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Distribution of zeros of Dirichlet L-functions
and an explicit formula for ψ(t, χ)

by

Ming-Chit Liu (Hong Kong) and Tianze Wang (Kaifeng)

1. Introduction. Numerical results on (i) bounds for zeros of the
Dirichlet L-functions L(s, χ), (ii) the zero-density estimates for L(s, χ) and
(iii) the asymptotic formula for the generalized Chebyshev function ψ(t, χ)
are indispensable in the investigation of many problems involving prime
numbers if all the relevant constants are required to be explicit. Many au-
thors obtained results of general interest in these three topics (e.g., [RS],
[M], [C], etc.).

In this paper we shall concentrate on some numerical problems related
to these results. As an interesting application of the results of this paper,
it is proved in a forthcoming paper [LW] that every odd integer exceeding
exp(3100) (= 101346.3...) is a sum of three odd primes, which improves the
best known numerical result exp(exp(11.503)) (= 1043000.5...) in [CW1] on
the three primes Goldbach conjecture.

As a continuation of [M, Theorems 1 and 2], our Theorems 1 and 2 give
bounds for zeros of L(s, χ) with the help of the ideas in [G]; Theorem 3 gives
an explicit numerical bound for the Siegel zero β̃ defined as in Lemma 2.1;
Theorem 4 uses some ideas of Heath-Brown [HB] to give explicit numerical
bounds for the zero-density of L(s, χ) near the vertical line α = 1; Theo-
rems 5 and 6 give explicit numerical zero-density estimates for L(s, χ) in
the strip 0 < α < 1, while Theorem 7 gives explicit numerical zero-density
estimates for L(s, χ) taking care of the strip 1/2 < α < 1; Theorem 8 gives
an explicit formula for ψ(t, χ) with a numerical value for the constant in the
error term.
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As far as the authors are aware, there are no previous records on the
numerical value of the constants in the bounds of Theorems 3 and 8.

An expanded version of this paper, giving full details of the numerical
calculations, is available on request from the second author.

2. Bounds for zeros of Dirichlet L-functions. In this section we
give some explicit upper bounds for zeros of Dirichlet L-functions: we first
present a zero-free region due to McCurley [M], and then give explicit regions
in which the function defined by (2.2) below has at most four zeros or two
zeros respectively in Theorems 1 and 2, and lastly give an upper bound
for the possible exceptional zero β̃ in Theorem 3. Suppose q is any integer
satisfying

(2.1) 1 ≤ q ≤ x.
Let χ (mod q) be any Dirichlet character to modulus q, and L(s, χ) be the
corresponding L-function. Define

(2.2) Π(s) :=
∏

χ (mod q)

L(s, χ).

Lemma 2.1. Let c1 := 9.645908801 (so 1/c1 = 0.10367089 . . .) and x

≥ 10. Then the function Π(s) defined by (2.2) has at most one zero β̃,
called the exceptional zero or the Siegel zero, in the region

σ > 1− 1/(c1 log x), |t| ≤ x/q.
Such a zero, if it exists, is real and simple, and corresponds to a nonprincipal
real character χ (mod q) induced by the unique nonprincipal real primitive
character χ̃ (mod r̃) with r̃ ≤ x, for which L(β̃, χ̃) = 0. Moreover , we have
r̃ ≥ 987.

Proof. The first part is [M, Theorem 1], upon noting that the M there is
less than x. The uniqueness for χ̃ (so for r̃) is due to [M, Theorem 2], since
the M1 there is now less than x2 and the 2R1 there is less than c1. Finally,
r̃ ≥ 987 comes from [M, p. 9, before §2].

Lemmas 2.2 to 2.5 below are used to prove Theorems 1 and 2. To state
them, we first give some notations. Let σ > 1 and set σ1 := (1+

√
1 + 4σ2)/2.

For any real t and any χ (mod q) with q ≥ 1 define

(2.3) f(σ, t, χ) := Re
{

1√
5
· L
′

L
(σ1 + it, χ)− L′

L
(σ + it, χ)

}
.

Throughout the paper, the letter p, with or without subscripts, always
denotes a prime number.

Lemma 2.2. Let χ0 be the principal character modulo q. Then for 1 <
σ < 1.15,
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f(σ, 0, χ0) < 1/(σ − 1)− 0.8973− s(q),
where

s(q) :=
∑

p|q
(log p)

(
1

pσ − 1
− 1√

5 (pσ1 − 1)

)
.

Proof. This is [M, Lemma 3].

Lemma 2.3. Let κ := (5−
√

5)/10 and s(q) be defined as in Lemma 2.2.
Then for any q ≥ 1 we have

s(q) ≤ κ log q + 0.4977 and s(q) ≤ 0.1 log q + 1.0886.

Proof. For any a > 1, aσ1−σ is decreasing for σ > 0. Hence for σ > 1
and prime p,

1
pσ − 1

− 1√
5 (pσ1 − 1)

≤
∞∑

n=1

(
1
pn

)(1+
√

5)/2(
pn((1+

√
5)/2−1) − 1√

5

)

≤





0.784 if p = 2,
0.4091 if p = 3,
0.2143 if p = 5,
0.1467 if p = 7,
1/(p− 1) if p ≥ 11.

Thus

s(q)− κ log q ≤ (0.784− κ) log 2 + (0.4091− κ) log 3 ≤ 0.4977,

which proves the first inequality in the lemma. The second inequality follows
from

s(q)− 0.1 log q ≤ (0.784− 0.1) log 2 + (0.4091− 0.1) log 3

+ (0.2143− 0.1) log 5 + (0.1467− 0.1) log 7 ≤ 1.0886.

Lemma 2.4. Let χ0 be the principal character modulo q, and let t be any
real number. Then for 1 < σ < 1.15 we have

f(σ, t, χ0)

<

{
Re((σ − 1 + it)−1)− κ log π + 0.0615 + s(q)− Z(σ, t) if |t| < 1,
κ log |t| − κ log π + 0.3316 + s(q)− Z(σ, t) if |t| ≥ 1,

where κ and s(q) are defined in Lemmas 2.3 and 2.2 respectively , and Z(σ, t)
is defined by

(2.4) Z(σ, t) :=
∑

%

(
Re
(

1
σ + it− %

)
− 1√

5
Re
(

1
σ1 + it− %

))

with the sum over all nontrivial zeros % of ζ(s).
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Proof. By [D, §14, before (1)], and the definition of f(σ, t, χ0) in (2.3)
we get

f(σ, t, χ0) = −Re
(
ζ ′

ζ
(σ + it)

)
+

1√
5

Re
(
ζ ′

ζ
(σ1 + it)

)
(2.5)

−Re
( ∞∑

n=1
(n,q)>1

(
Λ(n)
nσ+it −

1√
5
· Λ(n)
nσ1+it

))
.

Note that the sum on the right hand side of (2.5) has absolute value ≤ s(q).
From [D, §12, (8) and (11)], we see that the sum of the first two terms on
the right hand side of (2.5) is

=
{

Re
(

1
σ − 1 + it

)
− 1√

5
Re
(

1
σ1 − 1 + it

)}
− 1

2

(
1− 1√

5

)
log π(2.6)

+
1
2

{
Re
(
Γ ′

Γ

(
σ + it

2
+ 1
))
− 1√

5
Re
(
Γ ′

Γ

(
σ1 + it

2
+ 1
))}

−
∑

%

Re
(

1
σ + it− %

)
+

1√
5

∑

%

Re
(

1
σ1 + it− %

)
.

The expression in the first curly brackets in (2.6) is < 0 by [M, (20) with
m = 1], if |t| ≥ 1, and is trivially ≤ Re((σ − 1 + it)−1) for all t. Noting
1 < σ < 1.15, by [M, Lemmas 1 and 2 with m = 1, a = 2], the expression in
the second curly brackets together with the factor 1

2 in (2.6) is

<

{
0.0615 if |t| < 1,
κ log |t|+ 0.3316 if |t| ≥ 1.

Gathering together the above completes the proof.

Lemma 2.5. Let χ be a nonprincipal character to modulus q and 1 <
σ < 1.15. Suppose that t is any real number. Then, if χ is primitive, we
have

(2.7) f(σ, t, χ) ≤ κ log(qmax{1, |t|})− κ log π + 0.3918− Z(σ, t, χ);

if χ is imprimitive and is induced by primitive χ1 (mod q1), we have

f(σ, t, χ) ≤ κ log(q1 max{1, |t|})− κ log π + 0.3918(2.8)

− Z(σ, t, χ) + s(q1, q),

where κ is defined in Lemma 2.3, Z(σ, t, χ) is defined as in (2.4) with the
sum

∑
% over all nontrivial zeros % of L(s, χ), and

(2.9) s(q1, q) :=
∑

p|q, p-q1
(log p)

(
1

pσ − 1
− 1√

5
· 1
pσ1 − 1

)
.



Distribution of zeros of Dirichlet L-functions 265

Proof. By [D, §12, (17) and (18)], and (2.3) we get

f(σ, t, χ) = κ log
q

π
+

1
2

Re
{
Γ ′

Γ

(
σ+it+δ

2

)
− 1√

5
· Γ
′

Γ

(
σ1+it+δ

2

)}
(2.10)

− Z(σ, t, χ),

where δ = (1−χ(−1))/2. Using [M, Lemmas 1 and 2 with m = 1] to estimate
the term 1

2 Re{. . .} on the right hand side of (2.10) we get (2.7). To prove
(2.8), we note first that if χ (mod q) is induced by the primitive character
χ1 (mod q1) then by the definition of f(σ, t, χ) in (2.3),

|f(σ, t, χ)− f(σ, t, χ1)| ≤
∑

p|q, p-q1
(log p)

∞∑

k=1

(
1
pkσ
− 1√

5 pkσ1

)
= s(q1, q).

Then using (2.7) to estimate f(σ, t, χ1), we get (2.8).

