Tuples of hyperelliptic curves $y^{2}=x^{n}+a$

by
Tomasz Jędrzejak (Szczecin), Jaap Top (Groningen) and Maciej Ulas (Kraków)

1. Introduction. Kuwata and Wang KW considered the surface \mathcal{E} given by

$$
\mathcal{E}:\left(x_{1}^{3}+a x_{1}+b\right) y^{2}=x_{2}^{3}+c x_{2}+d
$$

where $a, b, c, d \in \mathbb{Q}$ satisfy $(a, c) \neq(0,0) \neq(b, d)$. Considering the Euclidean topology on the set $\mathcal{E}(\mathbb{R})$ of all real points on \mathcal{E}, they showed that the set of rational points $\mathcal{E}(\mathbb{Q})$ is dense in $\mathcal{E}(\mathbb{R})$. Their argument uses a special rational curve on \mathcal{E}, which was also independently constructed by Mestre [Me]. Using this rational curve, Kuwata and Wang deduce that if E_{1}, E_{2} are elliptic curves over \mathbb{Q} with j-invariants $\left(j\left(E_{1}\right), j\left(E_{2}\right)\right) \notin\{(0,0),(1728,1728)\}$, then there exists a polynomial $d(t) \in \mathbb{Q}[t]$ such that the quadratic twists of E_{1}, E_{2} by $d(t)$ both have positive rank over $\mathbb{Q}(t)$.

In [U] it is shown that if one allows sextic resp. quartic twists, then analogous results hold for pairs of elliptic curves with j-invariant 0 resp. 1728. Here we extend this to a special class of hyperelliptic curves.

Theorem 1.1. Suppose $n \in \mathbb{Z}_{\geq 3}$. Given nonzero $a, b \in \mathbb{Q}$, there exists a polynomial $d(t) \in \mathbb{Q}[t]$ such that the Jacobians of the curves given by $y^{2}=x^{n}+a d(t)$ and $y^{2}=x^{n}+b d(t)$ both have positive rank over $\mathbb{Q}(t)$.

In fact, more precise results will be given. For example, the question is considered whether or not the polynomial $d(t) \in \mathbb{Q}[t]$ can be required to be a square. Moreover, one can extend the result above to the case of more than two curves:

Theorem 1.2. Suppose $n \in \mathbb{Z}_{\geq 3}$. Given nonzero $a, b, c \in \mathbb{Q}$, there exists a polynomial $d(t) \in \mathbb{Q}[t]$ such that the Jacobians of the curves given by $y^{2}=x^{n}+a d(t)$ and $y^{2}=x^{n}+b d(t)$ and $y^{2}=x^{n}+c d(t)$ all have positive rank over $\mathbb{Q}(t)$.

[^0]Theorem 1.3. Suppose $n \in \mathbb{Z} \geq 3$ is odd. Given nonzero $a_{1}, a_{2}, a_{3}, a_{4} \in \mathbb{Q}$, there exists a polynomial $d(t) \in \mathbb{Q}[t]$ such that the Jacobians of the curves given by $y^{2}=x^{n}+a_{j} d(t)$ all have positive rank over $\mathbb{Q}(t)$.

Generalities concerning twists of varieties and in particular of curves can be found in [MT]. Note that in the special case where n is even, the curves considered here are equipped with two rational points ∞_{+}, ∞_{-}"at infinity". The difference $\left(\infty_{+}\right)-\left(\infty_{-}\right)$then defines a nontrivial point in the Jacobian. However, this is a torsion point as follows by taking the divisor of the function $y+x^{n / 2}$. This is a very special case of a topic already studied by Abel; see, for example, work of Schinzel [Sch], Hellegouarch and Lozach [HL], Berry [Be] and the many references they provide.

