ACTA ARITHMETICA
150.2 (2011)

Lehmer-type congruences for
lacunary harmonic sums modulo p?

by
Hao PaN (Nanjing)

1. Introduction. Wolstenholme’s well-known harmonic series congru-
ence asserts that

3
L

(1.1) =0 (mod p?)

£
Il
=

1
for each prime p > 5. With the help of (|1.1)), Wolstenholme [9] proved that

() = (2) tmoa?

for any m,n > 1 and prime p > 5. In 1938, Lehmer [2] discovered the
following interesting congruence:

(p—1)/2
2

j=1

P2 or—1 _ 1)2
+< )

1
- mod p?
7 5 ( )

for each prime p > 3.
Define

1<k<n
k=r (mod m)

Clearly, with the help of (1.1)), Lehmer’s congruence can be rewritten as
=t 1 (2p7l —1)2

(1.2) Hpalp=1) = = 5

(mod p).
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In fact, Lehmer also proved three other congruences of the same nature:
p=l—1 (3l —1)2

(1.3) Hpalp —1) = =5 — =~ (mod P,
) -y = 22D S o)
(1.5) Hps(p—1) = 2p_;p_ S 3p_ip_ - (2p_16p_ L

_ (3p;p— 1)’ (mod p?),

where p > 5 is a prime. The proofs of — are based on the values of
the Bernoulli polynomial B,;,_1)(z) at = = 1/2,1/3,1/4,1/6.

However, no other congruence for H,,,(p — 1) modulo p? is known,
mainly because there are no known closed forms for B,_1)(n/m) when
m # 1,2,3,4,6. Some Lehmer-type congruences modulo p (not modulo p?!)
have been proved in [3]—[8]. In this paper, we shall investigate Lehmer-type
congruences modulo p?.

Define
7, (n) = Z " and 7* (n) = Z (_1)k n .
r,m k rm I
0<k<n 0<k<n
k=r (modm) k=r (modm)
Cleatly Ty, (n) = (—1)" T, () and
" ) = (—1)"T; m(n) if m is even,
() = (=1)"(Tr.2m(n) — Trnyr2m(n)) if m is odd.

As we shall see soon, if p £ m, it is not difficult to show that

5r,m (p) - me (p)
p

Hem(p—1) = (mod p),

where
1 if r =0 (mod m),
(1.6) Orm(p) =< =1 if r = p (mod m),
0 otherwise.

THEOREM 1.1. Let m > 2 be an integer and let p > 5 be a prime with
p #m. Then

27,m(p) +2 N Tpm(2p) +2
P 4p
Let us see how 1D follows from Theorem Clearly, ’2'0*2(n) = on—1
and 7% (n) = —2"". Hence in view of 1) for any prime p > 5,

(1.7) Hpmp—1)=— (mod p?).
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275(p)+2 T (2p)+2
Poalp =1) = - =25+ 25,

or 2 21 _ 9
= - (mod p?).
P 4p

In [7], Sun showed that 7;. ,,(n) can be expressed in terms of some linearly
recurrent sequences with orders not exceeding ¢(m)/2, where ¢ is the Euler
totient function. Thus in view of Theorem for each m, we always have a
Lehmer-type congruence for H,, m(p — 1) modulo p?, involving some linearly
recurrent sequences.

However, as we shall see later, ([1.7]) is not suitable to derive (1.3)), (L.4])
and (|1.5]). So we need the following theorem.

THEOREM 1.2. Let m > 2 be an integer and let p > 3 be a prime with
p #m. Then
(1.8)  Hpm(p—1)
7;:771(2}7) +2 P Z
4p 2

Hym(p — 1)% (mod p?).
1<r<m
2rZp (mod m)
When m = 3, we have 7,73(2p) = -2 3P~1 (cf. [3, Theorem 1.9] and [7}
Theorem 3.2]). Thus by (1.8]), we get

7,5(2p) +2 T,5(2p) + 2
)= _p3 7 Ip3V T 7

Hp,3(p ) 4p p( p )

e WGt VR
— o — 1 (mod p*),

since
T:(2p) + 2
H0,3(p -1)= —Hp,s(p -1)= A (mod p).