Theorem 1. Let x be a real number satisfying x ≥ 8 · 109 and q be as
in (2.1). Then the function Π(s) defined by (2.2) has at most four zeros in
the region

1− 0.26213/logx < Re(s) < 1, |Im(s)| ≤ x/q.
Proof. Let %j = βj + iγj (1 ≤ j ≤ 3) with βj ≥ 1/2 be any three given

nontrivial zeros of the function defined by (2.2), and let L(s, χ′j) be the
corresponding L-functions, with χ′j (mod q) induced by primitive characters
χj (mod qj). Then L(%j , χj) = 0 for 1 ≤ j ≤ 3. Suppose %j (1 ≤ j ≤ 3)
satisfies

(2.11)





%j 6= %k, %k for 1 ≤ j 6= k ≤ 3,

max
1≤j≤3

{1− βj} ≤ σ − 1,

q|γj | ≤ x for 1 ≤ j ≤ 3 and x ≥ 8 · 109,

where 1 < σ < 1.15 is a parameter to be specified later. Put

g(χ1, χ2, χ3; %1, %2, %3) := f(σ, 0, χ0 (mod 1)) +
3∑

j=1

f(σ, γj , χj)(2.12)

+
∑

1≤j<k≤3

f(σ, γj + γk, χjχk)

+ f(σ, γ1 + γ2 + γ3, χ1χ2χ3).

Then as in [G, (16)],

(2.13) g(χ1, χ2, χ3; %1, %2, %3) + g(χ1, χ2, χ3; %1, %2, %3)

+ g(χ1, χ2, χ3; %1, %2, %3) + g(χ1, χ2, χ3; %1, %2, %3) ≥ 0.

Now we give an upper bound for g. We start by giving lower bounds
for Z(σ, t, χ), defined as in Lemma 2.5, in (2.14) and (2.16) below. Note
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that these bounds hold for Z(σ, t) since Z(σ, t) = Z(σ, t, χ0). In view of the
definition of Z(σ, t, χ), if there exist m (≥ 1) zeros %∗j = β∗j +iγ∗j (1 ≤ j ≤ m)
of L(s, χ) with γ∗j = t, β∗j ≥ 1/2, then by [M, Lemma 4] we get

Z(σ, t, χ) ≥
m∑

j=1

1
σ − β∗j

;

if they do not exist, then by [M, Lemma 4] we have the bound Z(σ, t, χ) ≥ 0.
Thus for m ≥ 0,

(2.14) Z(σ, t, χ) ≥ Σ(m),

where Σ(m) = 0 if m = 0, and Σ(m) =
∑

1≤j≤m 1/(σ − β∗j ) if m ≥ 1 (so
Σ(m) ≥ 0). Now suppose further that %∗j = β∗j + iγ∗j (m+ 1 ≤ j ≤ m + n,
n is an integer ≥ 1) are nontrivial zeros of L(s, χ) with β∗j ≥ 1/2 but not
necessarily γ∗j = t. Then by [M, Lemma 4] we have

Z(σ, t, χ) ≥ Σ(m) +
m+n∑

j=m+1

Re
(

1
σ + it− %∗j

)
(2.15)

+
m+n∑

j=m+1

{
Re
(

1
σ+it−1+%∗j

)
− 1√

5
Re
(

1
σ1+it−1+%∗j

)

− 1√
5

Re
(

1
σ1 + it− %∗j

)}
.

Note that 1 < σ < 1.15, σ1 ≥ (1+
√

5)/2 and 1/2 ≤ β∗j < 1. Thus the second
term in curly brackets in (2.15) is≤ 1/(

√
5 (σ1 − 1 + β∗j )) ≤ 2/5, and the last

term is≤ 1/(
√

5 (σ1 − β∗j )) ≤ (5 +
√

5)/10. Also, if |t−γ∗j | ≤ 1, the first term
in curly brackets is ≥ (σ − 1 + β∗j )/((σ − 1 + β∗j )2 + 1) ≥ 0.4. Altogether we
see that, for m ≥ 0 and n ≥ 1, if |t − γ∗j | ≤ 1 for all m + 1 ≤ j ≤ m + n,
then by (2.15),

(2.16) Z(σ, t, χ) ≥ Σ(m) +
m+n∑

j=m+1

Re
(

1
σ + it− %∗j

)
− 5 +

√
5

10
n.

To estimate g we need to consider the following 8 cases according as
χ1, χ2, χ3 and the products of two or three of them are principal or not:

(i) All χ1, χ2 and χ3 are principal.
(ii) Exactly two of χj are principal.
(iii) Exactly one of χj is principal.
(iv) None of χj is principal, and all χ1χ2, χ2χ3, χ3χ1 and χ1χ2χ3 are

nonprincipal.
(v) None of χj is principal, and exactly one of χjχk with 1 ≤ j < k ≤ 3

is principal.
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(vi) None of χj is principal, and exactly two of χjχk are principal.
(vii) None of χj is principal, whereas all χjχk are principal.
(viii) None of χj is principal, whereas χ1χ2χ3 = χ0 (mod q).

The arguments are very similar and the worst case is (iv). So we only give
the details in Case (iv) and in a subcase of Case (ii), namely, χ1 = χ2 = χ0

(mod 1) and |γ1 + γ2| < 1, to illustrate the methods; the latter case is used
to demonstrate the influence of the principal character.

The estimate for g in the above subcase of Case (ii). Note that χj (1 ≤
j ≤ 2) is primitive. Thus L(s, χj) = ζ(s) for 1 ≤ j ≤ 2. So we may assume
that |γj | ≥ 1894438 =: A, 1 ≤ j ≤ 2; for otherwise, if |γj0 | < A for some
1 ≤ j0 ≤ 2, then [RS, §0, (0.1)] yields βj0 = 1/2, and the desired result in
Theorem 1 follows at once since 1−0.26213/logx ≥ 1−0.26213/log(8·109) >
1/2. Thus by the second inequality in Lemma 2.4, for 1 ≤ j ≤ 2 we get

f(σ, γj , χj (mod 1)) ≤ κ log |γj | − κ log π + 0.3316− Z(σ, γj).

This together with (2.11), (2.16) with m = n = 1 and %∗1 = %1, %
∗
2 = %2 (if

j = 1) or %∗1 = %2, %
∗
2 = %1 (if j = 2) and Σ(m) ≥ 0 gives for 1 ≤ j 6= k ≤ 2,

f(σ, γj , χj (mod 1)) ≤ κ log |γj | − κ log π + 0.3316(2.17)

− 1
σ−βj

− Re
(

1
σ−βk+i(γ1+γ2)

)
+

5 +
√

5
10

.

Using [M, Lemma 4] and (2.14) with m = 1 and %∗1 = %3, we get Z(σ, γ3, χ3)
≥ (σ − β3)−1. Thus by (2.7), q|γ3| ≤ x and q ≤ x (see (2.11) and (2.1))
we get

(2.18) f(σ, γ3, χ3) ≤ κ log x− κ log π + 0.3918− (σ − β3)−1.

Using Z(σ, t, χ) ≥ 0, q ≤ x, (2.7) and (2.11), we have

(2.19) f(σ, γ1 + γ2 + γ3, χ1χ2χ3) ≤ κ log(3x)− κ log π + 0.3918,

and for (j, k) = (1, 3) and (2, 3),

(2.20) f(σ, γj + γk, χjχk) ≤ κ log(2x)− κ log π + 0.3918.

Using the first inequality of Lemma 2.4 with t = γ1 +γ2, and using Z(σ, t) ≥
0, we get

(2.21) f(σ, γ1 + γ2, χ1χ2 (mod 1))

≤ Re
(

1
σ − 1 + i(γ1 + γ2)

)
− κ log π + 0.0615.

Also Lemma 2.2 with q = 1 gives

(2.22) f(σ, 0, χ0 (mod 1)) ≤ (σ − 1)−1 − 0.8973.

By (2.12) and (2.17) to (2.22) we can summarize that as
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(2.23) g(χ1, χ2, χ3; %1, %2, %3)

≤ 1
σ − 1

−
3∑

j=1

1
σ − βj

+
{

Re
(

1
σ − 1 + i(γ1 + γ2)

)
− Re

(
1

σ − β1 + i(γ1 + γ2)

)

− Re
(

1
σ − β2 + i(γ1 + γ2)

)}

+ κ{log |γ1|+ log |γ2|+ log x+ 2 log(2x) + log(3x)}

+
{
− 0.8973− 7κ log π + 0.3316 · 2 +

5 +
√

5
10

· 2 + 0.3918 · 4 + 0.0615
}
.

By [G, Lemma 2] and (2.11), the expression in the first curly brackets is
≤ 0, and the one in the second curly brackets is ≤ 6 log x + 2 log 2 + log 3.
The expression in the last curly brackets is ≤ 0.6271. Thus (2.23) is

≤ 1
σ − 1

−
3∑

j=1

1
σ − βj

+ 6κ log x+ (2 log 2 + log 3)κ+ 0.6271

≤ 1
σ − 1

−
3∑

j=1

1
σ − βj

+ 7κ log x.

The estimate for g in Case (iv). Similarly to (2.18), by (2.7) and (2.11)
we have for 1 ≤ j ≤ 2,

(2.24) f(σ, γj , χj) ≤ κ log x− κ log π + 0.3918− (σ − βj)−1.

Similarly to the case of s(q) in Lemma 2.3, by (2.9) we have

s(q1, q) ≤ κ log(q/q1) + 0.4977.

Thus for any 1 ≤ j < k ≤ 3, if we suppose χjχk is induced by the primitive
character χ∗ (mod q1), then by (2.8) and using the bound Z(σ, t, χ) ≥ 0,
(2.11) and q ≤ x in (2.1), we get

f(σ, γj + γk, χjχk) ≤ κ log(q1 max{1, |γj + γk|})− κ log π + 0.3918(2.25)

− Z(σ, γj + γk, χjχk) + s(q1, q)

≤ κ log(2x)− κ log π + 0.3918 + 0.4977.