The proof of our result consists of two parts. Given a point $(x(t), y(t))$ on a curve with equation $y^{2}=x^{n}+a d(t)$, we need a condition implying that this point minus a point at infinity defines a point of infinite order in the Jacobian. This is done by adapting ideas of $[S T]$ to the present situation. Next, we need a rational function $d(t)$ and rational points $\left(x_{a}(t), y_{a}(t)\right)$ resp. $\left(x_{b}(t), y_{b}(t)\right)$ on the curve with equation $y^{2}=x^{n}+a d(t)$ resp. $y^{2}=x^{n}+b d(t)$. To this end, we construct rational curves on the threefold \mathcal{X} with equation

$$
\mathcal{X}: \quad b\left(y_{a}^{2}-x_{a}^{n}\right)=a\left(y_{b}^{2}-x_{b}^{n}\right) .
$$

Parametrizing such a rational curve as $t \mapsto\left(x_{a}(t), y_{a}(t), x_{b}(t), y_{b}(t)\right)$ gives us the required points by taking $d(t):=\left(y_{a}(t)^{2}-x_{a}(t)^{n}\right) / a$. If one moreover demands that $d(t)$ is a square, then instead of \mathcal{X} one considers the threefold \mathcal{Y} given by the two equations

$$
\mathcal{Y}: z^{2}=b\left(y_{a}^{2}-x_{a}^{n}\right)=a\left(y_{b}^{2}-x_{b}^{n}\right),
$$

which defines a double cover of \mathcal{X}.
Section 2 provides details on the method used to show that certain divisors have infinite order. Section 3 contains the construction of rational curves on the threefolds \mathcal{X} and \mathcal{Y}, resulting in the proof of Theorem 1.1. Finally, in Section 4 we prove Theorems 1.2 and 1.3.
2. Infinite order. In this section we take $n \in \mathbb{Z}_{\geq 3}$. Suppose K is a field of characteristic not dividing $2 n$. Fix $a \in K$ with $a \neq 0$ and take $d(t) \in K[t]$ of positive degree such that $d(t)$ is not divisible by a nonconstant $\operatorname{lcm}(2, n)$ th power in $K[t]$. Let $\alpha \in K$ be the leading coefficient of $d(t)$. Define the hyperelliptic curve C_{0} / K by the equation

$$
C_{0}: y^{2}=x^{n}+a \alpha
$$

and $C / K(t)$ by

$$
C: y^{2}=x^{n}+a d(t)
$$

Fix a point $\infty \in C(K(t))$ at infinity. For any affine point $P=(x(t), y(t)) \in$ $C(K(t))$, we will study the divisor class $(P)-(\infty)$ in the Jacobian of C.

Write $d(t)=\alpha f(t)^{m}$ with $f(t) \in K[t]$ monic and m the largest divisor of $\operatorname{lcm}(2, n)$ such that $d(t)$ is, up to a constant, an m th power. By the assumptions, $1 \leq m<\operatorname{lcm}(2, n)$. Define $\ell:=\operatorname{lcm}(2, n) / m \in \mathbb{Z}_{\geq 2}$. For every extension field $L \supset K$, the polynomial $s^{\ell}-f(t)$ is irreducible in $L[t, s]$ since otherwise $f(t)$ would be a k th power for some divisor $k>1$ of ℓ, which is not the case. Hence we have an irreducible curve D / K, defined by

$$
D: s^{\ell}=f(t)
$$

Note that the curve D is taken such that over the function field $K(D) \supset$ $K(t) \supset K$, the curves C and C_{0} are isomorphic: over $K(D)$ one has

$$
d(t)=\alpha f(t)^{m}=\alpha s^{\operatorname{lcm}(2, n)}
$$

hence one obtains the isomorphism

$$
C \xrightarrow{\sim} C_{0}:(x, y) \mapsto\left(x s^{-\operatorname{lcm}(2, n) / n}, y s^{-\operatorname{lcm}(2, n) / 2}\right)
$$