4p

Let us apply Theorem [T.2]to obtain more congruences of Lehmer’s type.
The Fibonacci numbers Fpy, Fi, Fo,... are given by Fy = 0, F; = 1 and
F, = Fy—1 + F,_ for every n > 2. It is well-known that F}, = (2) (mod p)

p
and Fp_(g) = 0 (mod p) for any prime p # 2,5, where (5) is the Legendre
P
symbol. Williams [8] proved that
F s
2 (—DF  Fp-(2)
= g PR £~ (mod p)

1<k<4p/5—1

for prime p # 2, 5. Subsequently Sun and Sun [6, Corollary 3] proved that
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F

2p

—~
3 |0
~

(1.9) Hops(p—1)=-H_ps(p—1) = — (mod p).

We have the following mod p? congruence involving Fibonacci numbers.

THEOREM 1.3. Suppose that p > 5 is a prime. Then

5P-D/2F, — ST F,,_ ()~ 1

mod p?).
5 1 ( )

(110)  Hypsp—1) =

The Pell numbers Py, P1, P>, ... are given by Ph =0, P, =1 and P,
2P,_1 + P, for n > 2. It is known that P, = (%) (mod p) and Pp_(g)
p

0 (mod p) for every odd prime p. In [4], Sun proved that

1)/ (=D" _ 1 2+ -2
(=1) > e 1 = %
1<k<(p+1)/4 k=1

(mod p)

for any odd prime p. Similarly, we have a Lehmer-type congruence involving
Pell numbers.

THEOREM 1.4. Suppose that p > 3 is a prime. Then

92p—4 4 9p—3 | g(p—S)/pr -1
p
2P0 4 2%~ L PP, 2y 1

_ p 2
" (mod p?).

(L11)  Hyslp—1) =

We shall prove Theorems [I.1] and [I.2] in Section 2, and the proofs of
Theorems [I.3] and [I.4] will be given in Section 3.

2. Proof of Theorems [1.1] and [1.2]

LEMMA 2.1. Suppose that p is a prime. Then

1 k P

en o ¥ o))
1<k<p—1
k=r (modm)

a® a® 9
E T P E T (mod p°)
1<k<p-1 1<j<k<p-17
k=r (modm) k=r (modm)
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Py <k<ap1,bp

k=r (modm)
-y 5y 5
- k k
1<k<p—1 1<k<p-1
k=r (mod m) k=2p—r (modm)
k 2p—k
a a
2 —+2 mod p?).
+2p Z T Z i (mod p°)
1<j<k<p-1 1<j<k<p—1
k=r (modm) k=2p—r (mod m)

Proof. We have

1 (P Lk k-1 D
— —Qa = 7—1
b2, ) 2 G
SRSp SRSPp J=
k=r (modm) k=r (modm)
ak a kR
S I SIS
1<k<p—1 2<k<p-1 Jj=1
k=r (modm) k=r (modm)
Similarly,

1 2p
w2 oY)
P 1<k<2p—1,k#p

k=r (modm)

BTN B )

1<k<p—1

1<k<p—-1 <
k=r (modm) k=2p—r (mod m)
We have
(—a)* (2p—1 a” a” 9
=-— — +2 — d p%).
> ko >, gt ) gy (modp?)
1<k<p—1 1<k<p—1 1<j<k<p-—1
k=r (modm) k=r (modm) k=r (modm)
Also,

Z (—a)2p_k <2p - 1)
1<k<p 2=k k
k=2p— r(modm)
a?p—k
= -2
Y2y
1<k<p-1 1<k<p-1
k=2p—r (mod m) k=2p—r (mod m)

