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1. Introduction. Throughout this paper, let Q, Z, N and N∗ denote the
field of rational numbers, the ring of rational integers, the set of nonnegative
integers and the set of positive integers. For any a, b ∈ Z \ {0}, let gcd(a, b)
(resp. lcm(a, b)) denote the positive greatest common divisor (resp. the posi-
tive least common multiple) of a and b. Let d ≥ 2 and m be any positive inte-
gers. Define vd(m) = α if dα ‖m. For example, v6(12) = 1, v6(72) = 2. If p is
a prime, then vp is the normalized p-adic valuation of Q, i.e., vp(pαa/b) = α
if gcd(p, ab) = 1, gcd(a, b) = 1, α, a, b ∈ Z.

It is known that an equivalent version of the Prime Number Theorem
states that log lcm(1, 2, . . . , n) ∼ n as n tends to infinity (see e.g. [HW]). One
thus expects that a better understanding of the function lcm(1, 2, . . . , n) may
entail a deeper understanding of the distribution of the prime numbers. Some
progress has been made in this direction. Before we state our main theorems,
let us first give a short account of the recent results on this subject.

In his pioneering paper [F], Farhi introduced the arithmetic functions

Fl(n) :=
n(n+ 1) · · · (n+ l)

lcm(n, n+ 1, . . . , n+ l)
, n ∈ N∗.(1)

He proved that the sequence (Fl)l∈N satisfies the recursive relation

Fl(n) = gcd(l!, (n+ l)Fl−1(n)), n ∈ N∗.(2)

Using this relation, he proved

Theorem 1.1 ([F]). The function Fl (l ∈ N) is l!-periodic.

An interesting problem is to determine the least period of Fl (see [F]).
In [HY], by using (2) and Fl(1) |Fl(n) for any positive integer n, Hong and
Yang gave a partial answer. A complete solution was given by Farhi and
Kane [FK].
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The Least Period Theorem (Farhi, Kane). The least period Tl of Fl
is given by
(3) Tl =

∏
p prime

pδp(l) =
∏

p prime, p≤l
pδp(l),

where

(4) δp(l) =

 0 if vp(l + 1) ≥ max
1≤i≤l

vp(i),

max
1≤i≤l

vp(i) otherwise.

In [JJ], Q. Ji and C. Ji introduce an extension of the above arithmetic
function Fl(n). Precisely, they study the function F(l,f) : N→ N (with l ∈ N
and f ∈ Z[x]) defined by

F(l,f)(n) =
|f(n)f(n+ 1) · · · f(n+ l)|

lcm(f(n), f(n+ 1), . . . , f(n+ l))
, n ∈ N.(5)

Note that for f(x) = x, F(l,f)(n) is Farhi’s original function Fl(n). Ji and Ji
prove that F(l,f) is periodic for any l ∈ N and any f ∈ Z[x] with

gcd(f(x), f(x+ 1)f(x+ 2) · · · f(x+ l)) = 1 in Q[x].

They give, in addition, a multiple (effectively calculable) of the period of
F(l,f) (for a fixed l and a fixed f). In the case when f is affine, they obtain
an explicit formula for the exact period of F(l,f), looking like the Farhi–Kane
formula (3).

In this paper, we shall generalize the sequence of natural numbers {n}n≥0

to the Lucas sequence {Ln}n≥0 which is defined as follows. Let P,Q be non-
zero integers such that gcd(P,Q) = 1. For each n ≥ 0, define Ln = L(P,Q)(n)
as follows:

L0 = 0, L1 = 1, Ln+2 = PLn+1 +QLn, n ≥ 0.(6)

The sequence L = {L(P,Q)(n)}n≥0 is called a Lucas sequence with parameters
(P,Q). It is well-known that Ln 6= 0 for all n ≥ 1 if and only if (P,Q) 6=
(±1,−1).

Fix l ∈ N. If (P,Q) 6= (±1,−1), we call

F(l,P,Q)(n) :=
|LnLn+1 · · ·Ln+l|

lcm(Ln, Ln+1, . . . , Ln+l)
, n ≥ 1,(7)

the Farhi arithmetic function associated to the Lucas sequence L =
{L(P,Q)(n)}n≥0.

Let p be a prime and l ∈ N. Define εp(l) as follows: If vp(l + 1) <
max1≤i≤l vp(i), then εp(l) := max1≤i≤l vp(i).

Now assume that vp(l + 1) ≥ max1≤i≤l vp(i). Put

T ′p =
∏

q prime, q≤l
q 6=p

qεq(l).
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Then εp(l) is defined to be the least non-negative integer e such that, for
any positive integers d ≥ 2 and n ≥ 1,

{vd(n), vd(n+ 1), . . . , vd(n+ l)} \ {max
0≤i≤l

vd(n+ i)}

= {vd(n+peT ′p), vd(n+1+peT ′p), . . . , vd(n+l+peT ′p)}\{max
0≤i≤l

vd(n+i+peT ′p)}.