Similarly,

(2.26) f(σ, γ1 + γ2 + γ3, χ1χ2χ3) ≤ κ log(3x)− κ log π + 0.3918 + 0.4977.

By (2.12), (2.22), (2.18), (2.24)–(2.26), and then by (2.11) we get
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(2.27) g(χ1, χ2, χ3; %1, %2, %3)

≤ (σ − 1)−1 − 0.8973 + (κ log x− κ log π + 0.3918) · 3

−
3∑

j=1

1
σ − βj

+ (κ log(2x)− κ log π + 0.3918 + 0.4977) · 3

+ κ log(3x)− κ log π + 0.3918 + 0.4977

≤ 1
σ − 1

−
3∑

j=1

1
σ − βj

+ 7κ log x+ 2.4998.

For the other 7 cases, except for the constant term, we can obtain the
same estimate. The constant 2.4998 in (2.27) can be replaced by: (i) 0.0876,
(ii) 0.3284, (iii) 1.3238, (v) 2.4396, (vi) 2.3795, (vii) 2.3193 and (viii) 2.4397.
Therefore, as claimed, (iv) is the worst case. The other three g on the left
hand side of (2.13) can be estimated in completely the same way, and have
the bound given in (2.27). Using this and (2.13) we get

(2.28)
1

σ − 1
−

3∑

j=1

1
σ − βj

+ 7κ log x+ 2.4998 ≥ 0.

Now we let σ = 1 + a/log x, βj = 1 − bj/log x, with a to be chosen later.
Then (2.28) yields

(2.29) max
1≤j≤3

{bj} ≤
3

1/a+ 7κ+ 2.4998/logx
− a.

The optimal choice for a is

a =

√
3− 1

7κ+ 2.4998/logx
(≤ 0.3784),

which yields 1 < σ < 1.15 in Lemmas 2.2 to 2.5. With this choice of a, by
(2.29) we get max1≤j≤3{bj} > 0.26213. This together with (2.11) completes
the proof of Theorem 1.

Theorem 2. Let x be a real number satisfying x ≥ 8 · 109 and q be as
in (2.1). Then the function Π(s) defined by (2.2) has at most two zeros in
the region

1− 0.2067/log x < Re(s) < 1, |Im(s)| ≤ x/q.
Moreover , if %j , 1 ≤ j ≤ 2, are two zeros of Π(s) with real part 1−λj/log x,
imaginary part ≤ x/q and with %2 6= %1, %1, then we have the following table,
where a is a parameter used in the proof :
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Table 1

λ1 ≤ λ2 > a = λ1 ≤ λ2 > a =

0.10367089 0.3534 0.473 0.17 0.2477 0.496

0.12 0.3221 0.482 0.18 0.2356 0.498

0.13 0.3050 0.486 0.19 0.2242 0.499

0.14 0.2891 0.489 0.20 0.2135 0.499

0.15 0.2743 0.492 0.206 0.2074 0.499

0.16 0.2605 0.495 0.2067 0.2067 0.499

Proof. Let %1, %2 be two zeros of (2.2), and L(%1, χ
′
1) = L(%2, χ

′
2) = 0.

Suppose that χ′1 and χ′2 are induced by primitive χ1 and χ2 respectively.
Then L(%1, χ1) = L(%2, χ2) = 0. We always suppose that

(2.30) %2 6= %1, %1.

Let f(σ, t, χ) be defined as in (2.3), and define

(2.31) g1(χ1, χ2; %1, %2)

= f(σ, 0, χ0 (mod 1)) +
2∑

j=1

f(σ, γj , χj) + f(σ, γ1 + γ2, χ1χ2).

Then similarly to (2.13) we can obtain

(2.32) g1(χ1, χ2; %1, %2) + g1(χ1, χ2; %1, %2) ≥ 0.

We first give an upper bound for g1(χ1, χ2; %1, %2). There are four cases to
be considered according as χ1, χ2 or χ1χ2 are principal or not:

(i) χ1 = χ2 = χ0 (mod 1).
(ii) Exactly one of χj is principal.
(iii) No χj (1 ≤ j ≤ 2) is principal, whereas χ1χ2 is principal.
(iv) No χj is principal, and χ1χ2 is nonprincipal.

The worst bound for g1 is in Case (iv), and in this case we can use (2.31),
(2.22), (2.24), (2.25) with (j, k) = (1, 2) to get

g1(χ1, χ2; %1, %2) ≤ (σ − 1)−1 − 0.8973 + (κ log x− κ log π + 0.3918) · 2

−
2∑

j=1

1
σ − βj

+ κ log(2x)− κ log π + 0.3918 + 0.4977

≤ 1
σ − 1

−
2∑

j=1

1
σ − βj

+ 3κ log x+ 0.0182,

where 1 < σ < 1.15. (For Cases (i)–(iii) we can replace the constant 0.0182
by 0.) The same bound can be derived for the other g1 on the left hand side
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of (2.32). Therefore, under (2.30) and the second and the third inequalities
in (2.11) with 1 ≤ j ≤ 2, we have

1
σ − 1

−
2∑

j=1

1
σ − βj

+ 3κ log x+ 0.0182 ≥ 0.

Letting σ = 1 + a/log x and βj = 1− bj/log x we get

(2.33)
1
a
−

2∑

j=1

1
a+ bj

+ 3κ+
0.0182
log x

≥ 0,

so

(2.34) max
1≤j≤2

{bj} ≥
2

1/a+ 3κ+ 0.0182/logx
− a.

Choose

a =

√
2− 1

3κ+ 0.0182/logx
(≤ 0.4996),

which yields 1 < σ < 1.15 since x ≥ 8 · 109. With this choice of a, (2.34)
becomes

max
1≤j≤2

{bj} ≥
3− 2

√
2

3κ+ 0.0182/logx
> 0.2067.

Also by (2.33) with x ≥ 8 · 109, we can derive Table 1.

Theorem 3. Let β̃ and r̃ be as in Lemma 2.1. Then

β̃ ≤ 1− π/(0.4923r̃1/2 log2 r̃).

Proof. The proof uses the class number formula of Dirichlet. Given any
integer d 6= 0, we define the number of classes of quadratic forms by h(d) as
in [D, §6, before (2)] (if d < 0, only the positive definite forms are counted).
Then h(d) ≥ 1. If d > 0, let υ0, u0 be the integer solution to the equation

υ2 − du2 = 4

with both υ0 and u0 positive and u0 being the least one as in [D, §6, after
(5)]. Put ε = (υ0 + u0

√
d)/2 temporarily as in [D, §6, p. 46, before (10)]. If

d < 0, we use the notation w in [D, §6, (3)], so that w = 2 if d < −4, w = 4
if d = −4 and w = 6 if d = −3. Then [D, §6, (15) and (16)] asserts that

h(d) =





w|d|1/2
2π

L(1, χ) for d < 0,

d1/2

log ε
L(1, χ) for d > 0,
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where χ is a primitive character to modulus |d|. It turns out that (with the
above d taken to be r̃ or −r̃)

1 ≤ h(−r̃) =
wr̃1/2

2π
L(1, χ̃) if χ̃(−1) = −1,

1 ≤ h(r̃) =
r̃1/2

log ε
L(1, χ̃) if χ̃(−1) = 1;

whence always

(2.35) L(1, χ̃) ≥ min
{

2π
wr̃1/2

,
log ε
r̃1/2

}
,

whether χ̃(−1) = 1 or not. Note that ε = 1
2 (υ0 + u0

√
r̃) ≥ 1

2 (
√

4 + r̃ +
√
r̃),

and r̃ ≥ 987 (see Lemma 2.1), which clearly implies that the w in (2.35)
is 2. So by (2.35) we get

(2.36) L(1, χ̃) ≥ min
{

π

r̃1/2
,

log
(

1
2 (
√

4 + r̃ +
√
r̃)
)

r̃1/2

}
≥ π

r̃1/2
.

For any σ ≥ β̃ ≥ 1− 1/(c1 log x), we have

d

dσ
L(σ, χ̃) = −

∞∑

n=1

(logn)χ̃(n)n−σ.

So for any y ≥ 10 to be chosen later, by [D, p. 135, (2)] and since σ ≥
1− 1/(c1 log x), we have

|L′(σ, χ̃)| ≤
y∑

n=2

(logn)n−σ +
∣∣∣
∑

n>y

χ̃(n)(logn)n−σ
∣∣∣

≤
(

1
2

log2 y − 1
2

log2 3 +
log 3

3
+

log 2
2

+ r̃1/2(log r̃)y−1 log y
)

× e(log y)/(c1 log x).

Take y = 13r̃1/2, then log y ≤ 0.8721 log r̃. So the above is ≤ 0.4923 log2 r̃.
Also, the mean value theorem gives

L(1, χ̃) = L(1, χ̃)− L(β̃, χ̃) = L′(σ, χ̃)(1− β̃) where σ ∈ (β̃, 1).

These together with (2.36) yield

1− β̃ =
L(1, χ̃)
|L′(σ, χ̃)| ≥

π

r̃1/2
· 1

0.4923 log2 r̃
.

3. The zero-density estimates for Dirichlet L-functions. Through-
out this section we suppose that x ≥ 1, y ≥ 0, and

(3.1) z ≥ max{xy, 1011}.
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For any character χ to modulus q ≤ x, let N(α, χ, y) denote the number of
zeros of L(s, χ) in the region

(3.2) α ≤ Re(s) < 1, |Im(s)| ≤ y.
Put
(3.3) N(α, q, y) :=

∑

χ (mod q)

N(α, χ, y).

