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1. Introduction. Wolstenholme’s well-known harmonic series congru-
ence asserts that

(1.1)
p−1∑
k=1

1
k
≡ 0 (mod p2)

for each prime p ≥ 5. With the help of (1.1), Wolstenholme [9] proved that(
mp

np

)
≡
(
m

n

)
(mod p3)

for any m,n ≥ 1 and prime p ≥ 5. In 1938, Lehmer [2] discovered the
following interesting congruence:

(p−1)/2∑
j=1

1
j
≡ −2p − 2

p
+

(2p−1 − 1)2

p
(mod p2)

for each prime p ≥ 3.
Define

Hr,m(n) =
∑

1≤k≤n
k≡r (mod m)

1
k
.

Clearly, with the help of (1.1), Lehmer’s congruence can be rewritten as

(1.2) Hp,2(p− 1) ≡ 2p−1 − 1
p

− (2p−1 − 1)2

2p
(mod p).
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In fact, Lehmer also proved three other congruences of the same nature:

Hp,3(p− 1) ≡ 3p−1 − 1
2p

− (3p−1 − 1)2

4p
(mod p2),(1.3)

Hp,4(p− 1) ≡ 3(2p−1 − 1)
4p

− 3(2p−1 − 1)2

8p
(mod p2),(1.4)

Hp,6(p− 1) ≡ 2p−1 − 1
3p

+
3p−1 − 1

4p
− (2p−1 − 1)2

6p
(1.5)

− (3p−1 − 1)2

8p
(mod p2),

where p ≥ 5 is a prime. The proofs of (1.2)–(1.5) are based on the values of
the Bernoulli polynomial Bp(p−1)(x) at x = 1/2, 1/3, 1/4, 1/6.

However, no other congruence for Hp,m(p − 1) modulo p2 is known,
mainly because there are no known closed forms for Bp(p−1)(n/m) when
m 6= 1, 2, 3, 4, 6. Some Lehmer-type congruences modulo p (not modulo p2!)
have been proved in [3]–[8]. In this paper, we shall investigate Lehmer-type
congruences modulo p2.

Define

Tr,m(n) =
∑

0≤k≤n
k≡r (mod m)

(
n

k

)
and T ∗r,m(n) =

∑
0≤k≤n

k≡r (mod m)

(−1)k

(
n

k

)
.

Clearly T ∗r,m(n) = (−1)nT ∗n−r,m(n) and

T ∗r,m(n) =
{

(−1)rTr,m(n) if m is even,
(−1)r(Tr,2m(n)− Tm+r,2m(n)) if m is odd.

As we shall see soon, if p 6= m, it is not difficult to show that

Hr,m(p− 1) ≡
δr,m(p)− T ∗r,m(p)

p
(mod p),

where

(1.6) δr,m(p) =


1 if r ≡ 0 (mod m),
−1 if r ≡ p (mod m),
0 otherwise.

Theorem 1.1. Let m ≥ 2 be an integer and let p ≥ 5 be a prime with
p 6= m. Then

Hp,m(p− 1) ≡−
2T ∗p,m(p) + 2

p
+
T ∗p,m(2p) + 2

4p
(mod p2).(1.7)

Let us see how (1.2) follows from Theorem 1.1. Clearly, T ∗0,2(n) = 2n−1

and T ∗1,2(n) = −2n−1. Hence in view of (1.7), for any prime p ≥ 5,
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Hp,2(p− 1) ≡ −
2T ∗p,2(p) + 2

p
+
T ∗p,2(2p) + 2

4p

=
2p − 2
p
− 22p−1 − 2

4p
(mod p2).

In [7], Sun showed that Tr,m(n) can be expressed in terms of some linearly
recurrent sequences with orders not exceeding φ(m)/2, where φ is the Euler
totient function. Thus in view of Theorem 1.1, for each m, we always have a
Lehmer-type congruence for Hp,m(p− 1) modulo p2, involving some linearly
recurrent sequences.

However, as we shall see later, (1.7) is not suitable to derive (1.3), (1.4)
and (1.5). So we need the following theorem.

