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1. Introduction. Recall the celebrated

Theorem (Proth 1878). Let n = A · 2s + 1 where A is odd and A < 2s.
Suppose a ∈ Z and

(
a
n

)
= −1 where

(
a
n

)
is the Jacobi symbol. Then n is

prime if and only if a(n−1)/2 ≡ −1 mod n.

Proth’s theorem gives a primality test for the numbers A ·2s+1, A < 2s,
generalizing Pépin’s test for primality of the Fermat numbers 22s +1. In this
paper we generalize Proth’s theorem to give a test for primality of numbers
of the form n = Ams+wm,s, where m ∈ N, wm,s = ±1 or certain other values
depending on m and s (a full description of n is given in Proposition 2.2);
the generalization is Theorem 2. We describe primality tests derived from
this generalization and analyze their complexity. In the statement and proof
of Theorem 2 properties of the higher power-residue symbols replace prop-
erties of the Jacobi symbol, and in the applications results relating to the
Eisenstein reciprocity law replace the quadratic reciprocity law which is used
in applications of the original Proth theorem to find the number a.

Primality tests for numbers of the form Aps ± 1, p prime, have been
extensively studied for at least two centuries. Lucas gave his famous test
for Mersenne numbers 2s − 1, and also a test for determining primality of
A · 3s− 1, using properties of the sequences now known as Lucas sequences.
Hugh Williams and collaborators, in a series of papers beginning in the 70’s,
extended Lucas’s methods to arbitrary p and gave many concrete algorithms;
an overview of this work can be found in Williams’s book [9]. More recently,
primality tests for numbers Aps ± 1 based on Proth’s theorem and/or reci-
procity rather than Lucas sequences have been given for small primes p.
(See [7], [4], [6], [1], [2] for p = 2, 3, 3, 3, 5 respectively.) The present paper
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generalizes this line of attack, which applies to a larger family of numbers,
and in many respects is simpler than the Lucas sequence approach.

2. Preliminaries. Notation introduced in this section will be used
throughout the paper without further comment.

Let f, r ∈ N. We define

Nf,r = {n ∈ N : nf ≡ 1 mod r},
Af,r = {n ∈ Nf,r : if l |n then l ∈ Nf,r}.

Proposition 2.1. If n ∈ Af,r where r >
√
n and none of the solutions

of xf ≡ 1 mod r, 1 < x < r, divides n, then n is prime.

Proof. If l |n, l 6= 1, then lf ≡ 1 mod r, so, by the hypotheses, l >
r >
√
n. Thus every non-trivial divisor of n is greater than

√
n, hence n is

prime.

Let m,n ∈ N,m ≥ 2, (n,m) = 1, and let f be the order of n mod m.
For t ∈ N we set νm(t) = v if mv divides t but mv+1 does not divide t.

Proposition 2.2. The following are equivalent :

(1) νm(nf − 1) ≥ (logm n)/2.
(2) n ∈ Nf,ms where ms >

√
n.

(3) n = Ams + w where 0 < A ≤ ms, w satisfies the conditions |w| ≤
ms/2 and wf ≡ 1 mod ms, and A = ms can occur only if w < 0.

Proof. (1)⇒(2). Set s = νm(nf − 1). Then (1) says ms > m(logm n)/2

=
√
n.

(2)⇒(3). Dividing n by ms, we have n = Ams + w with |w| ≤ ms/2.
Since n ≡ w mod ms and n ∈ Nf,ms we also have wf ≡ 1 mod ms. Now
ms >

√
n, so m2s > n = Ams + w; if w > 0 this implies A < ms. If w < 0,

then since |w| ≤ ms/2, we obtain m2s ≥ Ams−ms/2, whence ms ≥ A−1/2.
Since A is an integer, A ≤ ms follows.

(3)⇒(1). It is enough to show n < m2s, since this translates immediately
to (1). If w > 0, then n = Ams + w ≤ (A + 1)ms ≤ m2s. If w < 0, then
n = Ams + w < Ams ≤ m2s (since A ≤ ms).

In the rest of this paper, n always denotes an integer satisfying the
equivalent conditions of Proposition 2.2.