In this section, we first give explicit upper bounds for N(α, q, y) when α is
very near to the line Re(s) = 1 based on the results obtained in Section 2,
then give explicit upper bounds for individual N(α, χ, y) for any α ∈ (0, 1)
by the classical method as in [D, §§15–16], and finally give a revised form
of [C, Theorem], which takes care of α lying in the “middle range”. For
convenience, if α is very near to the line Re(s) = 1, we put α = 1− λ/log z
with λ > 0. We always assume 0.262132 ≤ λ ≤ 0.5.

Lemma 3.1. Let χ be any character to modulus q, and t any real number.
Let n be the number of zeros % = β + iγ of L(s, χ) in (3.2) such that

(3.4) |t− γ| ≤ b/log z,

where b is a positive parameter as in Table 2 below. Then we have the fol-
lowing table, where a > b is a parameter used in the proof :

Table 2

λ ≤ 0.27 0.28 0.29 0.3 0.31 0.32

b = 0.738 0.7262 0.7142 0.7019 0.6897 0.677

n ≤ 1 1 1 1 1 1

a = 1.73 1.72 1.7 1.69 1.68 1.67

b = 2.0387 2.0327 2.0267 2.0206 2.0153 2.009

n ≤ 2 2 2 2 2 2

a = 3.33 3.32 3.31 3.3 3.3 3.29

λ ≤ 0.33 0.36 0.39 0.42 0.45 0.48

b = 0.6633 0.6219 0.577 0.5276 0.4725 0.4092

n ≤ 1 1 1 1 1 1

a = 1.66 1.62 1.58 1.55 1.51 1.48

b = 2.002 1.9832 1.964 1.9444 1.9244 1.9039

n ≤ 2 2 2 2 2 2

a = 3.27 3.25 3.22 3.19 3.16 3.12

Proof. Suppose that χ (mod q) is induced by the primitive character χ1

(mod q1). Then q1 | q and L(s, χ) and L(s, χ1) have the same set of nontrivial
zeros. Consider two cases according as q1 = 1 or not to estimate f(σ, t, χ1)
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defined by (2.3). When q1 6= 1, the worse case, we may use (2.7) with χ = χ1

(so q there equals q1). First by (3.4) and (2.16) with m = 0 and noting a > b
(in Table 2) we have

Z(σ, t, χ1) ≥ (a+ λ)n
(a+ λ)2 + b2

log z +
5 +
√

5
10

n.

Secondly, from b ≤ 2.0387 and z ≥ 1011 one can derive readily that

log(q1 max{1, |t|}) ≤ log z + 0.0775.

Thus by (2.7),

(3.5) f(σ, t, χ1)

≤ κ log z + 0.0775κ− κ log π + 0.3918 +
5 +
√

5
10

n− (a+ λ)n
(a+ λ)2 + b2

log z.

When q1 = 1, it is clear that we can assume |t| ≥ 1. So using the second
inequality for f(σ, t, χ0) in Lemma 2.4 to replace (2.7) above we find easily
that (3.5) holds with 0.0775 replaced by 8.05 · 10−13. Plainly by (2.3) we
have f(σ, 0, χ0 (mod 1)) +f(σ, t, χ1) ≥ 0; thus by (3.5) and Lemma 2.2 with
q = 1 and σ = 1 + a/log z we get

log z
a
− 0.8973 + κ log z − (a+ λ)n

(a+ λ)2 + b2
log z + 0.0775κ

−κ log π + 0.3918 +
5 +
√

5
10

n ≥ 0;

and consequently

(3.6) n ≤
[
κ+ 1/a− (0.8973− 0.3918− 0.0775κ+ κ log π)/log z

(a+ λ)/((a+ λ)2 + b2)− (5 +
√

5)/(10 log z)

]
,

where [u] denotes the greatest integer not exceeding u for any real u. Note
that the right hand side of (3.6) is nondecreasing with respect to λ > 0 since
a > b. By (3.6), Table 2 is established: For instance, if λ ≤ 0.27, then we
may replace the λ, a and b on the right hand side of (3.6) by 0.27, 1.73 and
0.738 respectively, and then it can be observed that the right hand side of
(3.6) is nonincreasing with respect to z, so we can replace the z by 1011 to
obtain

n ≤ [1.99999] = 1

as stated in Table 2.

Now we turn to estimating N(α, q, y) defined by (3.3). We also use the
notation σ = 1 + a/log z. For any zero % = β + iγ of (2.2) inside the region
given by (3.2), let χ′ (mod q) be a corresponding character, which is assumed
to be induced by the primitive character χ (mod q1). Then L(%, χ) = 0.
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Noting (3.1), (3.2) and α = 1−λ/log z, and considering two cases according
as q1 = 1 or not (in fact, q1 6= 1 is the worse case), by Lemma 2.4, (2.7) and
(2.14) with m = 1, we get

(3.7) f(σ, γ, χ) ≤ κ log z − κ log π + 0.3918− log z
a+ λ

.

Summing up (3.7) with respect to all the zeros % considered, on noting (3.3)
we get

(3.8)
∑

(%)

f(σ, γ, χ) ≤
(
κ log z − κ log π + 0.3918− log z

a+ λ

)
N(α, q, y),

where the sum is over the above mentioned zeros %, i.e. all the zeros % = β+iγ
of Π(s) inside the region given by (3.2). Now to estimate N(α, q, y), we need
an upper bound for the squared absolute value of the left hand side of (3.8).
By (2.3) and Hölder’s inequality we get

∣∣∣
∑

(%)

f(σ, γ, χ)
∣∣∣
2

=
∣∣∣∣
∞∑

n=1

Λ(n)
nσ

(
1− 1√

5nσ1−σ

)∑

(%)

Re
(
χ(n)
niγ

)∣∣∣∣
2

(3.9)

≤
∞∑

n=1

Λ(n)
nσ

(
1− 1√

5nσ1−σ

)

×
∞∑

n=1

Λ(n)
nσ

(
1− 1√

5nσ1−σ

)∣∣∣∣
∑

(%)

Re
(
χ(n)
niγ

)∣∣∣∣
2

,

where σ1 is defined in the paragraph preceding (2.3). By Lemma 2.2 with
q = 1, the first sum over n on the right hand side of (3.9) is

(3.10) ≤ 1/(σ − 1)− 0.8973 = (log z)/a− 0.8973.

If we denote the % in (3.9) by %j = βj + iγj , and the corresponding primitive
character χ (mod q1) by χj , and if we temporarily write N for N(α, q, y)
(see (3.3)), then the last term on the right hand side of (3.9) is

∣∣∣∣
N∑

j=1

Re
(
χj(n)
niγj

)∣∣∣∣
2

≤
∣∣∣∣
N∑

j=1

χj(n)
niγj

∣∣∣∣
2

=
N∑

j=1

N∑

k=1

Re
(
χjχk(n)
ni(γj−γk)

)
.

Thus the second sum over n on the right hand side of (3.9) is

≤
N∑

j=1

N∑

k=1

∞∑

n=1

Λ(n)
nσ

(
1− 1√

5nσ1−σ

)
Re
(
χjχk(n)
ni(γj−γk)

)
(3.11)

=
N∑

j=1

N∑

k=1

f(σ, γj − γk, χjχk).
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By Lemma 2.2 with q = 1, the total contribution to (3.11) from the terms
with j = k is

(3.12) ≤
N∑

j=1

f(σ, 0, χ0 (mod 1)) ≤ ((log z)/a− 0.8973)N.

For j 6= k and χjχk 6= χ0, by (2.8), (2.14) with m = 0 and s(q1, q) ≤
κ log(q/q1) + 0.4977 (see after (2.24)) we get

f(σ, γj − γk, χjχk) ≤ κ log(2z)− κ log π + 0.3918 + 0.4977(3.13)

≤ κ log z + 0.7647.

If j 6= k and χjχk = χ0 (so χj = χk), by Lemma 2.4 and (2.14) with m = 0
we get

(3.14) f(σ, γj − γk, χjχk)

≤ max
{

Re
(

1
σ − 1 + i(γj − γk)

)
− κ log π + 0.0615 + s(q),

κ log |γj − γk| − κ log π + 0.3316 + s(q)
}
.

Now we use Lemma 3.1 with n ≤ 1, and denote the parameter b in Table
2 corresponding to n ≤ 1 by b(λ). In view of χj = χk we have |γj − γk| ≥
2b(λ)/log z, so that by Lemma 2.3 the first term in the curly brackets in
(3.14) is

≤ a

a2 + 4b(λ)2 log z − κ log π + 0.0615 + s(q)(3.15)

≤
(

a

a2 + 4b(λ)2 + 0.1
)

log z + 0.8338,

which can be dominated by the right hand side of (3.13) if a satisfies (3.16)
below. Also by Lemma 2.3 and (3.1), the second term in curly brackets
in (3.14) is ≤ κ log(2z) − κ log π + 0.3316 + 0.4977, which can clearly be
dominated by the right hand side of (3.13). Hence by (3.12)–(3.14) one can
estimate (3.11) further by ((log z)/a−0.8973)N+(κ log z+0.7647)(N 2−N),
with

(3.16) a ≤





0.365 if 0.27 ≤ λ ≤ 0.3,
0.3519 if 0.3 < λ ≤ 0.31,
0.3382 if 0.31 < λ ≤ 0.32,
0.3238 if 0.32 < λ ≤ 0.33,
0.2825 if 0.33 < λ ≤ 0.36,
0.2413 if 0.36 < λ ≤ 0.39,
0.2003 if 0.39 < λ ≤ 0.42.
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This together with (3.10) enables one to estimate (3.9) by

((log z)/a− 0.8973)2N + ((log z)/a− 0.8973)(κ log z + 0.7647)(N 2 −N),

under (3.16). This in combination with (3.8) gives

((log z)/(a+ λ)− κ log z + κ log π − 0.3918)2N2

≤ ((log z)/a− 0.8973)2N

+ ((log z)/a− 0.8973)(κ log z + 0.7647)(N 2 −N)

if 1/(a + λ) − κ + (κ log π − 0.3918)/log z ≥ 0. Noting κ log π − 0.3918 ≥
−0.0755, we can conclude that

(3.17) N ≤
[

(1/a− 0.8973/log z)2 − (1/a− 0.8973/log z)(κ+ 0.7647/log z)
(1/(a+λ)− κ− 0.0755/log z)2 − (1/a− 0.8973/log z)(κ+0.7647/log z)

]
,

under (3.16) and

(3.18)





1/(a+ λ)− κ− 0.0755/log z ≥ 0,
(1/(a+ λ)− κ− 0.0755/log z)2

−(1/a− 0.8973/log z)(κ+ 0.7647/log z) > 0.