Now suppose that $P=(x(t), y(t)) \in C(K(t))$ is an affine point of C over $K(t)$. Via the isomorphism above, P defines a morphism $\varphi_{P}: D \rightarrow C_{0}$ given by

$$
\varphi_{P}:(t, s) \mapsto\left(x(t) s^{-\operatorname{lcm}(2, n) / n}, y(t) s^{-\operatorname{lcm}(2, n) / 2}\right)
$$

The Jacobian of C_{0} will be denoted J_{0}. Composing φ_{P} with an embedding $C_{0} \rightarrow J_{0}$ we obtain a morphism, which we will also denote by φ_{P}, from D to J_{0}. Summarizing, this defines

$$
C(K(t)) \rightarrow \operatorname{Mor}\left(D, J_{0}\right): \quad P \mapsto \varphi_{P}
$$

(Note that the point(s) at infinity on C give rise to constant morphisms.) Since $\operatorname{Mor}\left(D, J_{0}\right)$ is a group (in fact, one may identify it with $J_{0}(K(D))$), the above assignment by linearity extends to a homomorphism

$$
\varphi: J(K(t)) \rightarrow \operatorname{Mor}\left(D, J_{0}\right)
$$

Proposition 2.1. Let $P \in C(K(t))$ with $P \notin C(K)$ and $y(P) \neq 0$. Then $\varphi((P)-(\infty)) \in \operatorname{Mor}\left(D, J_{0}\right)$ has infinite order. In particular, $(P)-(\infty)$ defines an element of infinite order in $J(K(t))$.

The proof adapts the argument presented in Section 4 of [ST], and runs as follows. Using the above notation, suppose, on the contrary, that $\varphi((P)-(\infty))$ has finite order. This means that the map $D \rightarrow J_{0}$ it defines has a finite image. Since D is absolutely irreducible, so is this image, which implies it consists of only one point. This point is the image of D under the composition $D \xrightarrow{\varphi_{P}} C_{0} \rightarrow J_{0}$. Because $C_{0} \rightarrow J_{0}$ is injective, one con-
cludes that $\varphi_{P}: D \rightarrow C_{0}$ is constant. A direct verification using the given conditions on P shows that this is impossible.

REmARK 2.2. The equation $y^{2}=x^{n}+\alpha a f(t)^{m}$ with $f \in K[t]$ of positive degree obviously has no solutions $(x, y) \in K \times K$. Hence the only points in $C(K)$ are the points at infinity. Furthermore, the definition of the integer m in this section implies that a point in $C(K(t))$ with y-coordinate 0 exists only when $m=n$ and $-\alpha a$ is an nth power in K. It is easy to verify that for such a point P, indeed $(P)-(\infty)$ defines a torsion point in $J(K(t))$ (of order 2 when n is odd, and of order dividing n otherwise).
3. Rational curves on some threefolds. In this section, a, b are nonzero rational numbers. First, the threefold \mathcal{X} with equation $b\left(y_{1}^{2}-x_{1}^{n}\right)=$ $a\left(y_{2}^{2}-x_{2}^{n}\right)$ is studied.

Lemma 3.1. \mathcal{X} is birational to \mathbb{A}^{3} over \mathbb{Q}.
Proof. First suppose that $n=2 m+1$. The birational map

$$
\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \mapsto(T, p, q, r):=\left(x_{1}, y_{1} \cdot x_{1}^{-m}, x_{2} / x_{1}, y_{2} \cdot x_{1}^{-m}\right)
$$

shows that \mathcal{X} is birational to the threefold given by

$$
\left(a q^{n}-b\right) T=a r^{2}-b p^{2}
$$

Since this equation has degree one in the variable T, the conclusion follows for n odd.