Theorem 1.2. Let m ≥ 2 be an integer and let p ≥ 3 be a prime with
p 6= m. Then

(1.8) Hp,m(p− 1)

≡ −
T ∗p,m(2p) + 2

4p
− p

2

∑
1≤r≤m

2r 6≡p (mod m)

Hr,m(p− 1)2 (mod p2).

When m = 3, we have T ∗p,3(2p) = −2 · 3p−1 (cf. [3, Theorem 1.9] and [7,
Theorem 3.2]). Thus by (1.8), we get

Hp,3(p− 1) ≡ −
T ∗p,3(2p) + 2

4p
− p
(T ∗p,3(2p) + 2

4p

)2

=
3p−1 − 1

2p
− (3p−1 − 1)2

4p
(mod p2),

since

H0,3(p− 1) ≡ −Hp,3(p− 1) ≡
T ∗p,3(2p) + 2

4p
(mod p).

Let us apply Theorem 1.2 to obtain more congruences of Lehmer’s type.
The Fibonacci numbers F0, F1, F2, . . . are given by F0 = 0, F1 = 1 and
Fn = Fn−1 + Fn−2 for every n ≥ 2. It is well-known that Fp ≡

(
5
p

)
(mod p)

and Fp−( 5
p
) ≡ 0 (mod p) for any prime p 6= 2, 5, where

( ·
p

)
is the Legendre

symbol. Williams [8] proved that

2
5

∑
1≤k≤4p/5−1

(−1)k

k
≡
Fp−( 5

p
)

p
(mod p)

for prime p 6= 2, 5. Subsequently Sun and Sun [6, Corollary 3] proved that
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(1.9) H2p,5(p− 1) ≡ −H−p,5(p− 1) ≡ −
Fp−( 5

p
)

2p
(mod p).

We have the following mod p2 congruence involving Fibonacci numbers.

Theorem 1.3. Suppose that p > 5 is a prime. Then

(1.10) Hp,5(p− 1) ≡ 5(p−1)/2Fp − 1
p

−
5p−1F2p−( 5

p
) − 1

4p
(mod p2).

The Pell numbers P0, P1, P2, . . . are given by P0 = 0, P1 = 1 and Pn =
2Pn−1 + Pn−2 for n ≥ 2. It is known that Pp ≡

(
2
p

)
(mod p) and Pp−( 2

p
) ≡

0 (mod p) for every odd prime p. In [4], Sun proved that

(−1)(p−1)/2
∑

1≤k≤(p+1)/4

(−1)k

2k − 1
≡ −1

4

(p−1)/2∑
k=1

2k

k
≡
Pp−( 2

p
)

p
(mod p)

for any odd prime p. Similarly, we have a Lehmer-type congruence involving
Pell numbers.

Theorem 1.4. Suppose that p > 3 is a prime. Then

Hp,8(p− 1) ≡ 22p−4 + 2p−3 + 2(p−3)/2Pp − 1
p

(1.11)

−
24p−6 + 22p−4 + 2p−2P2p−( 2

p
) − 1

4p
(mod p2).

We shall prove Theorems 1.1 and 1.2 in Section 2, and the proofs of
Theorems 1.3 and 1.4 will be given in Section 3.

2. Proof of Theorems 1.1 and 1.2

Lemma 2.1. Suppose that p is a prime. Then

(2.1)
1
p

∑
1≤k≤p−1

k≡r (mod m)

(−a)k

(
p

k

)

≡ −
∑

1≤k≤p−1
k≡r (mod m)

ak

k
+ p

∑
1≤j<k≤p−1
k≡r (mod m)

ak

jk
(mod p2)



Lehmer-type congruences 119

and

(2.2)
1
2p

∑
1≤k≤2p−1, k 6=p

k≡r (mod m)

(−a)k

(
2p
k

)

≡ −
∑

1≤k≤p−1
k≡r (mod m)

ak

k
−

∑
1≤k≤p−1

k≡2p−r (mod m)

a2p−k

k

+ 2p
∑

1≤j<k≤p−1
k≡r (mod m)

ak

jk
+ 2p

∑
1≤j<k≤p−1

k≡2p−r (mod m)

a2p−k

jk
(mod p2).