1
le
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2p—k 2—k 2p—k
_ a a a 9
= — Z ( k +2p-kz)+2p Z " (mod p?).
1<k<p—1 1<j<k<p-1
k=2p—r (mod m) k=2p—r (mod m)
We are done. =
Define
k—1
1 1
Srm(n) = - =
J
2<k<n j=1
k=r (modm)

Substituting @ = 1 in (2.1]), we get
COROLLARY 2.1. Suppose that m > 2 and p is an odd prime with p # m.
Then
T (p) - 6r,m(p)

(2.3) Hem(p—1) = - + pSpm(p — 1) (mod p?),
where 6, m(p) is as defined in (1.6). In particular,

Tpm(p) +1
@24 Hpmlp—1) = 4 pSpm(p — 1) (mod ).

Substituting » = p,p + m/2 and a = 1 in 1’ and noting that (2;’)
2 (mod p?), we have

COROLLARY 2.2. Suppose that m > 2 and p > 5 is a prime with p # m.
Then
Tpm(2p) + 2

(2.5) Hpm(p—1) =— I + 2pSpm(p — 1) (mod p?).
Furthermore, if m is even, then
1; (2p)
m/2,m
(2.6) Hp+m/2,m(l) -1)= —% + 2P5p+m/2,m(p —1) (mod P2)-
Combining (2.4) and ([2.5)), we get
Tym) +1 T (2p) + 2 9
pSpm(p—1 =-—2 + £ mod p°),
pn(p = 1) ! o (mod 77)
and Theorem [I.1] easily follows.
LEMMA 2.2.

Z/];Tm(n)lz;:—s,m(n) = (_1)n7;1*+s,m(2n)'
r=1
Proof. Let ¢ be a primitive mth root of unity. Clearly,

n

Ton(n) = > (D" (Z) ;d’“—”t == 2=

k=0
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Hence,
1
Z r+sm(n) _ ZW C*T(t1+t2 stz( Ctl) ( _Ctz)n
r=1 1<t1,ta<m
1
— Loy ey ey
1<é1,t2<m
t1+to=m

_1)n - —(n+s n Nk
= S s gt = (1T (om).
t=1
Substituting s = 0 and n = p in Lemma we have
= Z IZ;“*m(p)2
r=1
Thus by noting that 7y, (p) = —7,%,,(p), we get

27 Spmp—-1)=— %m( )+1 %Tm(Qp) + 2

p? 4p?
. %ﬂjm(p)_l . %fm(p)—i_l Zr 1 rm ) -2
- 2p? 2p? 4p?
_ 3 T5®)?  (Tg, () — 1) (T).(p) + 1)
- 2 2 o 2
EZm 4p 4p 4p
r#0,p (mod m)

1 m
=7 X;Hnm(p —1)? (mod p).

Since Hp—rm(p — 1) = —Hym(p — 1) (mod p), Hypm(p —1) = 0 (mod p)
provided that 2r = p (mod m). So we also have

1 2
(2.8) Spm(p —1) = 1 E Hym(p — 1) (mod p).
1<r<m
2rZp (mod m)

Thus by ({2.5)), Theorem follows.

3. Fermat’s quotient and Pell’s quotient. Let L, be the Lucas
numbers given by Ly = 2, L1 = 1 and L, = Ly_1 + Ly,_o for n > 2. We
require the following result of Sun and Sun on 7, 19(n).

