allows us to find this p-part exactly.
Now let P ∈ J(Q) be some point and choose Kummer coordinates x that

are relatively prime integers. Let a = gcd(δ(x)) (with the obvious notational
shortcut). Then εp(P ) = vp(a) (where vp is the normalised p-adic valuation).
Therefore, if p does not divide a, then the p-part in the canonical height is
zero. We get the relevant primes by factoring a (which can be a costly
operation in principle, but see the discussion below).

This leads to the following algorithm. Let P ∈ J(Q).

1. Choose Kummer coordinates x for P that are relatively prime integers.
Compute a = gcd(δ(x)). Let S be the set of prime divisors of a. For
each prime p ∈ S, begin a table Tp with the pairs (0, 0) and (1, vp(a)).
Let m = 1 and S′ = S.



176 M. Stoll

2. While S′ is non-empty, do the following. Increase m by 1 and compute
mP . Choose Kummer coordinates x for mP as above and let a =
gcd(δ(x)). For each prime p ∈ S ′, do the following. If p - a, let mp =
m and remove p from S′. Otherwise, add the pair (m, vp(a)) to the
table Tp.

3. For each prime p ∈ S, compute the sum in (6.2), where r = v2(mp),
t is the order of 2 in (Z/sZ)× with s = 2−rmp, and we can compute
εp(2nP ) as the number associated to 2n mod mp in the table Tp. Call
the sum sp.

4. Compute s∞ =
∑∞

n=0 4−n−1ε∞(2nP ) to the desired accuracy (using
a bound on |ε∞|) by repeated application of δ to a floating-point
approximation of the coordinates of P .

5. Return ĥ(P ) = h(P ) + s∞ −
∑

p∈S sp log p.

This algorithm requires to go up to m = max{mp | p ∈ S}, whereas the
original algorithm goes up to m = lcm{mp | p ∈ S}. This can make a big
difference.

A few more remarks on the implementation. If in step 2, we find that
δ(x) (i.e., 2mP ) is in the kernel of reduction at p, then we know that 2mP is
in Up. We therefore can complete the table Tp by symmetry (since εp(Q) =
εp(−Q)) and remove p from S′. This can save some work, especially for
p = 2. Similarly, we can compute (2m + 1)P in each step without much
additional work and check if it is in the kernel of reduction.

In step 4, it is a good idea to keep the multiples of P on K(R) (for ex-
ample by adjusting the fourth coordinate after each doubling step). Because
of rounding errors, the points tend to leave K, which introduces additional
errors.

The factorisation in step 1 is probably not so very costly (in most cases,
at least). Primes that divide the discriminant only once do not show up
(compare the remark following Proposition 5.2), hence normally the primes
involved will be fairly small. To avoid expensive factorisations, one could
restrict to splitting off all reasonably small primes and use the old algorithm
on the remaining part (if any). This means that we have to find the smallest
m such that εp(mP ) = 0 for all large p (which we can check using gcd and
small factorisation) and then compute ĥ(mP ) as before.

The algorithm presented here has been implemented by the author as
part of a MAGMA package dealing with hyperelliptic curves and their Jaco-
bians.

7. How to find the Mordell–Weil group. We now assume that we
have a curve of genus two over Q (or, more generally, a number field). Our
goal is to find the Mordell–Weil group J(Q). We suppose that we already
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know its torsion-free rank, r, and that we have found r points P1, . . . , Pr ∈
J(Q) that generate a subgroup of rank r (and hence of finite index). See [8]
for an algorithm that produces an upper bound for the rank r. Let T be the
finite torsion subgroup of J(Q). We are concerned here with finding the free
part J(Q)/T . (See [7] for an algorithm that computes T .)

Flynn and Smart [3] discuss how we can bound the index of the sub-
group 〈P1, . . . , Pr〉 in J(Q)/T , provided we have found all points in J(Q) of
canonical height at most a given bound b > 0. We will give a complement
to this and establish a bound b such that all points of canonical height up
to b, together with the given points Pj, will generate J(Q)/T .