Set ζm = e2πi/m. Let K = Q(ζm) and D = Z[ζm], so D is the ring of
integers of the cyclotomic field K. Let G = Gal(K/Q). Recall G is isomor-
phic to Z∗m = (Z/mZ)∗ via i 7→ σi where σi(ζm) = ζim. Following a fairly
common notation, if τ ∈ Z[G], say τ =

∑
j∈J njσj where J is some index

set, then for x ∈ K, xτ denotes
∏
j∈J σj(x)nj .

Lemma 2.3. Let α ∈ K and let l ∈ Z be prime. Then αl ≡ σl(α) mod l,
hence if g ∈ Z[x] then αg(l) ≡ αg(σl) mod l.
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The proof of this well-known result is immediate.

Finally, I denotes a set of coset representatives of Z∗m/(n). Thus, if n is
a rational prime, and η is any prime ideal of D lying over n, then the ideal
nD is

∏
i∈I σi(η).

2.1. Power-residue symbols and Eisenstein reciprocity. Throughout this
section, l denotes a rational prime not dividing m, k is the order of l mod
m, and L is a prime ideal of D, lying over l. Take a ∈ D, a 6∈ L. There is a
unique mth root of 1 in K, call it ζ, such that

a(lk−1)/m ≡ ζ mod L.
In these circumstances, the mth power-residue symbol is defined as(

a

L

)

m

= ζ.

The definition is extended to arbitrary ideals J ⊆ D, coprime with m
and a, by multiplicativity. That is, we have J =

∏
i Lnii for prime ideals Li

and positive integers ni and define(
a

J

)

m

=
∏

i

(
a

Li

)ni

m

.

If (d) is the principal ideal generated by d ∈ D, then we write
(
a
d

)
m

instead
of
(
a

(d)

)
m

.
We shall use the following properties of the power-residue symbol, which

can be found in [5, Props. 14.2.2–14.4.4]):

Proposition 2.4. Let a ∈ D. Then:(
a

L

)

m

= 1 if and only if a is an mth power mod L,(2.1)
(
ab

J

)

m

=
(
a

J

)

m

(
b

J

)

m

,(2.2)
(

a

JJ ′

)

m

=
(
a

J

)

m

(
a

J ′

)

m

,(2.3)
(
a

J

)σ

m

=
(
aσ

Jσ

)

m

∀σ ∈ G,(2.4)

(
a

J

)σi

m

=
(
a

J

)i

m

for σi ∈ G as defined above.(2.5)

We shall not make use of the Eisenstein reciprocity law, but rather the
following theorem, of which the reciprocity law is a corollary.

Theorem 1 ([5, Cor. 2, p. 218]). Suppose α ∈ D is prime to m and
B ⊆ D is an ideal prime to m and such that NmB is prime to α, where
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NmB is the ideal norm of B. Then(
NmB

α

)

m

=
(

α

NmB

)

m

(
ε(α)
B

)

m

,

where ε(α) is ±ζim for some i.

3. The generalized Proth theorem. Let φ denote the Euler φ-
function, and Φk the kth cyclotomic polynomial.

Theorem 2. Suppose n = Ams + w satisfies the conditions of Propo-
sition 2.2. In particular n has order f mod m. Suppose further that if
xφ(m) ≡ 1 mod ms and 1 < x < ms then x does not divide n. Let a ∈ D
be such that

(
a
n

)
m

is a primitive mth root of 1. Then the following are
equivalent :

(1) n is prime.
(2) (aτ )(nf−1)/m ≡

(
a
n

)
m

mod n, where τ =
∑

i∈I iσi−1.
(3) (aτγ)Φf (n)/m ≡

(
a
n

)
m

mod n, τ as above, and γ =
∏
d|f, d<f Φd(σw).

(4) The same as (3), except that the congruence is taken mod η where
η ⊆ D is some ideal lying over n (i.e. such that η ∩ Z = nZ).

(5) n ∈ Aφ(m),ms.

Proof. We shall show (1)⇒(2)⇒(5)⇒(1), and (1)⇒(3)⇒(4)⇒(5).
(1)⇒(2). Since n is prime, nD =

∏
i∈I σi(η) where η is any prime ideal

of D lying over n and I is a set of coset representatives of Z∗m/(n), as defined
in Section 2.