Remark ([FK, Proposition 3.3]). Fix l ≥ 1. There is at most one prime
p such that vp(l + 1) ≥ max1≤i≤l vp(i). Hence T ′p is well-defined.

In this paper, we prove the following theorems.

Theorem 1.2. Let the notation be as above. Then the Farhi arithmetic
function F(l,P,Q) is lcm(1, 2, . . . , l)-periodic.

Theorem 1.3. The notation being as above, let T(l,P,Q) be the least pe-
riod of the Farhi arithmetic function F(l,P,Q). Then

(1) T(1,P,Q) = 1, T(2,P,Q) =
{

1 if |P | = 1,
2 otherwise.

(2) Assume that l ≥ 3. If P 2 + 4Q 6= 0 and the map L : N → Z,
n 7→ |Ln|, is injective, then

• T(l,P,Q) is a multiple of Tl and a divisor of lcm(1, 2, . . . , l).
• Assume that vp(l+1) < max1≤i≤l vp(i) for every prime p ≤ l. Then
T(l,P,Q) = lcm(1, 2, . . . , l). In addition, if l+1 ≥ 5 is a prime, then
also T(l,P,Q) = lcm(1, 2, . . . , l).
• The least period T(l,P,Q) is

T(l,P,Q) =
∏

p prime, p≤l
pεp(l).(8)

Theorem 1.4. Fix a positive integer l. Let p ≤ l be a prime such that
εp(l) = max1≤i≤l vp(i). Let T be a positive multiple of pεp(l). Then, for any
integer n ≥ 1,

{vp(n), vp(n+ 1), . . . , vp(n+ l)} \ {max
1≤i≤l

vp(n+ i)}

= {vp(n+ T ), vp(n+ 1 + T ), . . . , vp(n+ l + T )} \ {max
1≤i≤l

vp(n+ i+ T )}.

This paper is organized as follows: In §2, we prove the periodicity of
the F(l,P,Q). In §3, we consider the least period of F(l,P,Q). In §4, we apply
Theorems 1.2, 1.3 to special Lucas sequences. For example, the sequences
of Fibonacci numbers and of Pell numbers are Lucas sequences. If f(z) =∑∞

n=1 cnq
n is the q-expansion of some normalized cusp eigenform of even

weight k with respect to Γ0(N), then, for every prime p with p -Ncp, the
sequence {cpn}n≥0 is a Lucas sequence.
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2. Periodicity of F(l,P,Q). In this section, let L = {L(P,Q)(n)}n≥0 be
the Lucas sequence with parameters (P,Q) and (P,Q) 6= (±1,−1).

For a fixed l ∈ N, in order to prove the periodicity of the Farhi arithmetic
function F(l,P,Q) defined by (7), we will use the following key lemma which
is easy to prove.

Lemma 2.1 ([JJ]). Let a1, . . . , an and b1, . . . , bn be any 2n positive inte-
gers. If gcd(ai, aj) = gcd(bi, bj) for any 1 ≤ i < j ≤ n, then

a1 · · · an
lcm(a1, . . . , an)

=
b1 · · · bn

lcm(b1, . . . , bn)
.(9)

It is clear that the Lucas sequence Ln = L(P,Q)(n) defines two sequences
of integer numbers, {Pn}∞n=1 and {Qn}∞n=1, as follows: given m ≥ 1, put

P1 = P, Q1 = Q, Lm+n = PnLm +QnLm−1, n ≥ 1.

It is easy to see that the sequences {Pn}∞n=1 and {Qn}∞n=1 are well-defined
and do not depend on the choice of m. In fact,

Pn = Ln+1 and Qn = QLn(10)

by the well-known formula Lm+n = Ln+1Lm +QLnLm−1.

Lemma 2.2. For n ≥ 1, we have the recursive formulae

Pn+1 = PPn +Qn, Qn+1 = QPn,(11)

and

gcd(Pn, Q) = 1, gcd(Pn, Qn) = 1.(12)

Proof. The formulas (11) are obvious from (10) and the definition of the
Lucas sequence; and (12) is easy to prove by induction on n.

Lemma 2.3. Fix l ≥ 1. Then the function hl(n) = gcd(Ln, Ql) for n ≥ 1
is l-periodic, i.e.,

gcd(Ln, Ql) = gcd(Ln+l, Ql), n ≥ 1.(13)

Proof. For n ≥ 1 and l ≥ 1, by (12), we have

gcd(Ln+l, Ql) = gcd(PlLn +QlLn−1, Ql) = gcd(PlLn, Ql) = gcd(Ln, Ql).

Lemma 2.4. Fix l ≥ 1. Then the function gl(n) = gcd(Ln, Ln+l) for
n ≥ 1 is l-periodic, i.e.,

gl(n+ l) = gl(n), n ≥ 1.

Proof. By Lemma 3.1(i) below, we have gcd(Ln, Ln−1) = 1. Hence, for
all n ≥ 2,

gl(n) = gcd(Ln, Ln+l) = gcd(Ln, PlLn +QlLn−1)
= gcd(Ln, QlLn−1) = gcd(Ln, Ql).