Now suppose $n=2 m$. In this case, the map

$$
\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \mapsto(T, u, v, w):=\left(y_{1}-x_{1}^{m}, x_{1}, x_{2},\left(y_{2}-x_{2}^{m}\right) /\left(y_{1}-x_{1}^{m}\right)\right)
$$

shows that \mathcal{X} is birational to the threefold given by

$$
\left(a w^{2}-b\right) T=-2\left(a w v^{m}-b u^{m}\right)
$$

Again, the equation has degree one in T, which finishes the proof.
It is now straightforward to finish the proof of our main result. Namely, take, depending on n being even or odd, three (sufficiently general) rational functions $p(t), q(t), r(t)$ (or $u(t), v(t), w(t)$). Use the linear equation in the proof of the lemma above to find a corresponding $T(t)$. From this, via the birational map given above, find $x_{1}(t), y_{1}(t), x_{2}(t), y_{2}(t)$ and proceed as explained in the introduction to obtain a rational function $d(t)$. Clearing denominators one ends up with a situation where Proposition 2.1 is applicable, and the result follows.

Now consider the threefold \mathcal{Y} which corresponds to the case where moreover one desires the polynomial $d(t)$ in the main theorem to be a square. For this, one uses the birational map from \mathcal{X} to \mathbb{A}^{3} from the lemma. Since \mathcal{Y} is a double cover of \mathcal{X}, this yields an explicit birational map over \mathbb{Q} from \mathcal{Y} to a
double cover of \mathbb{A}^{3}. As before, the cases of n odd and n even are considered separately.

First, suppose $n=2 m+1$. Using the variables p, q, r introduced before, one finds that \mathcal{Y} is birational to the threefold with equation

$$
\left(a q^{n}-b\right) h^{2}=p^{2} q^{n}-r^{2}
$$

Now put $q=u^{2}$, where u is an indeterminate. Over $\mathbb{Q}(u)$ the above homogeneous quadratic equation in the variables p, r, h defines a quadratic curve with a rational point $(p: r: h)=\left(1: u^{n}: 0\right)$. It is straightforward to parametrize this quadratic curve over $\mathbb{Q}(u)$. As a result, one obtains a dominant, rational map of degree 2 defined over \mathbb{Q} from \mathbb{A}^{3} to the threefold \mathcal{Y}. We have shown the following.

Corollary 3.2. In case n is odd, for any pair a, b of nonzero rational numbers, one can choose the polynomial $d(t) \in \mathbb{Q}[t]$ as in Theorem 1.1 to be a square.

Next, take $n=2 m$. Using the variables u, v, w, T and $\zeta:=z /\left(2\left(a w^{2}-b\right)\right)$ one obtains the equation

$$
\zeta^{2}=-a b w\left(u^{m} w-v^{m}\right)\left(a v^{m} w-b u^{m}\right)
$$

for a threefold birational to \mathcal{Y} over \mathbb{Q}. Observe that this equation defines an elliptic curve E over the field $\mathbb{Q}(u, v)$. One way of constructing rational curves over \mathbb{Q} on \mathcal{Y} would be to find nontrivial points in $E(\mathbb{Q}(u, v))$. Indeed, if ($w(u, v), \zeta(u, v)$) is such a point, then for general rational functions $u(t), v(t)$ one obtains $w(t):=w(u(t), v(t))$ and this easily leads to a rational curve as desired. Unfortunately, this idea fails, as the following proposition shows.

Proposition 3.3. With notation as above, $E(\mathbb{Q}(u, v))$ is a finite group.
Proof. Put $Y:=a^{2} b u^{m} v^{m} \zeta$ and $X:=-a^{2} b u^{m} v^{m} w$. Then the equation for E becomes

$$
Y^{2}=X\left(X+a^{2} b v^{2 m}\right)\left(X+a b^{2} u^{2 m}\right) .
$$

Let K be an algebraic closure of $\mathbb{Q}(v)$. We will show the even stronger result that over $K(u)$, the Mordell-Weil group is finite.