Now we use (3.17) to give upper bounds for N = N(α, q, y) when α is
very near the line Re(s) = 1. If 0.27 ≤ λ ≤ 0.3, then numerical experiments
show that the optimal choice for a in (3.17) satisfying (3.16) is approximately
a = 0.365, which clearly satisfies (3.18) since z ≥ 1011. With this choice of
a, and noting z ≥ 1011, we may deduce from (3.17) the following table:

Table 3

λ ≤ 0.27 0.28 0.3

N ≤ 7 8 9

If λ has upper bounds at 0.31, 0.32, 0.33, 0.36, 0.39 and 0.42, we take a
to be 0.3519, 0.3382, 0.3238, 0.2825, 0.2413 and 0.2003 respectively. With
these choices of a, by (3.17) we may deduce the following table:

Table 4

λ ≤ 0.31 0.32 0.33 0.36 0.39 0.42

N ≤ 10 11 13 20 35 89

Now we turn to an alternative method of estimating N(α, q, y) for 0.45 ≤
λ ≤ 0.48. For each χ label the zeros counted by N(α, χ, y) as %j = βj + iγj ,
with γj ≤ γj+1. Then Lemma 3.1 shows that γj+2 − γj ≥ 2(1.9039/log z).
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Thus, if we allow N1 to count γ1, γ3, γ5, . . . , we will have [(N(α, χ, y)+1)/2]
zeros, with imaginary parts separated by at least 2(1.9039/log z). Therefore,
we can find

(3.19) N1 :=
∑

χ (mod q)

[(N(α, χ, y) + 1)/2]

zeros of the function Π(s) defined by (2.2), having the property that if there
are two or more zeros corresponding to a single L-function inside (3.2) then
the differences between their imaginary parts will be at least 2(1.9039/log z).
Also it can be derived from (3.19) that

(3.20) N1 ≥ N(α, q, y)/2.

Now summing up (3.7) with respect to only the N1 zeros from (3.19), we
get, instead of (3.8),

(3.21)
∑

1
(%)

f(σ, γ, χ) ≤ (κ log z − κ log π + 0.3918− (log z)/(a+ λ))N1,

where the sum is over all the N1 zeros from (3.19). Now we can repeat the
arguments from (3.9) to (3.17), and then give an upper bound for N1. The
only difference is that the first term in curly brackets on the right hand side
of (3.14) is now

≤ a

a2 + (1.9039 · 2)2 log z − κ log π + 0.0615 + 1.0886 + 0.1 log z

which can always be dominated by the right hand side of (3.13) without
any further constraints on a. As in (3.17), by (3.21) we get for 0 < a ≤ 0.4,
which satisfies (3.18) since λ ≤ 0.48 and z ≥ 1011,

N1≤
[

(1/a− 0.8973/log z)2 − (1/a− 0.8973/log z)(κ+ 0.7647/log z)
(1/(a+λ)−κ− 0.0755/log z)2−(1/a− 0.8973/log z)(κ+0.7647/log z)

]
.

Therefore by (3.20) we can conclude that under (3.18),

(3.22) N(α, q, y)

≤2
[

(1/a− 0.8973/log z)2 − (1/a− 0.8973/log z)(κ+ 0.7647/log z)
(1/(a+λ)−κ−0.0755/log z)2−(1/a− 0.8973/log z)(κ+0.7647/log z)

]
.

Now if λ ≤ 0.45, then numerical experiments show that the optimal choice
for a in (3.22) is approximately 0.34. With this choice, by (3.22) and using
z ≥ 1011 we can deduce N(α, q, y) ≤ 4 · 91 = 364. In this way we can
establish the following table:
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Table 5

λ ≤ 0.45 0.46 0.47 0.475 0.478

a = 0.34 0.33 0.32 0.315 0.311

N ≤ 182 292 664 834 · 2 7000 · 2

Summarizing, we can conclude the following

Theorem 4. Let N(α, q, y) be defined as in (3.3) with α = 1− λ/log z.
Then the bounds for N = N(α, q, y) in Tables 3 to 5 hold under (3.1).

Now we estimate individual N(α, χ, y) for α ∈ (0, 1). First, consider the
case χ = χ0. Note that L(s, χ) and ζ(s) have the same set of nontrivial
zeros, so the results in [T1, p. 389, §15.2] ensure that N(α, χ0, y) = 0 for
y ≤ 14; and thus we may assume that y ≥ 14 in this case. Also, we may
assume that y does not coincide with the ordinate of any nontrivial zero
of ζ(s), otherwise we may use N(α, χ0, y + 0) instead of N(α, χ0, y), and
then take limits to deduce the required result. Let L denote the line from 2
to 2 + iy and then to 1/2 + iy. Since the zeros of ζ(s) are symmetric with
respect to the line σ = 1/2 and the real axis, by [D, p. 97, line −7] we have

(3.23) N(α, χ0, y) ≤ (2/π)∆L arg ξ(s),

where ξ(s) = (s − 1)π−s/2Γ (s/2 + 1)ζ(s), s = u + iv and ∆L denotes
the continuous variation of the argument of ξ(s) along L. By the definition
of L we have π/2 ≤ ∆L arg(s − 1) ≤ 0.5114π, and ∆L arg π−s/2 =
∆L

(
− 1

2v log π
)

= − 1
2y log π. By [T2, p. 151 (2)] with w = σ + it 6= 0

and σ ≥ 0 we have

logΓ (w) = (σ − 1/2) log |w| − t argw − σ + (1/2) log(2π)(3.24)

+ i(t log |w|+(σ − 1/2) argw − t) +
∞�

0

[u]− u+1/2
u+ w

du.

The absolute value of the last integral is ≤ π/(16|w|). Thus

∆L argΓ (s/2 + 1)

=
y

2
log
√

(5/4)2 + (y/2)2 + (5/4− 1/2) arctan(2y/5)− y/2 +R1,

where |R1| ≤ π/(4
√

25 + 4y2). So (3.23) can be rewritten as

π

2
N(α, χ0, y) ≤ − y

2
log π+

y

2
log
√

(5/4)2+(y/2)2+
3
4

arctan
2y
5
− y

2
(3.25)

+∆L arg ζ(u+ iv) + 0.5114π + π/(4
√

25 + 4y2).

The continuous variation of arg ζ(u + iv) along the straight line from 2 to
2 + iy is arg ζ(2 + iy), which satisfies 0 > arg ζ(2 + iy) ≥ −0.34π. Again,
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considering the integral of ζ′

ζ (w) along the line from 1/2 + iy to 2 + iy,
we get

2+iy�

1/2+iy

ζ ′

ζ
(w) dw = log ζ(2 + iy)− log ζ(1/2 + iy).

So the continuous variation of arg ζ(u+iv) along the straight line from 2+iy
to 1/2 + iy is

(3.26) arg log ζ(1/2 + iy)− arg log ζ(2 + iy) = − Im
( 2+iy�

1/2+iy

ζ ′

ζ
(w) dw

)
.

Now we need an estimate for ζ′

ζ (w). Consider [D, §12, (8)] with s there to
be w = u+ iv and 2 + iv respectively, and then use [D, §12, (9)]. For w 6= 1
we get

ζ ′

ζ
(w) =

ζ ′

ζ
(2 + iv) +

1
1 + iv

− 1
w − 1

+
∑

%

(
1

w − % −
1

2 + iv − %

)
(3.27)

+
∞∑

n=1

(
1

w + 2n
− 1

2 + iv + 2n

)
.

The total contribution from the first three terms on the right hand side
of (3.27) has absolute value at most 0.6105 + 1/|1 + iv| + 1/|u − 1 + iv|,
by the use of [RS, (1.17)]. The last summation on the right hand side of
(3.27) has absolute value at most |2 − u|/4 for u ≥ 0. For the sum over %
in (3.27), the contribution from the terms with |γ − v| ≥ 1 has absolute
value

≤ 5.25|2− u|
∑

|γ−v|≥1

(1.25 + 4(γ − v)2)−1.

Also we have∣∣∣
∑

|γ−v|<1

(2 + iv − %)−1
∣∣∣ ≤ 5.25

∑

|γ−v|<1

(1.25 + 4(γ − v)2)−1.

Thus the sum over % in (3.27) is
∑
|γ−v|<1(w− %)−1 +R2, where by [CW2,

Lemma 2], with x = v,

|R2| ≤ 5.25 max{1, |2− u|}(0.5 log(2 + |v|) + 0.25/(0.0625 + v2) + 2.6459).

Altogether, from (3.27) we get

(3.28)
ζ ′

ζ
(w) =

∑

|γ−v|<1

(w − %)−1 +R3,
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where

|R3| ≤ 0.6105 + |1 + iv|−1 + |u− 1 + iv|−1 + |2− u|/4
+ 5.25 max{1, |2−u|}(0.5 log(2+ |v|)+0.25/(0.0625+v2)+2.6459).