Proof. We have

1
p

∑
1≤k≤p−1

k≡r (mod m)

(−a)k

(
p

k

)
=

∑
1≤k≤p−1

k≡r (mod m)

(−a)k

k

k−1∏
j=1

(
p

j
− 1
)

≡−
∑

1≤k≤p−1
k≡r (mod m)

ak

k
+

∑
2≤k≤p−1

k≡r (mod m)

ak

k

k−1∑
j=1

p

j
(mod p2).

Similarly,

1
2p

∑
1≤k≤2p−1, k 6=p

k≡r (mod m)

(−a)k

(
2p
k

)

=
∑

1≤k≤p−1
k≡r (mod m)

(−a)k

k

(
2p− 1
k − 1

)
+

∑
1≤k≤p−1

k≡2p−r (mod m)

(−a)2p−k

2p− k

(
2p− 1
k

)
.

We have∑
1≤k≤p−1

k≡r (mod m)

(−a)k

k

(
2p− 1
k − 1

)
≡ −

∑
1≤k≤p−1

k≡r (mod m)

ak

k
+ 2p

∑
1≤j<k≤p−1
k≡r (mod m)

ak

jk
(mod p2).

Also, ∑
1≤k≤p−1

k≡2p−r (mod m)

(−a)2p−k

2p− k

(
2p− 1
k

)

≡
∑

1≤k≤p−1
k≡2p−r (mod m)

a2p−k

2p− k
− 2p

∑
1≤k≤p−1

k≡2p−r (mod m)

a2p−k

2p− k

k∑
j=1

1
j
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≡ −
∑

1≤k≤p−1
k≡2p−r (mod m)

(
a2p−k

k
+ 2p · a

2−k

k2

)
+ 2p

∑
1≤j≤k≤p−1

k≡2p−r (mod m)

a2p−k

jk
(mod p2).

We are done.

Define

Sr,m(n) =
∑

2≤k≤n
k≡r (mod m)

1
k

k−1∑
j=1

1
j
.

Substituting a = 1 in (2.1), we get

Corollary 2.1. Suppose that m ≥ 2 and p is an odd prime with p 6= m.
Then

(2.3) Hr,m(p− 1) ≡ −
T ∗r,m(p)− δr,m(p)

p
+ pSr,m(p− 1) (mod p2),

where δr,m(p) is as defined in (1.6). In particular,

(2.4) Hp,m(p− 1) ≡ −
T ∗p,m(p) + 1

p
+ pSp,m(p− 1) (mod p2).

Substituting r = p, p + m/2 and a = 1 in (2.2) and noting that
(
2p
p

)
≡

2 (mod p3), we have

Corollary 2.2. Suppose that m ≥ 2 and p ≥ 5 is a prime with p 6= m.
Then

(2.5) Hp,m(p− 1) ≡ −
T ∗p,m(2p) + 2

4p
+ 2pSp,m(p− 1) (mod p2).

Furthermore, if m is even, then

(2.6) Hp+m/2,m(p− 1) ≡ −
T ∗p+m/2,m(2p)

4p
+ 2pSp+m/2,m(p− 1) (mod p2).

Combining (2.4) and (2.5), we get

pSp,m(p− 1) ≡ −
T ∗p,m(p) + 1

p
+
T ∗p,m(2p) + 2

4p
(mod p2),

and Theorem 1.1 easily follows.

Lemma 2.2.
m∑

r=1

T ∗r,m(n)T ∗r+s,m(n) = (−1)nT ∗n+s,m(2n).

Proof. Let ζ be a primitive mth root of unity. Clearly,

T ∗r,m(n) =
1
m

n∑
k=0

(−1)k

(
n

k

) m∑
t=1

ζ(k−r)t =
1
m

m∑
t=1

ζ−rt(1− ζt)n.
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Hence,
m∑

r=1

T ∗r,m(n)T ∗r+s,m(n) =
m∑

r=1

1
m2

∑
1≤t1,t2≤m

ζ−r(t1+t2)−st2(1− ζt1)n(1− ζt2)n

=
1
m

∑
1≤t1,t2≤m
t1+t2=m

ζ−st2(1− ζt1)n(1− ζt2)n

=
(−1)n

m

m∑
t=1

ζ−(n+s)t(1− ζt)2n = (−1)nT ∗n+s,m(2n).