Observe that our elliptic curve over $K(u)$ is the generic fiber of an elliptic surface $\mathcal{E} \rightarrow \mathbb{P}^{1}$ over K. This surface has fibers of type $I_{4 m}$ over 0 and over ∞, and fibers of type I_{2} over all u such that $b u^{2 m}=a v^{2 m}$. From standard theory of elliptic surfaces (cf. [SchS, especially Sections 5, 6, 10]) one finds that the second Betti number $h^{2}(\mathcal{E})$ is $12 m-2$ and the Hodge number $h^{0,2}(\mathcal{E})$ is $m-1$. As a result, the rank $\rho(\mathcal{E})$ of the Néron-Severi group of \mathcal{E} satisfies $\rho \leq h^{2}-2 h^{0,2}=10 m$. The Shioda-Tate formula now implies that the

Mordell-Weil rank r of $\mathcal{E} \rightarrow \mathbb{P}^{1}$ over K satisfies

$$
r+2+(4 m-1)+(4 m-1)+2 m \cdot(2-1) \leq 10 m,
$$

hence $r=0$. This implies the proposition.
The argument above shows that for every $m>0$, the elliptic surface $\mathcal{E} \rightarrow \mathbb{P}^{1}$ over K is a so-called semi-stable extremal elliptic surface (with geometric genus $p_{g}=m-1$; cf. [K]). For $m \in\{1,2,4\}$ the surface corresponds to certain torsion-free genus zero congruence subgroups of $\operatorname{PSL}(2, \mathbb{Z})$ (of index 12,24 and 48 , respectively; see TY]).

The (finite) group of sections of $\mathcal{E} \rightarrow \mathbb{P}^{1}$ over K is in fact isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$. Indeed, a straightforward calculation (cf. [Sil, Chapter X, Prop. 1.4]) shows that in $E(K(u))$ the point $(0,0)$ is divisible by 2 but not by 4 , and other points of order 2 are not divisible by 2 . So the 2 -part of $E(K(u))$ is isomorphic to $\mathbb{Z} / 2 \times \mathbb{Z} / 4 \mathbb{Z}$. If it contained a point of prime order $p>2$, then the modular curve corresponding to $\Gamma(4 ; 2,1,1) \cap \Gamma_{1}(p)$ (see TY] for notation) would be a rational curve, which is not the case.

Note that the points of order 4 in $E(K(u))$ are obtained by taking $X=$ αu^{m} with $\alpha \in K$ satisfying $\alpha^{2}=a^{3} b^{3} v^{2 m}$. In particular, $\alpha \notin \mathbb{Q}(v)$ in general. The leading coefficient $\beta \in K$ of the corresponding Y-coordinate $Y=$ $\beta u^{2 m}+\cdots$ satisfies $\beta^{2}=a^{4} b^{5} v^{2 m}$. Hence only when a, b are both squares in \mathbb{Q}, can the point(s) of order 4 actually be used to construct rational curves as desired on the threefold \mathcal{Y}.
4. Three- and four-tuples of curves. In this last section Theorems 1.2 and 1.3 are proven. Obviously, Theorem 1.3 implies the conclusion of Theorem 1.2 for n odd. So we first prove Theorem 1.2 assuming that $n=2 m$ is even.

Let m be a positive integer, and $a, b, c \in \mathbb{Q}^{\times}$. Consider the four-dimensional variety $\mathcal{Z}=\mathcal{Z}_{m}$ defined by

$$
\mathcal{Z}: \quad b c\left(y_{1}^{2}-x_{1}^{2 m}\right)=a c\left(y_{2}^{2}-x_{2}^{2 m}\right)=a b\left(y_{3}^{2}-x_{3}^{2 m}\right) .
$$

Using the same ideas as in Section 3, we will construct sufficiently general (meaning that $y_{1}^{2}-x_{1}^{2 m}$ is nonconstant on them, and moreover not equal to a times a $2 m$ th power) rational curves in \mathcal{Z} over \mathbb{Q}. Put $K:=\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)$. The equations defining \mathcal{Z} may be regarded as defining a genus one curve E over K. This curve contains the K-rational points

$$
\left(y_{1}, y_{2}, y_{3}\right)=\left(\pm x_{1}^{m}, \pm x_{2}^{m}, \pm x_{3}^{m}\right)
$$