Moreover, gl(1) = gcd(L1, Ql). Hence, Lemma 2.3 applies.
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Proof of Theorem 1.2. If l = 0, then F(l,P,Q)(n) = 1 is a constant func-
tion, hence it is periodic. Fix l ≥ 1. For any pair (i, j) such that 0 ≤ i < j ≤ l,
by Lemma 2.4, the function g(i,j)(n) = gcd(Ln+i, Ln+j) is (j − i)-periodic.
Put T = lcm(1, 2, . . . , l). Then T is also a period of gcd(Ln+i, Ln+j), i.e.,
gcd(Ln+i, Ln+j) = gcd(Ln+i+T , Ln+j+T ) for all n ≥ 1. By Lemma 2.1, we
obtain

|LnLn+1 · · ·Ln+l|
lcm(Ln, Ln+1, . . . , Ln+l)

=
|Ln+TLn+1+T · · ·Ln+l+T |

lcm(Ln+T , Ln+1+T , . . . , Ln+l+T )
,

i.e. F(l,P,Q)(n) = F(l,P,Q)(n+ T ) for all n ≥ 1.

3. The least period of F(l,P,Q). Let the notation be as in §2. First we
recall some well-known properties of the Lucas sequence.

Lemma 3.1. Let the notation be as above. We have the following prop-
erties:

(i) ([R, p. 9, (2.11)]) gcd(Ln, Lm) = |Lgcd(n,m)|.
(ii) ([R, p. 10, (2.14)]) gcd(Ln, Q) = 1 for n ≥ 1.
(iii) ([R, p. 5, (2.1)], Binet’s formula) Let α, β be the roots of the poly-

nomial X2 − PX −Q. Then

Ln =
αn − βn

α− β
.

By Theorem 1.2, we know that the Farhi arithmetic function F(l,P,Q) is
periodic. Let T(l,P,Q) be its least period.

Proposition 3.2. T(1,P,Q) = 1, T(2,P,Q) =
{

1 if |P | = 1,
2 otherwise.

Proof. By Lemma 3.1(i), we have gcd(Ln, Ln+1) = 1. Hence

F(1,P,Q) =
|LnLn+1|

lcm(Ln, Ln+1)
= 1.

Therefore T(1,P,Q) = 1.
If n = 2k, then

gcd(Ln, Ln+2) = |L2| = |P |, gcd(Ln, Ln+1) = gcd(Ln+1, Ln+2) = 1.

If n = 2k + 1, then

gcd(Ln, Ln+2) = gcd(Ln, Ln+1) = gcd(Ln+1, Ln+2) = 1.

Hence

F(2,P,Q) =
|LnLn+1Ln+2|

lcm(Ln, Ln+1, Ln+2)
=
{

1 if n is odd,
|P | if n is even.

Therefore T(2,P,Q) =
{

1 if |P | = 1,
2 otherwise.
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For every positive integer n, denote by Φn(X) the nth cyclotomic poly-
nomial. We have a result analogous to [W, Lemma 2.9].

Lemma 3.3. Let K = Q(
√
d) be a quadratic field. Let p be a prime and

p an ideal over p. Suppose p -n and a is an integer in K.

(i) p |Φn(a) if and only if the multiplicative order of a modulo p is n
(i.e., an ≡ 1 (mod p) and n is minimal).

(ii) Assume p |Φn(a). Then we have the following statements:

(a) If
(
d
p

)
= 1, then p ≡ 1 (mod n).

(b) If
(
d
p

)
= −1, then p2 ≡ 1 (mod n).

Proposition 3.4. Let p be a prime such that the map N → Z,
n 7→ |Lpn |, is injective. Let a ∈ N. Then there exists a prime q such that
q |Lpa+1 and q -Lpa .

Proof. By Lemma 3.1(iii), we have

(α− β)Ln = βn
∏
d|n

Φd(α/β).

Let p be a prime and a ∈ N. Then

Lpa+1 = βp
a(p−1)Φpa+1(α/β)Lpa .(14)

Let q |Lpa+1 be a prime. Denote by q an ideal over q in K = Q(
√
P 2 + 4Q).

Since NK/Q(β) = αβ = −Q and gcd(Ln, Q) = 1 for any integer n, we
deduce that q |βpa(p−1)Φpa+1(α/β) if and only if the multiplicative order of
α/β modulo q is pa+1 by Lemma 3.3(i) (or [W, Lemma 2.9]). By assumption,
|Lpa+1 | 6= |Lpa |, hence there exists a prime q such that q |βpa(p−1)Φpa+1(α/β),
so q |Lpa+1 , but q -Lpa .

Let d be a positive integer. Define the local Farhi arithmetic function
F(l,L,d) as follows:

F(l,L,d)(n) =
|Lgcd(n,d)Lgcd(n+1,d) . . . Lgcd(n+l,d)|

lcm(Lgcd(n,d), Lgcd(n+1,d), . . . , Lgcd(n+l,d))
.(15)

Proposition 3.5. The local Farhi arithmetic function F(l,L,d) is
gcd(d, lcm(1, 2, . . . , l))-periodic.