We have Λ = J(Q)/T ∼= Zr and the canonical height, ĥ, defines a posi-
tive definite quadratic form on V = Λ⊗Z R (see Silverman [6, VIII, Propo-
sition 9.6]; the proof is valid for general abelian varieties). Hence we can
consider Λ as a lattice in the euclidean vector space V . The given points
generate a sublattice Λ′, and we can find an (almost) reduced basis for it
with the LLL algorithm. The covering radius %(Λ′) of Λ′ is defined to be the
maximal distance a point in V can have from the lattice Λ′.

Proposition 7.1. In the situation described above, Λ is generated by Λ′

together with all points in Λ of height at most equal to %(Λ′)2.

Proof. This follows from the fact that (by definition) the ball with radius
%(Λ′) about the origin contains a fundamental domain for Λ′. So all the
residue classes in Λ/Λ′ must have a representative of height ≤ %(Λ′)2.

Now it is quite difficult to determine % exactly for a lattice of high rank,
but we can easily find an upper bound as follows. Let L be some lattice,
and let V = L⊗Z R, with positive definite quadratic form q. Let V1 ⊂ V be
a subspace such that L1 = L∩ V1 is a full lattice in V1. Let V2 = V ⊥1 be the
orthogonal complement (with respect to q) of V1 in V , and let L2 be the
orthogonal projection of L to V2; then L2 is a full lattice in V2.

Lemma 7.2. We have

%(L)2 ≤ %(L1)2 + %(L2)2.

Proof. We claim that the set

R = {v1 + v2 | v1 ∈ V1, v2 ∈ V2, q1(v1) ≤ %(L1)2, q2(v2) ≤ %(L2)2}
(where qj is the form induced by q on Vj) contains a fundamental domain
for L. Since R is contained in the ball of radius

√
%(L1)2 + %(L2)2 about the

origin in V , the result follows.
So let v = v1 + v2 be some element of V , split into its components in V1

and V2. We can find an element λ2 ∈ L2 such that q2(v2 + λ2) ≤ %(L2)2.
Let λ ∈ L be a preimage of λ2, and let λ′ = λ − λ2 ∈ V1. We can find an
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element λ1 ∈ L1 ⊂ L such that q1(v1 + λ′ + λ1) ≤ %(L1)2. This shows that
v + λ1 + λ ∈ R ∩ (v + L), which proves the claim.

The simplest application is when we split the space V into one-dimen-
sional pieces. This amounts to orthogonalising a given basis of the lattice.
We then take the sum of the norms of the orthogonalised basis vectors as an
upper bound for 4%2. This bound is used in the first example in Section 8
below.

In general, the computation of % requires a good knowledge of the Voronoi
cell of the lattice, which is a very complex object—a typical Voronoi cell of
a lattice of rank r is a polytope with (r+ 1)! vertices. It seems to be feasible
to compute % exactly for lattices of rank up to about 6, but beyond that,
the complexity becomes prohibitive. We can, however, split our lattice into
pieces of smaller rank and use the bound given by the lemma above. See the
second example in Section 8 below.

We remark that in the case r = 2, an exact formula for % is

%2 =
ĥ(P1)ĥ(P2)ĥ(P1 ± P2)

4 Reg(P1, P2)
,

where Reg is the regulator and the sign is chosen that gives the smaller
value. P1 and P2 are assumed to be a Minkowski-reduced basis.

These considerations lead to the following algorithm. We are given inde-
pendent points P1, . . . , Pr ∈ J(Q) and want to find the saturation in J(Q)
of the subgroup generated by the given points, i.e., the largest subgroup of
the finitely generated abelian group J(Q) containing the known subgroup
with finite index. In case we know the rank of J(Q) is r, this amounts to
finding generators of J(Q) itself.

1. For all bad primes p and for the infinite prime ∞, find a bound γp
(resp. γ∞) on the local height constant, and let γ =

∑
p γp log p+γ∞.

These bounds can be obtained using the results of [7] or of Section 5
in this paper.