It is straightforward (e.g., using the computer algebra system Magma) to use one of these points as zero element for a group law on E and calculate a nontrivial linear combination of the other points. As an example, one finds
y_{1}, y_{2}, y_{3} equal respectively to

$$
\begin{aligned}
& \frac{\left(3 a^{2} x_{3}^{4 m} x_{2}^{4 m}-2 a c x_{1}^{2 m} x_{2}^{4 m} x_{3}^{2 m}-2 a b x_{3}^{4 m} x_{1}^{2 m} x_{2}^{2 m}-c_{2}^{2} x_{1}^{4 m} x_{2}^{4 m}+2 b c x_{1}^{4 m} x_{2}^{2 m} x_{3}^{2 m}-b^{2} x_{3}^{4 m} x_{1}^{4 m}\right) x_{1}^{m}}{a^{2} x_{3}^{4 m} x_{2}^{4 m}-2 a b x_{3}^{4 m} x_{1}^{2 m} x_{2}^{2 m}+b^{2} x_{3}^{4 m} x_{1}^{4 m}-2 a c x_{1}^{2 m} x_{2}^{4 m} x_{3}^{2 m}-2 b c x_{1}^{4 m} x_{2}^{2 m} x_{3}^{2 m}+c^{2} x_{1}^{4 m} x_{2}^{4 m}} \\
& \frac{\left(a^{2} x_{3}^{4 m} x_{2}^{4 m}-2 a c x_{1}^{2 m} x_{2}^{4 m} x_{3}^{2 m}+2 a b x_{3}^{4 m} x_{1}^{2 m} x_{2}^{2 m}+c_{2}^{2} x_{1}^{4 m} x_{2}^{4 m}+2 b c x_{1}^{4 m} x_{2}^{2 m} x_{3}^{2 m}-3 b^{2} x_{3}^{4 m} x_{1}^{4 m}\right) x_{2}^{m}}{a^{2} x_{3}^{4 m} x_{2}^{4 m}-2 a b x_{3}^{4 m} x_{1}^{2 m} x_{2}^{2 m}+b^{2} x_{3}^{4 m} x_{1}^{4 m}-2 a c x_{1}^{2 m} x_{2}^{4 m} x_{3}^{2 m}-2 b c x_{1}^{4 m} x_{2}^{2 m} x_{3}^{2 m}+c^{2} x_{1}^{4 m} x_{2}^{4 m}} \\
& -\frac{\left(a^{2 m} x_{3}^{4 m} x_{2}^{4 m}-2 a b x_{3}^{4 m} x_{1}^{2 m} x_{2}^{2 m}+b^{2} x_{3}^{4 m} x_{1}^{4 m}+2 a c x_{1}^{2 m} x_{2}^{4 m} x_{3}^{2 m}+2 b c x_{1}^{4 m} x_{2}^{2 m} x_{3}^{2 m}-3 c^{2} x_{1}^{4 m} x_{2}^{4 m}\right) x_{3}^{m}}{a^{2} x_{3}^{4 m} x_{2}^{4 m}-2 a b x_{3}^{4 m} x_{1}^{2 m} x_{2}^{2 m}+b^{2} x_{3}^{4 m} x_{1}^{4 m}-2 a c x_{1}^{2 m} x_{2}^{4 m} x_{3}^{2 m}-2 b c x_{1}^{4 m} x_{2}^{2 m} x_{3}^{2 m}+c^{2} x_{1}^{4 m} x_{2}^{4 m}}
\end{aligned}
$$

In fact, the following Magma code produces this (we use the notation $K=\mathbb{Q}\left(a, b, c, x_{1}, x_{2}, x_{3}\right)$ and take $\left.m=1\right)$:

```
> P<y1,y2,y3,y4>:=ProjectiveSpace(K,3);
> C:=Curve(P,[a*c*(y2^2-y4^2*x2^2) -b*c*(y1^2-y4^2*x1^2),
            a*c*(y2^2-y4^2*x2^2)-b*a*(y3^2-y4^2*x3^2)]);
> P:=C![x1,x2,x3,1];
> E,phi:=EllipticCurve(C,P);
> Q:=C![-x1, x2, x3,1];
> S:=C![x1, x2,-x3,1];
> som:=phi(Q)+phi(S);
> Inverse(phi)(som);
```

It is easy to deduce, from this, rational curves in \mathcal{Z} as desired. Hence Theorem 1.2 follows for n even.