LEMMA 3.1 ([0, Theorem 1]). Let n be a positive odd integer. If n =
1 (mod 4), then
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107, 1)/2,10(n
107 43)2,10(n

H. Pan

2" + Lyyr + 5 ),
2" — Lp_1+ 5(n+3)/4F(n71)/27

2" — Lp1 — 5(n+3)/4F(n—1)/27

)
)
)
) 2"+ Lng1 — 50T s

(n) =
(n) =
107 47)/2, 10(n) =
107 (;411)/2,10(n) =
If n =3 (mod 4), then

107(-1)2,10(n) = 2" + Lpsq + 51! )/4L( 11)/25
107,143y /2,10(n) = 2" _1+5OVAL g,
10747y /2,10(n) = 2" — 5L 4y o,
107 (4 11)/2,10(n) = 2" + L1 — (n+1)/4L(n+1)/2'

Furthermore, for every odd n,
107(413)/2,10(n) = 2" — 2Ly,
For each odd n > 1, since
T, m(2n) =77, 2n—-1)-T," ,,(2n—-1) = =27,/ ., (2n—1),
T vmam(2n) = T 0 (2n—1) — ,TT::rm 1m(2n—=1) = =277,y (20—1),
by Lemma we get
(3.1) T3 (2n) =
Let p > 5 be a prime. By ,
7,5(2p) +2

—2.5n-V/2p

Hps(p 1) = === = p(Hps(p — 1)? + Haps(p — 1)%) (mod p?).
By , we have
5r-D/2F, — 1 Fp0)\?  (50-D12E, —1\?

ot 0= g ((057) (T )

I e B (Y G S O A L S A

B 2p 2p 2p

_seD2E, - 5p71(Fp2_(%) +F) -1

D 4p
-1/2p _ 5P7LR, sy —1
_ 5 Fp 1 . 2p (p) (mod p2)7

D 4p

where in the last step we use the fact that Fy, 1 = F2 + F2 1- Thus the
proof of Theorem is complete.
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REMARK. Similarly, we can get

_1\k
(3.2) > (;)

1<k<p—1
k=p (mod 5)

_ 5(2410—1_22p+3)_|_12L4p—|-L4p_4( 5)— 112Lo,— 4L2p 2(2 )—|—378 (mod 2)

= 400p P

Let @, be the Pell-Lucas numbers given by Qp = 2, Q1 = 2 and @,, =
2Qn—1 + Qn—2 for each n > 2. For 7, g(n), Sun proved

LEMMA 3.2 ([4, Theorem 2.2]). Let n be a positive odd integer. If n =
1 (mod 4), then

8T(n—1)/2,8(n) = 2" + 202 4 20D, L) s,
8Tn+3)/2 g(n) =2 — 20 tD/2 4 oD/, )y,

Tinsry2s(n) = 20 — 20002 _odDAp ),
87n+11 jas(n) =2m 420 D/2 oA DAP L.

If n =3 (mod 4), then

8T(1yj2,8(n) = 2" 4+ 20 FD/2 4 o HDAQ Lo,
8T(n43)y2,8(n) = 2" — 2 1/2 4 2 VAQ o,
8T (1) j2,8(n) = 2" — 2 TD/2 ot VAQ 4y,
87 (nt11)/2,8(n) = 2" + 2(nt1)/2 2(n+1)/4Q(n+1)/2

Thus for every odd n > 1 we have

(33) 7:8(2/”) — _22n—3 _ 2n—2 _ 2(71—1)/2Pn,
(3.4) T 4s(2n) = _92n=3 _gn=2 4 9(n-1)/2p |
Applying (L8],
7, (219
Hps(p—1) = - —p Z Hp+2j.8(p)° (mod p?).
0<5<3
By (2.5) and , we have
Try(2p) +2
Hps(p—1) = T (mod p),
7,1 4,5(2p)
Hptas(p—1) = — 2 (mod p).

4p
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In view of ([2.3) and Lemma

(35)  Hpros(p—1)° + Hpres(p — 1)?
1

(1 (s (22 io(p—5)/4 ’
Zz<2p —<p>2p + (1) 2P _(2))2 ) (mod p)

i=0 P
if p=1 (mod 4),
Ly 9 2
Z > <2p—3 — (p) 2(P=9)/2 4 (—1)iglr- 11)/4Q /2> (mod p)
i=0
\ if p =3 (mod 4).