2. Using the algorithm described in Section 6 above, compute the height
pairing matrix M =

(1
2(ĥ(Pi +Pj)− ĥ(Pi)− ĥ(Pj))

)
i,j

. Construct the
corresponding lattice Λ′.

3. Find a bound %2 for the square of the covering radius of Λ′, either by
exact computation or by splitting the lattice into several parts and
using Lemma 7.2.

4. Enumerate all points in J(Q) with normalised projective Kummer
coordinates bounded in absolute value by bexp(γ + %2)c. This set
will contain all points of (canonical) height ≤ %2 (cf. [3] or [7]). By
Proposition 7.1, these points, together with the Pi, will generate the
group we are looking for.
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A few remarks are in order. Note that this algorithm is applicable to
any abelian variety, as long as we are able to compute heights, find a bound
for the global height constant and can enumerate points of bounded naive
height. This is the case for elliptic curves, for example.

The quantity γ∞ needed in step 1 can be obtained by the method de-
scribed in [7]. Finally, there is a fairly fast program called j-points written
by the author that uses a sieving technique in order to enumerate points of
bounded height on the Jacobian.

The algorithm presented here is applicable when γ + %2 is not too large,
since otherwise the enumeration of points in step 3 will be prohibitive. When
γ is not too large, but %2 is, one can use the approach suggested by Flynn
and Smart [3]. This consists in enumerating points up to (logarithmic) naive
height γ + ε for a suitable ε > 0 and using the result to bound the index
in the saturation. In a second step, one tries to exclude the possible index
divisors p by collecting information on independence mod p in the reduction
at suitable primes q. The disadvantage of this approach is that when the
rank is high, the first step will nearly always give a nontrivial bound (it
gets worse with growing rank), and it is very time-consuming to obtain the
necessary information in the second step in order to exclude index divisors
below this bound. Compare the examples given below.

8. Examples

Example 1. We return to our earlier example,

Y 2 = X5 + 16X4 − 274X3 + 817X2 + 178X + 1.

Schaefer [4] has shown that the classes of the following divisors generate a
subgroup of finite index in the Mordell–Weil group:

(−17, 1223)−∞, (−9, 557)−∞, (−6, 317)−∞, (−2, 73)−∞,
(0, 1)−∞, (4, 37)−∞,

(1
2(5 +

√
177), 191

)
+
(1

2(5−
√

177), 191
)
−2 ·∞.

Table 2. Generators for J(Q) in the rank 7 example

Generator Height

(2 +
√

10, 21− 5
√

10) + conj.− 2 · ∞ 1.6473513303

(0, 1)−∞ 2.0178003424

(4, 37)−∞ 2.9901773857

(− 2, 73)−∞ 3.2923263549(
21+
√

329
8 , 965+9

√
329

64

)
+ conj.− 2 · ∞ 3.3796213459(

1
2 (15 +

√
129), 355 + 26

√
129
)

+ conj.− 2 · ∞ 3.6923148302(
35+
√

1189
9 , 11492+307

√
1189

243

)
+ conj.− 2 · ∞ 3.6956019437
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Using the algorithm described in the preceding section, we compute the
height pairing matrix of these points. Then we find an LLL-reduced basis,
which is listed in Table 2 (together with the heights of the points).

When we orthogonalise this basis, we see that the new basis vectors
have norms 1.64724, 1.91458, 2.60517, 3.07602, 2.57622, 2.79642, 2.54511,
respectively, hence %2 ≤ 4.29021. This, taken together with the bound for
the height constant given above, shows that the points in J(Q) with (non-
logarithmic) naive height up to 25266 will generate J(Q).

Using j-points, we enumerate all 683 points in this range. This took
under two hours of CPU time on a 200 MHz Pentium PC. It can be checked
that all these points are already in Λ′. Since the torsion subgroup T is trivial
in this case, this shows that the above list gives a full set of generators
of J(Q).

Note that the method given in [3] for bounding the index of Λ′ in Λ can
only bound the index by 4, no matter how far we go in the search of points
in J(Q). Since in this case, it is known that the index must be odd, we still
would have to exclude the possibility that the index is 3.