Substituting s = 0 and n = p in Lemma 2.2, we have

T ∗p,m(2p) = −
m∑

r=1

T ∗r,m(p)2.

Thus by noting that T ∗0,m(p) = −T ∗r,m(p), we get

(2.7) Sp,m(p− 1) ≡ −
T ∗p,m(p) + 1

p2
+
T ∗p,m(2p) + 2

4p2

=
T ∗0,m(p)− 1

2p2
−
T ∗p,m(p) + 1

2p2
−
∑m

r=1 T ∗r,m(p)2 − 2
4p2

= −
∑

1≤r≤m
r 6≡0,p (mod m)

T ∗r,m(p)2

4p2
−

(T ∗0,m(p)− 1)2

4p2
−

(T ∗p,m(p) + 1)2

4p2

≡ −1
4

m∑
r=1

Hr,m(p− 1)2 (mod p).

Since Hp−r,m(p − 1) ≡ −Hr,m(p − 1) (mod p), Hr,m(p − 1) ≡ 0 (mod p)
provided that 2r ≡ p (mod m). So we also have

(2.8) Sp,m(p− 1) ≡ −1
4

∑
1≤r≤m

2r 6≡p (mod m)

Hr,m(p− 1)2 (mod p).

Thus by (2.5), Theorem 1.2 follows.

3. Fermat’s quotient and Pell’s quotient. Let Ln be the Lucas
numbers given by L0 = 2, L1 = 1 and Ln = Ln−1 + Ln−2 for n ≥ 2. We
require the following result of Sun and Sun on Tr,10(n).

Lemma 3.1 ([6, Theorem 1]). Let n be a positive odd integer. If n ≡
1 (mod 4), then
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10T(n−1)/2,10(n) = 2n + Ln+1 + 5(n+3)/4F(n+1)/2,

10T(n+3)/2,10(n) = 2n − Ln−1 + 5(n+3)/4F(n−1)/2,

10T(n+7)/2,10(n) = 2n − Ln−1 − 5(n+3)/4F(n−1)/2,

10T(n+11)/2,10(n) = 2n + Ln+1 − 5(n+3)/4F(n+1)/2.

If n ≡ 3 (mod 4), then

10T(n−1)/2,10(n) = 2n + Ln+1 + 5(n+1)/4L(n+1)/2,

10T(n+3)/2,10(n) = 2n − Ln−1 + 5(n+1)/4L(n−1)/2,

10T(n+7)/2,10(n) = 2n − Ln−1 − 5(n+1)/4L(n−1)/2,

10T(n+11)/2,10(n) = 2n + Ln+1 − 5(n+1)/4L(n+1)/2.

Furthermore, for every odd n,

10T(n+13)/2,10(n) = 2n − 2Ln.

For each odd n ≥ 1, since

T ∗n,m(2n) = T ∗n,m(2n−1)−T ∗n−1,m(2n−1) = −2T ∗n−1,m(2n−1),

T ∗n+m,2m(2n) = T ∗n+m,2m(2n−1)−T ∗n+m−1,m(2n−1) = −2T ∗n+m−1,m(2n−1),

by Lemma 3.1 we get

(3.1) T ∗n,5(2n) = −2 · 5(n−1)/2Fn.

Let p > 5 be a prime. By (1.8),

Hp,5(p− 1) ≡ −
T ∗p,5(2p) + 2

4p
− p(Hp,5(p− 1)2 +H2p,5(p− 1)2) (mod p2).