Note that we are going to give an estimate for (3.26) and so we consider the
integral Im( � 2+iy

1/2+iy(w − %)−1 dw), which is clearly equal to

(3.29) ∆ Im(log(w − %)) = ∆ arg(w − %),

where ∆ indicates the continuous variation of arg(w− %) along the straight
line from 1/2 + iy to 2 + iy. Hence (3.29) clearly has absolute value at most
π. Now substituting (3.28) with v = y into (3.26) we see that (3.26) can be
dominated by

5.25(1.52 + π)(0.5 log(2 + y) + 0.25/(0.0625 + y2) + 2.6459)

+ 1.5(0.6105 + |1 + iy|−1 + y−1 + 1.5/4).

This in combination with (3.25) yields the following

Theorem 5. For any y > 0 and α ∈ (0, 1) we have

N(α, χ0, y) ≤ y

π
log
√

(5/4)2 + (y/2)2 +
3

2π
arctan

2y
5
− 1 + log π

π
y

+ 0.5114 · 2 +
1

2
√

25 + 4y2

+
10.5(2.25+π)

π
(0.5 log(2 + y)+0.25/(0.0625+y2) + 2.6459)

+
3
π

(0.6105 + |1 + iy|−1 + y−1 + 1.5/4),

where N(α, χ0, y) is defined after (3.1).

Now we give an explicit upper bound for N(α, χ, y) when χ 6= χ0. We
may assume that χ (mod q) is primitive and nonprincipal since L(s, χ) and
L(s, χ1) have the same set of nontrivial zeros if χ is imprimitive and is
induced by the primitive character χ1 (mod q1). Let L1 be the line from
1/2− iy to 5/2− iy, then to 5/2+ iy and to 1/2+ iy. Then by the arguments
in [D, p. 101, the last two equalities], we get

(3.30) N(α, χ, y) ≤ 1
π
∆L1 arg ξ(s, χ),

where ξ(s, χ) = (q/π)(s+δ)/2Γ ((s + δ)/2)L(s, χ) with δ = 0 if χ(−1) = 1,
δ = 1 if χ(−1) = −1, and ∆L1 denotes the continuous variation along L1

starting from the point 1/2− iy. We have

∆L1 arg(q/π)(s+δ)/2 = ∆L1((v/2) log(q/π)) = y log(q/π).
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By (3.24) we get

(3.31) ∆L1 argΓ ((s+ δ)/2)

= Im(logΓ ((1/2 + iy + δ)/2))− Im(logΓ ((1/2 + iy + δ)/2))

≤ y log
∣∣∣∣
1/2 + δ + iy

2

∣∣∣∣− y + (δ − 1/2) arctan
y

1/2 + δ
+

π

4|1/2 + δ + iy| .

Now we estimate the continuous variation of argL(s, χ) along L1 starting
from 1/2 − iy. The continuous variation of argL(s, χ) along the line from
5/2− iy to 5/2 + iy has absolute value at most π. Again similarly to (3.26)
the continuous variation of argL(s, χ) along the straight line from 5/2 + iy
to 1/2 + iy is

(3.32) − Im
( 5/2+iy�

1/2+iy

L′

L
(w,χ) dw

)
.

Now similarly to (3.27), by [D, §12, (17)], for w = u+ iv we get

L′

L
(w,χ) =

L′

L
(2 + iv, χ) +

∞∑

n=0

(
1

w + 2n+ δ
− 1

2 + iv + 2n+ δ

)
(3.33)

+
∑

%

(
1

w − % −
1

2 + iv − %

)
.

For u ≥ 0, the sum over n has absolute value

≤ |2− u|
|u+ iv| · |2 + iv| +

|2− u|
4

.

For the sum over %, the contribution from the terms with |γ − v| ≥ 1 has
absolute value

≤ 3.5|2− u|
∑

|γ−v|≥1

1
1.5 + 2(γ − v)2 .

Also ∣∣∣∣
∑

|γ−v|<1

1
2 + iv − %

∣∣∣∣ ≤
∑

|γ−v|<1

1 ≤ 3.5
∑

|γ−v|<1

1
1.5 + 2(γ − v)2 ,

and ∣∣∣∣
L′

L
(2 + iv, χ)

∣∣∣∣ ≤
∣∣∣∣
ζ ′

ζ
(2)
∣∣∣∣ ≤ 0.6105.

Thus for u ≥ 0, (3.33) can be rewritten as

(3.34)
L′

L
(w,χ) =

∑

|γ−v|<1

1
w − % +R4,



Distribution of zeros of Dirichlet L-functions 283

where, by the use of [CW2, Lemma 8],

|R4| ≤ 3.5 max{1, |2− u|}(0.5 log q(2 + |v|) + 0.59773)

+ 0.6105 +
|2− u|

|u+ iv| · |2 + iv| +
|2− u|

4
.

By (3.29), (3.34), [CW2, Lemma 8], and in view of |∆ arg(w−%)| ≤ π along
the straight line from 5/2 + iy to 1/2 + iy, we see that (3.32) has absolute
value at most

3.5(π + 3)(0.5 log q(2 + y) + 0.59773)

+ 2(0.6105 + 1.5(|0.5 + iy| · |2 + iy|)−1 + 1.5/4).

The variation of argL(s, χ) along the straight line from 1/2− iy to 5/2− iy
can be estimated in exactly the same way. Thus from (3.30) to (3.32) one
can conclude the following

Theorem 6. For any y ≥ 0 and α ∈ (0, 1) we have

N(α, χ, y) ≤ y

π
log

q|3/2 + iy|
2π

− y

π
+

1
2π

arctan
2y
3

+
1

4|1/2 + iy|
+ 1 + 7(1 + 3/π)(0.5 log q(2 + y) + 0.59773)

+
4
π

(0.6105 + 1.5(|0.5 + iy| · |2 + iy|)−1 + 1.5/4),

where N(α, χ, y) is defined after (3.1).

The remainder of this section is devoted to proving the following Theo-
rem 7, which is a revised form of [C, Theorem].

Theorem 7. For any integer q ≥ 1 and any real number α with 1/2 ≤
α < 1, let N(α, q, y) be defined as in (3.3). Then for any y satisfying y ≥
max{105q−1, 104 log q} we have

N(α, q, y) ≤ 16541(log y)6 + (17102 + 254231/log(qy))(q3y4)1−α(log(qy))6α.

For the proof we need Lemmas 3.2–3.5 below. By (3.3),

N(α, q, y) =





N(α, χ0, y) for q = 1 or 2,
N(α, χ0, y) +

∑

χ (mod q)
χ6=χ0

N(α, χ, y) for q ≥ 3.

The last sum can be treated by [C, Theorem]. So we focus on the estimate
of N(α, 1, y) since for any q ≥ 1, N(α, χ0, y) = N(α, 1, y). Note that y ≥
max{105q−1, 104 log q} implies y ≥ 104 log 6. Next, it is clear that we may
always assume 1/2 + 2δ ≤ α < 1 since otherwise Theorem 7 follows from
Theorems 5 and 6 by direct computation. Here and later on, δ = 1/(1.5 log y)
as in (3.35) below. We first give some notations. Let µ(n) denote the Möbius
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function. Put

(3.35)





Qy(s) :=
∑

n<y

µ(n)n−s, fy(s) := ζ(s)Qy(s)−1, Fy(s) := |fy(s)|2,

Hy(s) := 1− f2
y (s), My(σ, u) :=

u�

−u
Fy(σ + it) dt, δ :=

1
1.5 log y

,

gy(s) :=
s− 1

s cos(s/(2y))
fy(s), Ky(σ, y) := max

|t−y|≤1.5
Fy(σ + it).

Lemma 3.2. Let Fy(s) be defined as in (3.35), and define

c(t) =





32.0745 if |t| < 0.5,
18.0559 if 0.5 ≤ |t| < 1,
14.272 if |t| ≥ 1.

Then

Fy(1/2 + it) ≤ c(t)(1/2 + |t|)(2.583y + 0.608 log y + 5.608).

Proof. By [T1, p. 49, (3.5.3)] with N = |1/2 + it|/2 we get

(3.36) |ζ(1/2 + it)| ≤ 20.5(2 + (1/2 + |t|)−1)(1/2 + |t|)1/2.

By [P, p. 309, (1.27)] and the bound in [C, (13)] with k = 1, we have

|Qy(1/2 + it)|2 ≤ 2.583y + 0.608 log y + 5.608.

Then in view of 1/2 + |t| ≥ 1/2 and 2.583y+ 0.608 log y+ 5.608 ≥ 46292 (by
y ≥ 104 log 6), Lemma 3.6 follows from

Fy(1/2 + it) ≤ 1 + 2|ζ(1/2 + it)Qy(1/2 + it)|+ |ζ(1/2 + it)Qy(1/2 + it)|2.
Lemma 3.3. For any σ with 1/2 ≤ σ ≤ 4, let Ky(σ, y) be defined as in

(3.35). Then

Ky(σ, y) ≤
{

1.74(log y)4 if 1 + δ ≤ σ ≤ 4,
42.021y4(1−σ)(log y)8σ−4 if 1/2 ≤ σ ≤ 1 + δ.

Proof. The first inequality follows from [P, p. 305, (1.20)] and [C, Lem-
ma 3] with k = 1. To prove the second inequality, we use [P, p. 401, Theo-
rem 9.3] with the function there equal to gy(s). By Lemma 3.6, [C, (14) and
(15)] and

max
0≤t≤1

1/2 + t

exp(t/y) + exp(−t/y) + 2
≤ 1.5

4
,

we get

(3.37) max
t
|gy(1/2 + it)|2 ≤ 33.03y2.

Also by [C, (14)],

(3.38) max
t
|gy(1 + δ + it)|2 ≤ 1.75(log y)4.
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Then by (3.37), (3.38), [P, p. 401, Theorem 9.3], and δ = 1/(1.5 log y) in
(3.35) we get for 1/2 ≤ σ ≤ 1 + δ,

max
t
|gy(σ + it)|2 ≤ 33.03y4(1−σ)(log y)8σ−4.

This together with [C, (19)] proves the assertion.