After we had done this calculation, we succeeded in determining the
covering radius of the lattice generated by the known points. It turns out
that %2 = 2.6658, hence it would have been sufficient to enumerate all points
in J(Q) of (non-logarithmic) naive height up to about 5000. On the other
hand, finding the covering radius took much more time than finding the
points of height up to 25266.

Example 2. We consider the curve C over Q given by the affine equa-
tion

Y 2 = X6 − 56X5 + 176X4 + 74X3 − 81X2 − 282X + 169,

and let J denote its Jacobian. This curve was found by Colin Stahlke while
searching for curves of genus two with small coefficients and many rational
points. It has pairs of rational points with x-coordinates in the following list:

∞,−4,−2,−1, 0, 1, 2, 57, 58,− 15
2 ,−5

2 ,−1
2 ,

1
2 ,

7
2 ,

1
3 ,

4
3 ,

5
3 ,

7
3 ,

8
3 ,−55

4 ,−37
4 ,−9

4 ,

−209
5 ,−112

5 ,−6
5 ,−3

5 ,
3
5 ,

6
5 ,

3
7 ,−7

8 ,
27
8 ,

18
11 ,

4
13 ,

53
17 ,− 5

18 ,−2322
23 , 25

24 ,
43
28 ,

95
29 ,−53

31 ,
23
44 ,

77
53 ,−10

63 ,
116
65 ,−69

76 ,
169
77 ,

103
100 ,

73
116 ,

68
117 ,

199
145 ,

463
145 ,

159
146 ,

169
154 ,

169
168 ,

248
249 ,−776

261 ,−425
286 ,

−1865
309 ,

196
333 ,

187
366 ,−1212

563 ,−1345
949 ,

2332
1043

The set of the classes of divisors P − Q where P and Q are among these
rational points on C generates a subgroup of J(Q) of rank 12. Since it can
be shown (see [8]) that the rank of J(Q) is at most 12, we have found gener-
ators of a finite index subgroup. The torsion subgroup is trivial in this case,
hence this subgroup coincides with the lattice Λ′. With the usual algorithms
for lattices, we find a Minkowski-reduced basis. It is given in Table 3.
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Table 3. Generators for J(Q) in the rank 12 example

Generator Height

(1, 1)−∞+ 3.6069846330

(1, 1)−∞− 3.6248921651

(0, 13)−∞− 3.9724077310

(−1, 23)−∞+ 4.4794963440

(2, 31)−∞+ 4.5306263681(
1
2 ,

41
8

)
−∞− 4.6541675885

(1, 1) + (−2, 67)−∞+ −∞− 4.7683627239(
1
3 ,

227
27

)
−∞+ 4.9309921342(

3
5 ,− 283

125

)
−∞− 5.1654708604(

4
3 ,

331
27

)
−∞− 5.2192990555

(1, 1) + (−4,−319)−∞+ −∞− 5.2817228322(
5
3 ,

589
27

)
−∞+ 5.3847930886

We can bound the covering radius of this lattice by splitting it into
two parts of rank six. For these two parts, we find that %2

1 = 3.2542 and
%2

2 = 2.0489, hence %2 ≤ 5.3031.
The discriminant of the polynomial on the right hand side in the equation

defining C is a power of two times the product of the two primes 27605791
and 12261635838401. Hence only p = 2 contributes to the finite part of the
height constant. The global height constant can then be bounded by 3.37131.
It will therefore be sufficient to find all points in J(Q) of logarithmic naive
height at most 8.6745, or non-logarithmic naive height at most 5851. We
can find these points with j-points (there are 1347 of them), and it turns
out that all of them are already in the known sublattice. This shows that
the classes of the divisors listed in Table 3 are indeed generators of J(Q),
and the regulator is 316539.273674.

The Flynn–Smart approach can only bound the index by 20 at best in
this example, and it would be quite a tedious task to eliminate all primes
below 20 as possible index divisors.
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Universitätsstr. 1

40225 Düsseldorf, Germany
E-mail: stoll@math.uni-duesseldorf.de

Received on 28.6.2001
and in revised form on 12.10.2001 (4063)