Proof. On the one hand, it is easy to see that F(l,L,d) is lcm(1, 2, . . . , l)-
periodic. On the other hand, d is clearly a period of F(l,L,d), since

gcd(gcd(n+ i, d), gcd(n+ j, d)) = gcd(gcd(n+ i+ d, d), gcd(n+ j + d, d))

for all 0 ≤ i, j ≤ l. Hence gcd(d, lcm(1, 2, . . . , l)) is a period of F(l,L,d).
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Let d ≥ 2. Put

ed(l) = max
1≤i≤l

vd(i).(16)

Define

g(l,L,d)(n) = F(l,L,ded(l))(n)

=
|Lgcd(n,ded(l))Lgcd(n+1,ded(l)) · · ·Lgcd(n+l,ded(l))|

lcm(Lgcd(n,ded(l)), Lgcd(n+1,ded(l)), . . . , Lgcd(n+l,ded(l)))
.

Proposition 3.6. We have

g(l,L,d)(n) =
|Ldvd(n)Ldvd(n+1) · · ·Ldvd(n+l) |

lcm(Ldvd(n) , Ldvd(n+1) , . . . , Ldvd(n+l))
.(17)

Hence ded(l) is a period of g(l,L,d).

Proof. On the one hand,

|Ldvd(n)Ldvd(n+1) · · ·Ldvd(n+l) |
lcm(Ldvd(n) , Ldvd(n+1) , . . . , Ldvd(n+l))

=
∏l
i=0 |Ldvd(n+i) |

|Lmax0≤i≤l dvd(n+i) |

and

|Lgcd(n,ded(l))Lgcd(n+1,ded(l)) · · ·Lgcd(n+l,ded(l))|
lcm(Lgcd(n,ded(l)), Lgcd(n+1,ded(l)), . . . , Lgcd(n+l,ded(l)))

=

∏l
i=0 |Lgcd(n+i,ded(l))|

|Lmax0≤i≤l gcd(n+i,ded(l))|
.

On the other hand, it is easy to see that

{dvd(n), dvd(n+1), . . . , dvd(n+l)} \ {max
0≤i≤l

dvd(n+i)}

={gcd(n,ded(l)), gcd(n+1,ded(l)), . . . , gcd(n+l,ded(l))}\{max
1≤i≤l

gcd(n+i, ded(l))}.

Hence (17) holds. By Proposition 3.5, ded(l) = gcd(ded(l), lcm(1, 2, . . . , l)) is
a period of g(l,L,d).

Lemma 3.7. Let p be a prime. Assume that the map N→ Z, n 7→ |Lpn |,
is injective.

(i) Let a1, . . . , an, b1, . . . , bn ∈ N and

a1 ≤ · · · ≤ an, b1 ≤ · · · ≤ bn.

Then Lpa1 · · ·Lpan = Lpb1 · · ·Lpbn if and only if ai = bi, 1 ≤ i ≤ n.
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(ii) pe is the least period of g(l,L,p) if and only if e is the least non-
negative integer such that, for any n ≥ 1,

{vp(n), vp(n+ 1), . . . , vp(n+ l)} \ {max
1≤i≤l

vp(i)}

= {vp(n+pe), vp(n+1+pe), . . . , vp(n+l+pe)}\{max
1≤i≤l

vp(n+i+pe)}.

(iii) If pe is a period of g(l,L,p), then it is also a period of

K(l,p)(n) = vp(Fl(n)) = vp

(
n(n+ 1) · · · (n+ l)

lcm(n, n+ 1, . . . , n+ l)

)
.

(iv) pδp(l) is the least period of g(l,L,p), where δp(l) is defined by (4).

Proof. (i) We argue by induction on n. The statement is obvious for
n = 1. Suppose that it holds for n− 1. If an < bn, then there exists a prime
q such that q |Lpbn and q -Lpan by Proposition 3.4. Hence q |Lpb1 · · ·Lpbn
and q -Lpa1 · · ·Lpan . This is a contradiction. Hence an ≥ bn. Similarly, we
get an ≤ bn. Therefore an = bn. Hence

Lpa1 · · ·Lpan−1 = Lpb1 · · ·Lpbn−1 .

By induction, we get ai = bi, 1 ≤ i ≤ n− 1.
(ii) This is clear from (i).
(iii) For 0 ≤ i ≤ l, set αi = vp(n+ i) and βi = vp(n+ i+ pe). Then

|Lpα0Lpα1 · · ·Lpαl |
lcm(Lpα0 , Lpα1 , . . . , Lpαl )

=
|Lpβ0Lpβ1 · · ·Lpβl |

lcm(Lpβ0 , Lpβ1 , . . . , Lpβl )
.(18)

By Lemma 3.1(i), we obtain

lcm(Lpα0 , Lpα1 , . . . , Lpαl ) = |Lpmax(α0,...,αl) |,
lcm(Lpβ0 , Lpβ1 , . . . , Lpβl ) = |Lpmax(β0,...,βl) |.