LEMMA 3.3. Let p be an odd prime. Then

Plp-1)2=0 (mod p), Fp=1(mod 8)
P(p+1 = ( 1) p—1) /82 p—1)/4 (mod p)7 5
Piy1yj2 = (=1)=3/52073/% (mod p), if p=3 (mod 8)
(3.6) P12 = (=)TDR207 (mod p), !
Py = (102070 (mod ). o e
Ppy1)/2= 0 (mod p),
o-na= ) R (mod ). if p="7 (mod 8)
Py = (=1) (p+1)/82(P=3)/4 (mod p), )
and
' = (p—1)/89(p+3)/4
=(-1) 2 (mod p), if p=1 (mod 8),
Q)2 = (— 1) p—1)/89(p+3)/4 (mod p),
o = (—1)Pt5)/89(p+5)/4
(3.7) Q(p+1)/ =0 (mod p),
. 9= ( ) 1)(p+3)/89(p+3)/4 (HlOd p)’ ' B
Qp+1)/2 = (— ) p—5)/89(p+3)/4 (mod p), if p=>5 (mod 8),
Q( 12 =0 (mod p), o
Qepi1)/2 = (—~1)PHDB20HD/4 (104 p), if p="7 (mod 8).

Proof. The congruences in (3.6|) were obtained by Sun [4, Theorem 2.3].
Those in (3.7) follow from (3.6, by noting that @, = 2P,+1 — 2P, and
Qn+1 - 2Pn+1 —l— 2Pn ]
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Since P,_2))2Qp-(2))/2 = Fp—(2), by (3-5) we have

Hps2.8(p — 1)° + Hpres(p — 1)

2p71(2(p71)/2 _ (%))2 +Pp27(g)
= 3 L= (mod p).
Note that
op—1_1 2(p=1)/2 (2))(2(p—1)/2_ (2 9\ 2(P~1)/2_ (2
LG )
p p p p
Hence,
Hps(p—1)
_ 22p74+2p73+2(1’*3)/2pp_1 B (22p73+2p72+2(p*1)/2pp)2_4
B p 16p
_ _ 2 —
) (22p_3+2p_2_2(p_1)/2pp)2_217 1(2(p 1)/2_(129)) 4or 1P5_(%)
16p 8p
o4y op-3 o-3)/2p 1 2VTOFRITILITER, (5 —1 )
= - (mod p”),
p 4p
by noting that
2 2 _
Po—@y B = Pop2)

This concludes the proof of Theorem n

REMARK. The Bernoulli polynomials B, (z) (n = 0,1,2,...) are given
by

te:ct _ i Bn(fL‘) tn
et — 1 vt n! '

In particular, the Bernoulli numbers B,, are B, (0). Granville and Sun [I]
proved that

{p}s _ 9 5" =5
By ( —Bp1=—F (g)+ 4p (mod p),

5 T
{p}s 2 ortl _ 4y
B, (*2)-B, =P = - d
p 1( ] p—1 P p—(%)+ p (mo p)a

for any prime p # 2,5, where {p},, denotes the least non-negative residue
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of p modulo m. In 5, Theorem 3.3|, Sun also proved that
Bap—2({p}m/m) — Bap—2
2p — 2
Bp-1({p}m/m) — Bp—1
p—1
Using Theorems [I.3] and [I.4] we deduce that
Byp-1)({P}5/5) — Bp(p-1)
Sp(p—1)

mHpm(p—1) =

-2

(mod p?).

(3.8)

-1
so-V/2p 1 OPTE, 5y —1
D 4p

for any prime p > 5, and
Byp-1y({p}s/8) — Bp(p-1)

3.9
(39) 8p(p —1)
_ _2219*4 4+ o3 2(p73)/2pp -1
p
270 4 2274 L PP, 2y 1
+ p L (mod p?)

for any prime p > 5.
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