By (1.9), we have

Hp,5(p− 1) ≡ 5(p−1)/2Fp − 1
2p

− p
((Fp−( 5

p
)

2p

)2

+
(

5(p−1)/2Fp − 1
2p

)2)
≡ 5(p−1)/2Fp − 1

2p
− p
(

5p−1

(Fp−( 5
p
)

2p

)2

+
(

5(p−1)/2Fp − 1
2p

)2)

=
5(p−1)/2Fp − 1

p
−

5p−1(F 2
p−( 5

p
)

+ F 2
p )− 1

4p

=
5(p−1)/2Fp − 1

p
−

5p−1F2p−( 5
p
) − 1

4p
(mod p2),

where in the last step we use the fact that F2n−1 = F 2
n + F 2

n−1. Thus the
proof of Theorem 1.3 is complete.
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Remark. Similarly, we can get

(3.2)
∑

1≤k≤p−1
k≡p (mod 5)

(−1)k

k

≡
5(24p−1−22p+3)+12L4p+L4p−4( 5

p
)−112L2p−4L2p−2( 5

p
)+378

400p
(mod p2).

Let Qn be the Pell–Lucas numbers given by Q0 = 2, Q1 = 2 and Qn =
2Qn−1 +Qn−2 for each n ≥ 2. For Tr,8(n), Sun proved

Lemma 3.2 ([4, Theorem 2.2]). Let n be a positive odd integer. If n ≡
1 (mod 4), then

8T(n−1)/2,8(n) = 2n + 2(n+1)/2 + 2(n+7)/4P(n+1)/2,

8T(n+3)/2,8(n) = 2n − 2(n+1)/2 + 2(n+7)/4P(n−1)/2,

8T(n+7)/2,8(n) = 2n − 2(n+1)/2 − 2(n+7)/4P(n−1)/2,

8T(n+11)/2,8(n) = 2n + 2(n+1)/2 − 2(n+7)/4P(n+1)/2.

If n ≡ 3 (mod 4), then

8T(n−1)/2,8(n) = 2n + 2(n+1)/2 + 2(n+1)/4Q(n+1)/2,

8T(n+3)/2,8(n) = 2n − 2(n+1)/2 + 2(n+1)/4Q(n−1)/2,

8T(n+7)/2,8(n) = 2n − 2(n+1)/2 − 2(n+1)/4Q(n−1)/2,

8T(n+11)/2,8(n) = 2n + 2(n+1)/2 − 2(n+1)/4Q(n+1)/2.

Thus for every odd n ≥ 1 we have

T ∗n,8(2n) = −22n−3 − 2n−2 − 2(n−1)/2Pn,(3.3)

T ∗n+4,8(2n) = −22n−3 − 2n−2 + 2(n−1)/2Pn.(3.4)

Applying (1.8),

Hp,8(p− 1) ≡ −
T ∗p,8(2p) + 2

4p
− p

∑
0≤j≤3

Hp+2j,8(p)2 (mod p2).

By (2.5) and (2.6), we have

Hp,8(p− 1) ≡ −
T ∗p,8(2p) + 2

4p
(mod p),

Hp+4,8(p− 1) ≡ −
T ∗p+4,8(2p)

4p
(mod p).
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In view of (2.3) and Lemma 3.2,

(3.5) Hp+2,8(p− 1)2 +Hp+6,8(p− 1)2

≡



1∑
i=0

1
p2

(
2p−3 −

(
2
p

)
2(p−5)/2 + (−1)i2(p−5)/4P(p−( 2

p
))/2

)2

(mod p)

if p ≡ 1 (mod 4),
1∑

i=0

1
p2

(
2p−3 −

(
2
p

)
2(p−5)/2 + (−1)i2(p−11)/4Q(p−( 2

p
))/2

)2

(mod p)

if p ≡ 3 (mod 4).

Lemma 3.3. Let p be an odd prime. Then

(3.6)



P(p−1)/2≡ 0 (mod p),
P(p+1)/2≡ (−1)(p−1)/82(p−1)/4 (mod p),

if p ≡ 1 (mod 8),

P(p−1)/2≡ (−1)(p−3)/82(p−3)/4 (mod p),
P(p+1)/2≡ (−1)(p+5)/82(p−3)/4 (mod p),

if p ≡ 3 (mod 8),

P(p−1)/2≡ (−1)(p−5)/82(p−1)/4 (mod p),
P(p+1)/2≡ 0 (mod p),

if p ≡ 5 (mod 8),

P(p−1)/2≡ (−1)(p+1)/82(p−3)/4 (mod p),
P(p+1)/2≡ (−1)(p+1)/82(p−3)/4 (mod p),

if p ≡ 7 (mod 8),

and

(3.7)