Lemma 3.4. Let My(σ, u) be defined as in (3.35) for y ≥ 104 log 6. Then
for any u ≥ 0,

My(1/2, yu) ≤ 12.508y(2 + yu)(2.19021u+ 2.906) log y.

Proof. By (3.35) we have

My(1/2, yu) ≤ 2yu+ ( max
|t|≤yu

|ζ(1/2 + it)|2)
yu�

−yu
|Qy(1/2 + it)|2 dt

+ 2
( yu�

−yu
|ζ(1/2 + it)|2 dt

)1/2( yu�

−yu
|Qy(1/2 + it)|2 dt

)1/2
.

By (3.36), the above maximum is ≤ 12.5(2+yu), and � yu−yu |ζ(1/2+it)|2 dt ≤
8(2 + yu)2. Then the assertion follows from [C, (24)] with k = 1.

Lemma 3.5. Let My(σ, u) be defined as in (3.35) for y ≥ 104 log 6. Then
for 1/2 ≤ σ ≤ 1− δ,

My(σ, y) ≤ 3318.39y4(1−σ)(log y)6σ−1.

Proof. We first give a bound for My(σ, 1). For 1/2 ≤ σ ≤ 1 − δ and
|t| ≤ 1, by [T1, p. 49, (3.5.3)] with N = 1, we get

(3.39) |ζ(σ + it)| ≤ 1
2

(
(σ + 1)2 + t2

(σ − 1)2 + t2

)1/2

+
(σ2 + t2)1/2

2σ
≤ 1.5 log y.

For Qy(s) as in (3.35) by [C, (11) and (12)], for any real t we get

|Qy(1/2 + it)| ≤ 1.3071y1/2 and |Qy(1 + it)| ≤ 1.19 log y.

Thus by [P, p. 401, Theorem 9.3], for 1/2 ≤ σ ≤ 1 and for any real t we
have

(3.40) |Qy(σ + it)| ≤ (1.3071y1/2)2(1−σ)(1.19 log y)2σ−1.

From (3.39), (3.40) and Fy(s) and My(σ, u) as in (3.35), for 1/2 ≤ σ ≤ 1− δ
we get

(3.41) My(σ, 1) ≤ 2 · 4.255y2(1−σ)(log y)4σ.

Now we turn to estimating My(σ, y). To simplify notation, for 1/2 ≤ σ ≤
1 + δ we put

(3.42) My(σ) :=
∞�

−∞
|gy(σ + it)|2 dt,



286 M. C. Liu and T. Z. Wang

where gy(s) is defined as in (3.35). Note that
∣∣∣∣
σ + it− 1
σ + it

∣∣∣∣
2

≤ 1 for 1/2 ≤ σ ≤ 1 + δ.

Thus similarly to [C, (29)], for 1/2 ≤ σ ≤ 1 + δ we have

(3.43) My(σ) ≤ (4 + 10−7)
∞�

0

eu(2 + eu)−2My(σ, yu) du.

Note that (3.43) together with Lemma 3.4 and the relevant estimates in [C,
between (29) and (30)] gives

My(1/2) ≤ (4 + 10−7)
∞�

0

eu(2 + eu)−2(12.508y)(log y)(2 · 2.19021u(3.44)

+ 2 · 2.906 + 2.19021yu2 + 2.906yu) du ≤ 254.13y2 log y.

Also, by the proof of [C, Lemma 14],My(1+δ, yu)≤(67.929+0.0003u) log5 y;
thus similarly to [C, (31)], we obtain

(3.45) My(1 + δ) ≤ 90.5727 log5 y.

By (3.44), (3.45) and [P, p. 404, Theorem 9.5], for 1/2 ≤ σ ≤ 1 + δ we get

(3.46) My(σ)

≤ (254.13y2 log y)(1+δ−σ)/(1/2+δ)(90.5727 log5 y)(σ−1/2)/(1/2+δ)

≤ 90.5727e4/1.5y4(1−σ)(log y)8σ−3.

Hence by [C, (33)], for My(σ, u) and My(σ) defined in (3.35) and (3.42)
respectively we can conclude that for 1/2 ≤ σ ≤ 1− δ,

(3.47) My(σ, y) ≤My(σ, 1) + 1.272My(σ) max
1≤|t|≤y

∣∣∣∣
σ + it

σ − 1 + it

∣∣∣∣
2

.

Note that the above maximum is ≤ 2. So the assertion follows from (3.41),
(3.46) and (3.47).

Proof of Theorem 7. By the arguments in [P, p. 300, lines −15 to −9],
we may assume y does not coincide with the ordinate of any zero of ζ(s).
By the same arguments as in [P, p. 304, lines 4 to 16], and by [P, Appendix,
Theorem 8.1], for 1/2 + 2δ ≤ α < 1 we get

(3.48) N(α, χ0, y)

≤ 1
2πδ

{ y�

−y
(log |Hy(α− δ + it)| − log |Hy(2 + it)|) dt

+
2�

α−δ
(argHy(σ + iy)− argHy(σ − iy)) dσ

}
+ δ−1

2�

α−δ
dσ.
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Now we need to estimate the first two integrals on the right hand side. We
first consider the second one. Clearly, we only need to consider the estimate
for argHy(σ + iy), and the estimate for argHy(σ − iy) can be derived in
exactly the same way. Let

Ry(s, y) := Hy(s+ iy) +Hy(s− iy),

and let ny(ξ, y) denote the number of zeros of Ry(s, y) in the region |s−2| ≤
2 − ξ for any ξ ∈ [1/2, 2). Then by [P, p. 301, (1.9)] and [P, p. 302, above
line −9], for 1/2 ≤ ξ < 2 we get

(3.49) |argHy(ξ + iy)| ≤ (ny(ξ, y) + 1)π;

and by [P, p. 303, (1.13) and (1.15)], for 1/2 + 2δ ≤ ξ < 1 we have

(3.50)
(

2−ξ+1.5δ
2− ξ+δ

)ny(ξ−δ,y)

≤ 2
|Ry(2, y)| exp( max

ξ−1.5δ≤σ≤4−ξ+1.5δ
Ky(σ, y)),

where Ky(σ, y) is defined in (3.35). Note that by the inequality in [P, p. 302,
lines 7 to 8] and y ≥ 104 log 6 we have

|fy(2 + it)| ≤
∑

n≥y
d(n)n−2 ≤ 4.00012y−0.5.

Thus by [P, p. 303, (1.14)], we get

Ry(2, y) ≥ 4− 2 exp(4.000122y−1) ≥ 1.9982.

This together with (3.50) and [C, (42)] gives for 1/2 + 2δ ≤ ξ < 1,

(3.51) ny(ξ − δ, y) ≤ 3δ−1
(

log
2

1.9982
+ max
ξ−1.5δ≤σ≤3.5

Ky(σ, y)
)
.

Note that ny(ξ, y) is nonincreasing with respect to ξ by definition. So by
(3.49) and (3.51) the second integral on the right hand side of (3.48) for
1/2 + 2δ ≤ α < 1 is

≤ 2π
2�

1−δ
(1 + ny(1− δ, y)) dσ + 2π

1−δ�

α−δ
(1 + ny(σ, y)) dσ(3.52)

≤ 2π(1 + δ)
(

1 + 3δ−1
(

log
2

1.9982
+ max

1−1.5δ≤σ≤3.5
Ky(σ, y)

))

+ 2π
1−δ�

α−δ

(
1 + 3δ−1

(
log

2
1.9982

+ max
σ+δ−1.5δ≤ξ≤3.5

Ky(ξ, y)
))

dσ.

By Lemma 3.3 for any σ with α− δ ≤ σ ≤ 1− δ and 1/2 + 2δ ≤ α < 1, we
have

max
σ+δ−1.5δ≤ξ≤3.5

Ky(ξ, y) ≤ 42.021y4(1−σ+0.5δ)(log y)8(σ−0.5δ)−4.
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Thus, on noting δ = (1.5 log y)−1 and y ≥ 104 log 6, (3.52) is

≤ 2π(1+δ)
(

1+3δ−1
(

log
2

1.9982
+42.021y4(1.5δ)(log y)8(1−1.5δ)−4

))
(3.53)

+ 2π(1− α)
(

1 + 3δ−1 log
2

1.9982

)

+ 6(42.021)πδ−1
1−δ�

α−δ
y4(1−σ+0.5δ)(log y)8(σ−0.5δ)−4 dσ

≤ 2(11027.02)π log5 y + 94.54725πe4(y4(1−α)(log y)8α−4 − log4 y).

Now we turn to estimating the first integral on the right hand side of
(3.48). Note that by the definitions in (3.35) we get log |Hy(s)| ≤ Fy(s).
Hence by Lemma 3.5 and [C, (47)], the first integral on the right hand side
of (3.48) for 1/2 + 2δ ≤ α < 1 is

≤
y�

−y
(Fy(α− δ + it) + Fy(2 + it)) dt(3.54)

≤ 2π/(1.5 · 104) + 3318.39e4/1.5y4(1−α)(log y)6α−1.

By (3.48), (3.53) and (3.54), for 1/2 + 2δ ≤ α < 1 we get

N(α, χ0, y) ≤ 1.5 log y
2π

{
2π

1.5 · 104 + 3318.39e4/1.5y4(1−α)(log y)6α−1

+ 2(11027.02)π log5 y

+ 94.54725πe4(y4(1−α)(log y)8α−4 − log4 y)
}

+(2−α+δ)δ−1

≤ 16541 log6 y + 11402y4(1−α)(log y)6α

+ 3872y4(1−α)(log y)8α−3.

This together with [C, Theorem] completes the proof.

4. An explicit formula for ψ(t, χ). Throughout this section we sup-
pose that N is an integer satisfying N ≥ exp(2000), and t is any real number
in the interval [0.001N,N ]. Put from now on

(4.1) L := logN, P := L3, P1 := L6, T := L15.