By (18) and (i), we get

l∑
i=0

αi − max
1≤i≤l

αi =
l∑

i=0

βi − max
1≤i≤l

βi.

Hence vp(Fl(n)) = vp(Fl(n+ pe)), i.e., K(l,p)(n) = K(l,p)(n+ pe). Therefore
pe is also a period of K(l,p)(n).

(iv) If vp(l + 1) < ep(l) = max1≤i≤l vp(i), then from the Least Period
Theorem and Proposition 3.6, it is easy to see that pep(l) is the least period
of g(l,L,p).
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If vp(l + 1) ≥ ep(l), then pδp(l) = 1. It is easy to show that

{vp(n), vp(n+ 1), . . . , vp(n+ l)} \ {max
1≤i≤l

vp(i)}

= {vp(n+ 1), vp(n+ 1 + 1), . . . , vp(n+ l + 1)} \ {max
1≤i≤l

vp(n+ i+ 1)}.

Hence, from (ii), we know that pδp(l) = 1 is the least period of g(l,L,p).

Theorem 3.8. Let the notation be as above. Assume that the map
N→ Z, n 7→ |Ln|, is injective. Fix l ∈ N.

(i) If a positive integer T is a period of F(l,P,Q), then it is also a period
of Fl.

(ii) The least period T(l,P,Q) is a multiple of Tl and a divisor of
lcm(1, 2, . . . , l).

(iii) If for every prime p ≤ l, we have vp(l + 1) < max1≤i≤l vp(i), then
T(l,P,Q) = Tl = lcm(1, 2, . . . , l). In addition, if l + 1 ≥ 5 is a prime,
then T(l,P,Q) = lcm(1, 2, . . . , l).

(iv) The least period T(l,P,Q) is given by

T(l,P,Q) =
∏

p prime, p≤l
pεp(l),(19)

where εp(l) is defined as follows: If vp(l+ 1) < max1≤i≤l vp(i), then
εp(l) := ep(l) = max1≤i≤l vp(i). If vp(l + 1) ≥ max1≤i≤l vp(i), then
put

T ′p =
∏

q prime, q≤l
q 6=p

qeq(l)

and define εp(l) to be the least non-negative integer e such that, for
any positive integers d ≥ 2 and n ≥ 1, T = peT ′p is a period of
g(l,L,d).

Proof. (i) Let T be a period of F(l,P,Q). Let p be any prime. Then T is
also a period of g(l,L,p). By Lemma 3.7(iv), we obtain pδp(l) |T. Hence Tl |T,
i.e., T is a period of Fl(n).

(ii) This is obvious by (i) and Theorem 1.2.
(iii) This is clear from (ii).
(iv) By Theorem 1.2,

T(l,P,Q) =
∏

p prime, p≤l
pεp(l),

where 0 ≤ εp(l) ≤ ep(l). By the Least Period Theorem and (i), we have
εp(l) = ep(l) = max1≤i≤l vp(i) if vp(l + 1) < max1≤i≤l vp(i).

Note that there is at most one prime p such that vp(l+1)≥max1≤i≤l vp(i).
Assume now that there exists one prime p ≤ l such that this inequality holds.
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Put
T ′p =

∏
q prime, q≤l

q 6=p

qeq(l) and T = peT ′p, 0 ≤ e ≤ ep(l).

Then it is clear that T is a period of F(l,P,Q) if and only if T is a period of
g(l,L,d) for every positive integer d > 1.

Lemma 3.9. Let Ln = L(P,Q)(n) be the Lucas sequence with parameters
(P,Q) such that gcd(P,Q) = 1 and ∆ = P 2 + 4Q > 0. Then |Ln| = |Lm| if
and only if either m = n, or P = ±1 and {n,m} = {1, 2}.

Proof. Let α, β be the roots of the polynomial X2 −PX −Q. By Lem-
ma 3.1(iii), Ln = Ln(α, β) = αn−βn

α−β , which implies

L2n(−α,−β) = −L2n(α, β), L2n+1(−α,−β) = L2n+1(α, β), n ∈ N.
Hence we may assume that P > 0. Let α = (P +

√
∆)/2, β = (P −

√
∆)/2.

If Q < 0, then α > β > 0 and it is clear that Ln+1 > Ln > 0 for all
n ∈ N.

If Q > 0, then α > |β| > 0, β < 0 and

L2n =
α2n − β2n

√
∆

, L2n+1 =
α2n+1 + |β|2n+1

√
∆

, n ∈ N.

It is obvious that

L2(n+1) > L2n, L2(n+1)+1 > L2n+1, n ∈ N.(20)

Assume that L2n = L2m+1 for some n,m ∈ N. By Lemma 3.1(i), we get

P = L2 = gcd(L2, L2n) = gcd(L2, L2m+1) = L1 = 1.