Lastly, consider $a, b, c, d \in \mathbb{Q}^{\times}$and an integer $m \geq 1$. Clearly it suffices to prove Theorem 1.3 for a, b, c, d for pairwise distinct. We assume this condition from now on (it will guarantee that the variety introduced below is geometrically irreducible).

Define the five-dimensional variety \mathcal{W} by

$$
\frac{y_{1}^{2}-x_{1}^{2 m+1}}{a}=\frac{y_{2}^{2}-x_{2}^{2 m+1}}{b}=\frac{y_{3}^{2}-x_{3}^{2 m+1}}{c}=\frac{y_{4}^{2}-x_{4}^{2 m+1}}{d} .
$$

Let u be an indeterminate. Working over $\mathbb{Q}(u)$, we intersect \mathcal{W} with the linear space defined by

$$
u^{-2} x_{1}=x_{2}=x_{3}=x_{4}
$$

The intersection is a surface \mathcal{S}, in the variables $y_{1}, y_{2}, y_{3}, y_{4}$ and $x\left(=x_{2}=\right.$ $x_{3}=x_{4}=x_{1} / u^{2}$) given by $b c d\left(y_{1}^{2}-u^{4 m+2} x^{2 m+1}\right)=a c d\left(y_{2}^{2}-x^{2 m+1}\right)=a b d\left(y_{3}^{2}-x^{2 m+1}\right)=a b c\left(y_{4}^{2}-x^{2 m+1}\right)$.

Using new variables $\eta_{j}=y_{j} x^{-m}$ one shows that \mathcal{S} is birational over $\mathbb{Q}(u)$ to the surface \mathcal{T} with equations

$$
b c d\left(\eta_{1}^{2}-u^{4 m+2} x\right)=a c d\left(\eta_{2}^{2}-x\right)=a b d\left(\eta_{3}^{2}-x\right)=a b c\left(\eta_{4}^{2}-x\right)
$$

Eliminating x from these equations shows that \mathcal{T} is birational over $\mathbb{Q}(u)$ to
the cone in \mathbb{A}^{3} over the curve C defined as

$$
C:\left\{\begin{array}{l}
(d-c)\left(d \eta_{2}^{2}-b\right)=(d-b)\left(d \eta_{3}^{2}-c\right) \\
(d-c)\left(d \eta_{1}^{2}-a\right)=\left(d u^{4 m+2}-a\right)\left(d \eta_{3}^{2}-c\right)
\end{array}\right.
$$

The curve C has genus one and contains the rational points

$$
\left(\eta_{1}, \eta_{2}, \eta_{3}\right)=\left(\pm u^{2 m+1}, \pm 1, \pm 1\right)
$$

Using one of them as zero for a group law on C, it is easy to combine others and construct new $\mathbb{Q}(u)$-rational points on C. An example of a point obtained in this way, using Magma quite analogously to the case described above, is