Let θ denote a complex number with |θ| ≤ 1, not necessarily the same at
different occurrences. Note that T < t since N ≥ exp(2000). For any χ
(mod q) with 1 ≤ q ≤ P1, define

(4.2) ψ(t, χ) :=
∑

n≤t
Λ(n)χ(n).
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The purpose of this section is to prove the following theorem, which gives a
formula for ψ(t, χ) with an explicit error term.

Theorem 8. Let ψ(t, χ) be defined as in (4.2), and T , L as in (4.1).
Then

ψ(t, χ) = δ(χ)t−
∑

β≥1/2, |γ|≤T
%−1t% + 1.3804θtT−1L2,

where % = β + iγ is any nontrivial zero of L(s, χ), δ(χ) = 1 if χ = χ0

(mod q), and δ(χ) = 0 otherwise.

The starting point of the proof is the following lemma, which is [CW2,
Lemma 1].

Lemma 4.1. Suppose that f(s) =
∑∞
n=1 ann

−s is an absolutely conver-
gent series for Re(s) = σ > 1 with an satisfying |an| ≤ A(n), where A(n) is
increasing in n. Let b > 1, c ≥ 1, and x = m + 0.5, where m is a positive
integer. Then

∑

n≤x
an =

1
2πi

b+ic�

b−ic
f(s)s−1xs ds+R5,

where

|R5| ≤
1

πc log 2

(
xb
∞∑

n=1

|an|n−b + 2bA(x)(x log x+ 1.5x− 0.5)

+ xA(2x)(log x+ log 2 + 2)
)
.

Proof of Theorem 8. We consider two cases according as χ (mod q) is
principal or not. The procedures are standard and very similar in the two
cases. The latter is a little harder, so we only sketch the proof when χ
(mod q) is nonprincipal. We suppose temporarily that χ (mod q) is primitive.
By [CW2, Lemma 8] with x = T , and q ≥ 3, T ≥ 200015 we get

(4.3)
∑

|γ−T |≤1

1 ≤ 3.5(0.5 log q(T + 2) + 0.59773) ≤ 1.7769(log qT )− 1.

Hence there exists a real T ′′ such that |T ′′ − T | ≤ 1 and

(4.4) |γ − T ′′| ≥ (1.7769 log qT )−1

for any nontrivial zero % = β+iγ of L(s, χ). Using the notation t0 = [t]+0.5,
we have

ψ(t, χ) = ψ(t0, χ);

and Lemma 4.2 with f(s) = −L′L (s, χ), A(y) = log y, b = 1 + L−1, c = T ′′
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and x = t0 or 2.5 gives

ψ(t, χ) =
1

2πi

b+iT ′′�

b−iT ′′

(
−L
′

L
(s, χ)

)
ts0
s
ds+R6,

ψ(2.5, χ) =
1

2πi

b+iT ′′�

b−iT ′′

(
−L
′

L
(s, χ)

)
2.5s

s
ds+R7,

where |R6| ≤ 1.3802tT−1L2 and |R7| ≤ 1.154(T − 1)−1L. Here for the
estimates of R6 and R7, we use [RS, (1.17)] to estimate the sum∑∞
n=1 Λ(n)n−(1+L−1) and use direct computations with t−0.5 ≤ t0 ≤ t+0.5,

T ′ ≥ T − 1, t ∈ [0.001N,N ] and L ≥ 2000. Consider the difference between
ψ(t, χ) and ψ(2.5, χ). Then

(4.5) ψ(t, χ) =
1

2πi

b+iT ′′�

b−iT ′′

(
−L
′

L
(s, χ)

)
ts0 − 2.5s

s
ds+R8,

where |R8| ≤ |R6| + |R7| + |ψ(2.5, χ)| ≤ 1.38021tT−1L2 since L ≥ 2000,
T = L15, t ∈ [0.001N,N ] and |ψ(2.5, χ)| ≤ log 2. The difference between the
main term on the right hand side of (4.5) and its analogue with t0 replaced
by t is

≤ 1
2π

T ′′�

−T ′′

∣∣∣∣
L′

L
(b+ iu, χ)

∣∣∣∣
∣∣∣
t�

t0

xb+iu−1 dx
∣∣∣ du ≤ (2π)−1eL

−1 log(N+0.5)TL

on noting b = 1 + L−1 and |T ′′ − T | ≤ 1. Thus (4.5) can be rewritten as

(4.6) ψ(t, χ) =
1

2πi

b+iT ′′�

b−iT ′′

(
−L
′

L
(s, χ)

)
ts − 2.5s

s
ds+R9,

where |R9| ≤ |R8| + (2π)−1eL
−1 log(N+0.5)TL ≤ 1.38022tT−1L2. Now take

Γ to be the rectangle with vertices at b± iT ′′ and −0.5± iT ′′, and consider
the integral

�

Γ

(
−L
′

L
(s, χ)

)
ts − 2.5s

s
ds.

Then Cauchy’s residue theorem gives

(4.7)
1

2πi

�

Γ

(
−L
′

L
(s, χ)

)
ts − 2.5s

s
ds = −

∑

|γ|≤T ′′

t% − 2.5%

%
+ θ log t.

By [CW2, Lemma 9] with s=σ+iT ′′, (4.3), (4.4) and in view of b=1+L−1,
t ∈ [0.001N,N ] and |T ′′ − T | ≤ 1, the total contribution from the two hor-
izontal lines of integration can be estimated further by 0.0014tT−1 log2 qT.
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By [CW2, Lemma 9′] with x = u, and [CW2, Lemma 8], the left vertical
line of integration is ≤ 1.632(log qT ) log T. Thus by (4.6) and (4.7) we get

(4.8) ψ(t, χ) = −
∑

|γ|≤T ′′

t% − 2.5%

%
+R10,

where, in view of q ≤ P1 = L6 and T = L15,

|R10| ≤ 1.38022tT−1L2 + log t+ 0.0014tT−1 log2 qT + 1.632(log qT ) log T

≤ 1.38024tT−1L2.

The difference between
∑
|γ|≤T ′′%

−1t% and
∑
|γ|≤T %

−1t% is ≤0.00015tT−1L2

by (4.3) and L ≥ 2000. Thus (4.8) can be rewritten as

(4.9) ψ(t, χ) = −
∑

|γ|≤T

t%

%
+

∑

|γ|≤T ′′

2.5%

%
+ 1.38039θtT−1L2.

Note that our χ is now primitive so that L(s, χ) has no zero on the imaginary
axis, and then on noting q ≤ L6 we may use Theorem 6 for 0 < y ≤ 1 to get

(4.10) N(0, χ, y) ≤ 46 logL.
Similarly, for any y > 1, by Theorem 6 we get

(4.11) N(0, χ, y) ≤ y

π
log q|3/2 + iy|+ 3.5(1 + 3/π) log q + c(y)y,

where

y ≥ 1 2 5 10 20 41

c(y) := 18.13 9.3548 4.8605 1.8674 0.6887 0

We now return to (4.9). We have

(4.12)
∣∣∣∣
∑

|γ|≤T ′′

2.5%

%

∣∣∣∣ ≤ 2.5
∑

|γ|≤T+1

1
|%| ≤ 2.5

( ∑

|γ|≤1

1
Re(%)

+
∑

1<|γ|≤T+1

1
|γ|

)
.

Note that all the nontrivial zeros of L(s, χ) are symmetric with respect to
the line σ = 1/2. Thus by Lemma 2.1 with x = P1 = L6 we see that all
zeros % = β + iγ of L(s, χ) with |γ| ≤ 1 satisfy

1− 1
c1 logP1

≥ β ≥ 1
6c1 logL ,

except for at most two simple real zero β̃ and 1− β̃; also by Theorem 3 we
have

1− β̃ ≥ π/0.4923

q1/2 log2 q
.
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Thus by (4.10) and noting q ≤ P1 = L6 and L ≥ 2000, the first sum on the
right hand side of (4.12) is

≤
∑

|γ|≤1, %6=1−β̃

1
Re(%)

+
1

1− β̃
≤ q1/2 log2 q

π/0.4923
+ 6c1(logL)

∑

|γ|≤1

1(4.13)

≤ 5.65L3 log2 L.
By (4.11) and T = L15 ≥ 200015, the last sum on the right hand side of
(4.12) is

≤ N(0, χ, T + 1)
T + 1

+
T+1�

1

y−2N(0, χ, y) dy ≤ 107 log2 L.

This together with (4.13) enables us to estimate (4.12) by

(4.14) 2.5(5.65L3 + 107) log2 L ≤ 14.13L3 log2 L.
Now we bound

(4.15)
∑

|γ|≤T, β<1/2

%−1t% =
∑

|γ|≤1, β<1/2

%−1t% +
∑

1<|γ|≤T, β<1/2

%−1t%.

Similarly to (4.13), the first sum on the right hand side has absolute value

≤ t1−β̃

1− β̃
+ t1/2

∑

|γ|≤1, %6=1−β̃

1
Re(%)

≤ 2663t1/2 log2 L.

By (4.11), the last sum on the right hand side of (4.15) has absolute value
≤ 6.7t1/2L15 logL. Thus (4.15) is

(4.16) ≤ (2663L−15 logL+ 6.7)t1/2L15 logL ≤ 6.71t1/2L15 logL.
By (4.14) and (4.16) we can rewrite (4.9) as

∣∣∣∣ψ(t, χ) +
∑

|γ|≤T, β≥1/2

t%

%

∣∣∣∣ ≤ 1.380391tT−1L2.

Finally, note that if χ (mod q) is induced by a primitive χ1 (mod q1) then the
difference between ψ(t, χ) and ψ(t, χ1) is ≤ 6L logL/log 2. When χ (mod q)
is the principal χ0, by similar arguments we can obtain

ψ(t, χ0) = t−
∑

|γ|≤T, β≥1/2

t%

%
+ 1.38038θtT−1L2.
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