Since α > |β| > 0, we have 2m + 1 < 2n. By Lemma 3.1(i) and (20), it is
easy to see that n = 2m + 1. The equality L2(2m+1) = L2m+1 implies that
α2m+1 − |β|2m+1 = 1. Hence m = 0, since the function f(x) = αx − |β|x is
strictly increasing for x ≥ 1 and f(1) = α− |β| = P = 1.

Corollary 3.10. With the same assumptions as in Lemma 3.9, let p
be a prime and let a1, . . . , an, b1, . . . , bn ∈ N be such that

a1 ≤ · · · ≤ an, b1 ≤ · · · ≤ bn.
Then

|Lpa1 · · ·Lpan |
lcm(Lpa1 , . . . , Lpan )

=
|Lpb1 · · ·Lpbn |

lcm(Lpb1 , . . . , Lpbn )
(21)

if and only if one of the following conditions holds:

(i) |P | > 1 and ai = bi, 1 ≤ i ≤ n− 1.
(ii) |P | = 1, p is an odd prime, and ai = bi, 1 ≤ i ≤ n− 1.
(iii) |P | = 1, p = 2, and if there exists an integer 1 ≤ m ≤ n−1 such that

am ≤ 1 and am+1 ≥ 2, then bm ≤ 1 and ai = bi, m+ 1 ≤ i ≤ n− 1.
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Proof. This is straightforward from Lemmas 3.9 and 3.7.

Proof of Theorem 1.4. Let p ≤ l be a prime such that vp(l + 1) <
max1≤i≤l vp(i). By the Least Period Theorem, pεp(l) is the least period of
the function

K(l,p)(n) = vp(Fl(n)) = vp

(
n(n+ 1) · · · (n+ l)

lcm(n, n+ 1, . . . , n+ l)

)
.

Let T be any positive multiple of pεp(l). Then

K(l,p)(n) = K(l,p)(n+ T ), n ≥ 1.

Let P ≥ 2, Q ≥ 1 and gcd(P,Q) = 1. Let Ln = L(P,Q)(n) be the Lucas
sequence with parameters (P,Q). By Lemma 3.9, the map N→ Z, n 7→ |Ln|,
is injective. By Lemma 3.7, pεp(l) is the least period of g(l,L,p). Hence, for
any n ≥ 1, we have g(l,L,p)(n) = g(l,L,p)(n+ T ), i.e.,

|Lpvp(n)Lpvp(n+1) · · ·Lpvp(n+l) |
lcm(Lpvp(n) , Lpvp(n+1) , . . . , Lpvp(n+l))

=
|Lpvp(n+T )Lpvp(n+1+T ) · · ·Lpvp(n+l+T ) |

lcm(Lpvp(n+T ) , Lpvp(n+1+T ) , . . . , Lpvp(n+l+T ))
.

Let a0 ≤ a1 ≤ · · · ≤ al be a permutation of vp(n), vp(n + 1), . . . , vp(n + l)
and let b0 ≤ b1 ≤ · · · ≤ bl be a permutation of vp(n+ T ), vp(n+ 1 + T ), . . . ,
vp(n+ l + T ). By Corollary 3.10(i), we have

ai = bi, 0 ≤ i ≤ l − 1,

that is,

{vp(n), vp(n+ 1), . . . , vp(n+ l)} \ {max
1≤i≤l

vp(n+ i)}

= {vp(n+ T ), vp(n+ 1 + T ), . . . , vp(n+ l + T )} \ {max
1≤i≤l

vp(n+ i+ T )}.

Theorem 3.11. Fix l ∈ N and let the assumptions be as in Lemma 3.9.
Let T be a positive integer. If T is a period of the Farhi arithmetic function
F(l,P,Q), then T is a period of the Farhi arithmetic function Fl.

Proof. Let T be a period of F(l,P,Q). Then for every n ≥ 1, we have
F(l,P,Q)(n) = F(l,P,Q)(n+T ). Let n ≥ 1. For any prime p, set αi = vp(n+ i),
βi = vp(n+ i+ T ), 0 ≤ i ≤ l. Then

(22)
|Lpα0Lpα1 · · ·Lpαl |

lcm(Lpα0 , Lpα1 , . . . , Lpαl )
=

|Lpβ0Lpβ1 · · ·Lpβl |
lcm(Lpβ0 , Lpβ1 , . . . , Lpβl )

.
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(1) Suppose |P | > 1. By Corollary 3.10(i), the condition (22) implies
that

l∑
i=0

αi − max
1≤i≤l

αi =
l∑

i=0

βi − max
1≤i≤l

βi.

Hence vp(Fl(n)) = vp(Fl(n+T )). Since p is an arbitrary prime, we find that
Fl(n) = Fl(n+ T ), i.e., T is a period of Fl(n).

(2) Suppose |P | = 1. Since |Ln(P,Q)| = |Ln(−P,Q)|, it is sufficient to
consider P = 1. Let p be an odd prime. By Corollary 3.10(ii), the condi-
tion (22) implies that vp(Fl(n)) = vp(Fl(n+ T )).