$$
\begin{aligned}
& \eta_{1}=\frac{v\left(-c^{2} v^{4}+2 b c v^{4}+2 c d v^{4}-b^{2} v^{4}+2 b d v^{4}-d^{2} v^{4}-2 a c v^{2}-2 a b v^{2}-2 a d v^{2}+3 a^{2}\right)}{c^{2} v^{4}-2 b c v^{4}+2 c d v^{4}+b^{2} v^{4}+2 b d v^{4}-3 d^{2} v^{4}-2 a c v^{2}-2 a b v^{2}+2 a d v^{2}+a^{2}}, \\
& \eta_{2}=\frac{c^{2} v^{4}+2 b c v^{4}-2 c d v^{4}-3 b^{2} v^{4}+2 b d v^{4}+d^{2} v^{4}-2 a c v^{2}+2 a b v^{2}-2 a d v^{2}+a^{2}}{c^{2} v^{4}-2 b c v^{4}+2 c d v^{4}+b^{2} v^{4}+2 b d v^{4}-3 d^{2} v^{4}-2 a c v^{2}-2 a b v^{2}+2 a d v^{2}+a^{2}}, \\
& \eta_{3}=-\frac{-3 c^{2} v^{4}+2 b c v^{4}+2 c d v^{4}+b^{2} v^{4}-2 b d v^{4}+d^{2} v^{4}+2 a c v^{2}-2 a b v^{2}-2 a d v^{2}+a^{2}}{c^{2} v^{4}-2 b c v^{4}+2 c d v^{4}+b^{2} v^{4}+2 b d v^{4}-3 d^{2} v^{4}-2 a c v^{2}-2 a b v^{2}+2 a d v^{2}+a^{2}} .
\end{aligned}
$$

with $v=u^{2 m+1}$. Now it is straightforward, as in the previous cases, to complete the proof of Theorem 1.3 (and hence of Theorem 1.2).

References

[Be] T. G. Berry, On periodicity of continued fractions in hyperelliptic function fields, Arch. Math. (Basel) 55 (1990), 259-266.
[HL] Y. Hellegouarch et M. Lozach, Équation de Pell et points d'ordre fini, Publ. Math. Orsay 86 (1986), 72-95.
[K1] R. Kloosterman, Extremal elliptic surfaces and infinitesimal Torelli, Michigan Math. J. 52 (2004), 141-161.
[KW] M. Kuwata and L. Wang, Topology of rational points on isotrivial elliptic surfaces, Int. Math. Res. Notices 1993, no. 4, 113-123.
[MT] S. J. Meagher and J. Top, Twists of genus three curves over finite fields, Finite Fields Appl. 16 (2010), 347-368.
[Me] J.-F. Mestre, Rang de courbes elliptiques d'invariant donné, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), 919-922.
[Sch] A. Schinzel, On some problems in the arithmetical theory of continued fractions, II, Acta Arith. 7 (1962), 287-298; Corrigendum, ibid. 47 (1986), 295.
[SchS] M. Schütt and T. Shioda, Elliptic surfaces, in: Algebraic Geometry in East Asia-Seoul 2008, Adv. Stud. Pure Math. 60, Math. Soc. Japan, Tokyo, 2010, 51-160.
[Si] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, Berlin, 1986.
[ST] C. L. Stewart and J. Top, On ranks of twists of elliptic curves and power-free values of binary forms, J. Amer. Math. Soc. 8 (1995), 943-973.
[TY] J. Top and N. Yui, Explicit equations of some elliptic modular surfaces, Rocky Mountain J. Math. 37 (2007), 663-687.
[U] M. Ulas, A note on higher twists of elliptic curves, Glasgow Math. J. 52 (2010), 371-381.

Tomasz Jędrzejak
Jaap Top
Institute of Mathematics JBI-RuG, P.O. Box 407
University of Szczecin
Wielkopolska 15
9700AK Groningen, the Netherlands
70-451 Szczecin, Poland
E-mail: tjedrzejak@gmail.com
Maciej Ulas
Institute of Mathematics
Jagiellonian University
Łojasiewicza 6
30-348 Kraków, Poland
E-mail: Maciej.Ulas@im.uj.edu.pl, maciej.ulas@gmail.com

Received on 15.6.2009
and in revised form on 6.7.2011

[^0]: 2010 Mathematics Subject Classification: Primary 11G30; Secondary 14H45.
 Key words and phrases: hyperelliptic curve, twist, Mordell-Weil rank, Jacobian.