Q(p−1)/2≡ (−1)(p−1)/82(p+3)/4 (mod p),
Q(p+1)/2≡ (−1)(p−1)/82(p+3)/4 (mod p),

if p ≡ 1 (mod 8),

Q(p−1)/2≡ (−1)(p+5)/82(p+5)/4 (mod p),
Q(p+1)/2≡ 0 (mod p),

if p ≡ 3 (mod 8),

Q(p−1)/2≡ (−1)(p+3)/82(p+3)/4 (mod p),
Q(p+1)/2≡ (−1)(p−5)/82(p+3)/4 (mod p),

if p ≡ 5 (mod 8),

Q(p−1)/2≡ 0 (mod p),
Q(p+1)/2≡ (−1)(p+1)/82(p+1)/4 (mod p),

if p ≡ 7 (mod 8).

Proof. The congruences in (3.6) were obtained by Sun [4, Theorem 2.3].
Those in (3.7) follow from (3.6), by noting that Qn = 2Pn+1 − 2Pn and
Qn+1 = 2Pn+1 + 2Pn.
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Since P(p−( 2
p
))/2Q(p−( 2

p
))/2 = Pp−( 2

p
), by (3.5) we have

Hp+2,8(p− 1)2 +Hp+6,8(p− 1)2

≡
2p−1

(
2(p−1)/2 −

(
2
p

))2 + P 2
p−( 2

p
)

8p
(mod p).

Note that

2p−1−1
p

=

(
2(p−1)/2+

(
2
p

))(
2(p−1)/2−

(
2
p

))
p

≡ 2
(

2
p

)2(p−1)/2−
(

2
p

)
p

(mod p).

Hence,

Hp,8(p−1)

≡ 22p−4+2p−3+2(p−3)/2Pp−1
p

− (22p−3+2p−2+2(p−1)/2Pp)2−4
16p

− (22p−3+2p−2−2(p−1)/2Pp)2

16p
−

2p−1
(
2(p−1)/2−

(
2
p

))2+2p−1P 2
p−( 2

p
)

8p

≡ 22p−4+2p−3+2(p−3)/2Pp−1
p

−
24p−6+22p−4+2p−2P2p−( 2

p
)−1

4p
(mod p2),

by noting that

P 2
p−( 2

p
)

+ P 2
p = P2p−( 2

p
).

This concludes the proof of Theorem 1.4.

Remark. The Bernoulli polynomials Bn(x) (n = 0, 1, 2, . . .) are given
by

text

et − 1
=
∞∑

n=0

Bn(x)
n!

tn.

In particular, the Bernoulli numbers Bn are Bn(0). Granville and Sun [1]
proved that

Bp−1

(
{p}5

5

)
−Bp−1 ≡

5
4p
Fp−( 5

p
) +

5p − 5
4p

(mod p),

Bp−1

(
{p}8

8

)
−Bp−1 ≡

2
p
Pp−( 2

p
) +

2p+1 − 4
p

(mod p),

for any prime p 6= 2, 5, where {p}m denotes the least non-negative residue
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of p modulo m. In [5, Theorem 3.3], Sun also proved that

mHp,m(p− 1) ≡ B2p−2({p}m/m)−B2p−2

2p− 2

− 2
Bp−1({p}m/m)−Bp−1

p− 1
(mod p2).

Using Theorems 1.3 and 1.4 we deduce that

(3.8)
Bp(p−1)({p}5/5)−Bp(p−1)

5p(p− 1)

≡ −5(p−1)/2Fp − 1
p

+
5p−1F2p−( 5

p
) − 1

4p
(mod p2)

for any prime p > 5, and

(3.9)
Bp(p−1)({p}8/8)−Bp(p−1)

8p(p− 1)

≡ −22p−4 + 2p−3 + 2(p−3)/2Pp − 1
p

+
24p−6 + 22p−4 + 2p−2P2p−( 2

p
) − 1

4p
(mod p2)

for any prime p ≥ 5.
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