Assume that p = 2. Let Tl =
∏
p prime, p≤l p

δp(l) be the least period of
Fl(n) defined by (3). Let l = 2e + a12e−1 + · · ·+ ae be the 2-adic expansion,
where ai ∈ {0, 1}, 1 ≤ i ≤ e.

(i) If l + 1 = 2e+1, then δ2(l) = 0, i.e., v2(Tl) = 0. Hence v2(Fl(n)) =
v2(Fl(n+ T )) for all n ≥ 1.

(ii) If l+ 1 6= 2e+1, then δ2(l) = e, i.e., v2(Tl) = e. Hence the implication
(22)⇒ [v2(Fl(n)) = v2(Fl(n+T )) for any n ≥ 1] is equivalent to saying that:
if there exists an integer n0 ≥ 1 such that v2(Fl(n0)) 6= v2(Fl(n0 + 2e−1)),
then

|L2α0L2α1 · · ·L2αl |
lcm(L2α0 , L2α1 , . . . , L2αl )

6=
|L2β0L2β1 · · ·L2βl |

lcm(L2β0 , L2β1 , . . . , L2βl )
,(23)

where αi = v2(n0 + i), βi = v2(n0 + i+ 2e−1), 0 ≤ i ≤ l.

Case 1. If l = 2e + 2e−1 + a22e−2 + a32e−3 + · · ·+ ae, let n0 = 1. Then

n0 + l = 2e + 2e−1 + b22e−2 + b32e−3 + · · ·+ be,

n0 + l + 2e−1 = 2e+1 + b22e−2 + b32e−3 + · · ·+ be,

where b2, . . . , be ∈ {0, 1} since l + 1 < 2e+1.

Case 2. If l = 2e + a22e−2 + a32e−3 + · · ·+ ae, let n0 = 2e−1. Then

n0 + l = 2e + 2e−1 + a22e−2 + a32e−3 + · · ·+ ae,

n0 + l + 2e−1 = 2e+1 + a22e−2 + a32e−3 + · · ·+ ae.

In each case, we always have

max
n0≤n0+i≤n0+l

v2(n0 + i) = e,

max
n0+2e−1≤n0+i+2e−1≤n0+l+2e−1

v2(n0 + i+ 2e−1) = e+ 1,

]{n0 ≤ n0 + i ≤ n0 + l | v2(n0 + i) = e} = 1,

]{n0 + 2e−1 ≤ n0 + i+ 2e−1 ≤ n0 + l + 2e−1 | v2(n0 + i) = e+ 1} = 1,

]{n0 + 2e−1 ≤ n0 + i+ 2e−1 ≤ n0 + l + 2e−1 | v2(n0 + i) = e} = 1.
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By Corollary 3.10(iii), (23) holds. Hence (22) implies that v2(Fl(n)) =
v2(Fl(n+ T )) for any n ≥ 1.

Thus, for any prime p, the equality vp(Fl(n)) = vp(Fl(n+ T )) holds for
any n ≥ 1. Therefore Fl(n) = Fl(n+ T ), i.e., T is a period of Fl(n).

Proof of Theorem 1.3. The least periods T(1,P,Q) and T(2,P,Q) have been
determined in Proposition 3.2. Let l ≥ 3. Assume vp(l+1) ≥ max1≤i≤l vp(i).
Then peT ′p is a period of g(l,L,d) if and only if

{vd(n), vd(n+ 1), . . . , vd(n+ l)} \ {max
0≤i≤l

vd(n+ i)}

= {vd(n+peT ′p), vd(n+1+peT ′p), . . . , vd(n+l+peT ′p)}\{max
0≤i≤l

vd(n+i+peT ′p)}

for any d ≥ 2 and n ≥ 1. Hence the case (2) is obvious from Theorem 3.8,
Lemma 3.9, Theorem 3.11 and formula (3).

4. Special Lucas sequences. In this section, we shall apply the results
of §2 and §3 to special Lucas sequences, which are important historically
and for their own sake. These are the sequences of Fibonacci numbers, of
Lucas numbers, of Pell numbers, the sequence Ln = an−bn

a−b and the sequence
{cpn}n≥0 which are the coefficients of the q-expansion of some normalized
cusp eigenform of even weight k with respect to Γ0(N).

4.1. Fibonacci numbers. Let P = Q = 1. The numbers Ln = L(1,1)(n)
are called Fibonacci numbers. Here are the initial terms of this sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

Fix l ∈ N. Since P 2 + 4Q = 5 > 0, by Theorem 1.3, the Farhi arithmetic
function

F(l,1,1)(n) =
|LnLn+1 · · ·Ln+l|

lcm(Ln, Ln+1, . . . , Ln+l)

with respect to the sequence of Fibonacci numbers is lcm(1, 2, . . . , l)-peri-
odic. For example:

• T2 = 2, T(2,1,1) = 1, and lcm(1, 2) = 2;
• T3 = T(3,1,1) = 3 and lcm(1, 2, 3) = 6;
• T7 = 105, T(7,2,1) = 210, and lcm(1, . . . , 7) = 420.

4.2. Pell numbers. Let P = 2, Q = 1, so P 2 + 4Q = 8 > 0. The
numbers Ln = L(2,1)(n) are called Pell numbers. The first few terms of this
sequence are:

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, . . .

By Theorem 1.3, for every l ∈ N, the Farhi arithmetic function F(l,2,1) asso-
ciated to the sequence of Pell numbers is periodic and if l+1 ≥ 5 is a prime,



156 Q. Z. Ji

then lcm(1, 2, . . . , l) is the least period of F(l,2,1). For example:

• T2 = T(2,2,1) = 2, and lcm(1, 2) = 2;
• T3 = T(3,2,1) = 3 and lcm(1, 2, 3) = 6;
• T7 = 105, T(7,2,1) = 210, and lcm(1, . . . , 7) = 420.

4.3. Cusp forms and elliptic curves. For any integer N ≥ 1 and
any even integer k, let Sk(Γ0(N)) denote the set of all cusp forms of weight
k with respect to Γ0(N). Let f ∈ Sk(Γ0(N)) denote the normalized cusp
eigenform. If the q-expansion of f at ∞ is f(z) =

∑∞
n=1 cnq

n, then the
coefficients {cn}∞n=1 have the following properties:

(24) cprcp = cpr+1 + pk−1cpr−1 for p prime, p -N,
(25) cpr = crp for p prime, p |N,
(26) cmn = cmcn if gcd(m,n) = 1,

(27) |c(n)| ≤ σ0(n)n(k−1)/2,

where σ0(n) is the number of positive divisors of n.
Let p be a prime such that gcd(p,Ncp) = 1. Put

L0 = 0, Ln = cpn−1 , n ≥ 1.

It is clear that the sequence Ln is the Lucas sequence L(P,Q)(n) with P = cp
and Q = −pk−1, by (24). Fix an integer l ∈ N. We define a Farhi arithmetic
function F(l,f,p)(n) attached to the normalized cusp eigenform f and the
prime p with gcd(p,Ncp) = 1 as follows:

F(l,f,p)(n) =
|cpncpn+1 · · · cpn+l |

lcm(cpn , cpn+1 , . . . , cpn+l)
, n ≥ 0.(28)

From (27), we get P 2 + 4Q = c2p − 4pk−1 < 0. By Theorem 1.3, for every
l ∈ N, F(l,f,p) is periodic and if l + 1 ≥ 5 is a prime, then lcm(1, 2, . . . , l) is
its least period.

Example 1. Let τ(n) be the Ramanujan τ -function defined by

∆(z) = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn.(29)

It is well-known that ∆(z) is a normalized cusp eigenform of weight 12 with
respect to the modular group Γ0(1) = SL(2,Z). Hence, for every prime p
with p - τ(p), the arithmetic function

F(l,∆,p)(n) =
|τ(pn)τ(pn+1) · · · τ(pn+l)|

lcm(τ(pn), τ(pn+1), . . . , τ(pn+l))

is lcm(1, 2, . . . , l)-periodic.
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Let E be an elliptic curve defined over Q and let L(E, s) =
∑∞

n=1 an/n
s

be the L-function attached to E. Fix l ∈ N. Then, for every prime p where
E has good ordinary reduction, the arithmetic function

F(l,E,p)(n) =
|apnapn+1 · · · apn+l |

lcm(apn , apn+1 , . . . , apn+l)
, n ≥ 0,

is lcm(1, 2, . . . , l)-periodic.

Example 2. Let E be the elliptic curve defined by y2 = x3 + x. Let p
be a prime. Then E has good ordinary reduction at p if and only if p ≡ 1
(mod 4). Fix l ∈ N. Hence, for every prime p ≡ 1 (mod 4), the arithmetic
function

F(l,E,p)(n) =
|apnapn+1 · · · apn+l |

lcm(apn , apn+1 , . . . , apn+l)

is lcm(1, 2, . . . , l)-periodic. Let T(l,E,p) be the least period of F(l,E,p). Then,
by Proposition 3.2, T(2,E,p) = 2 for all prime p ≡ 1 (mod 4).

4.4. Other sequences. Let a, b be integers such that gcd(a, b) = 1
and |a| 6= |b|. For each n ≥ 0, let Ln = (an − bn)/(a− b). Then it is easy to
verify that the sequence Ln is the Lucas sequence L(P,Q)(n) with parameters
P = a + b,Q = −ab. In particular, if b = 1, one obtains the sequence
Ln = an−1

a−1 , now the parameters are P = a + 1, Q = −a. Finally, if also
a = 2, one gets Ln = 2n − 1, and now the parameters are P = 3, Q = −2.

Since P 2 + 4Q = (a− b)2 > 0, by Theorem 1.3, the function F(l,a+b,−ab)
is periodic and the least period T(l,a+b,−ab) depends only on l.
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