By the properties (2.1)–(2.5) of the power-residue symbol,
(
a

n

)

m

=
(

a∏
i σi(η)

)

m

=
∏

i∈I

(
a

σi(η)

)

m

.

But (
a

σi(η)

)

m

= σi

(
σi−1a

η

)

m

=
(
σi−1a

η

)i

m

so that (
a

n

)

m

=
∏

i∈I

(
σi−1a

η

)i

m

=
(
a
∑
i∈I iσi−1

η

)

m

=
(
aτ

η

)

m

with τ defined as in (2). Then
(
aτ

η

)

m

≡ (aτ )(nf−1)/m mod η.

Since η is an arbitrary prime ideal lying over n, this congruence holds for all
prime ideals η lying over n. Therefore, by the Chinese remainder theorem,
it holds mod n. Thus (1)⇒(2).



Generalization of Proth’s theorem 111

(1)⇒(3). We may assume (2). Now nf − 1 = (
∏
d|f, d<f Φd(n)) · Φf (n).

But m does not divide Φd(n) if d < f : if m divides Φd(n) then m divides
nd − 1, which, since n has order exactly f mod m, implies that f divides d,
a contradiction. Moreover, by Lemma 2.3, aΦd(n) = aΦd(σn) = aΦd(σw) (the
last equality since n ≡ w mod m). With these observations (3) is a rewriting
of (2).

(3)⇒(4) is clear.
(4)⇒(5). Let b = (aτγ)Φf (n)/ms

. Let l > 1 be a prime divisor of n. Then
we claim that there is a prime ideal L ⊆ D lying over l and containing η.
(To see this it is enough to show (l) + η 6= D, which is standard.) Then the
hypothesis implies that bm

s−1 ≡
(
a
n

)
m

mod L. Since
(
a
n

)
m

is a primitive mth
root of 1, this implies that b has order ms mod L. Thus ms | lk − 1, where k
is the order of l mod m. Since k divides φ(m) we obtain lφ(m) ≡ 1 mod ms.
This holds for any prime divisor l of n, so n ∈ Aφ(m),ms .

(2)⇒(5) follows the same line as (4)⇒(5), with b′ = (aτ )(nf−1)/ms
instead

of b.
(5)⇒(1). By hypothesis no solution of xφ(m) ≡ 1 mod ms satisfying 1 <

x < ms is a divisor of n. Thus, by Proposition 2.1, n is prime.

When m = 2 the condition on solutions of xφ(m) ≡ 1 mod ms is empty,
and the case (1)⇔(2) of Theorem 2 is the original Proth theorem.

4. Applications to primality testing. The basic primality test comes
from computing both sides of Theorem 2(2), once a suitable a has been
found. Since the Galois action on a ∈ D is easy to compute, using (3) in-
stead of (2) gives a speedup by a factor ≤ 2 (since f/2 ≤ φ(f) ≤ f) (see
Theorem 4). Theorem 2(4) suggests that if an ideal η is known, exponentia-
tion can be done in a module of rank f instead of φ(m), which is a significant
improvement. Methods of exploiting this idea, and implementation details in
general, will be discussed in a sequel to this paper. Here we restrict ourselves
to discussing methods for finding a, and some basic estimates of complexity.

In the primality tests for A · 2s + 1 based on the original Proth theorem,
the quadratic reciprocity law makes it easy to find the integer a necessary
for the test. The following shows how Eisenstein reciprocity, more precisely
Theorem 1, plays a similar role for the generalized Proth theorem.

Proposition 4.1. Suppose p ∈ Nf,ms is an odd prime of order f mod m,
where s ≥ 2. Suppose also that (f,m) = 1. If a ∈ D is coprime with m and
p then (

a

p

)

m

=
(
p

a

)

m

.
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Proof. Take B as a prime ideal lying over p. Thus NmB = pf . Applying
Theorem 1 with α = a gives

(
p

a

)f

m

=
(
a

p

)f

m

(
ε(a)
B

)

m

.

But (
ε(a)
B

)

m

≡ ε(a)(pf−1)/m mod B.

Recall that ε(a) = ±ζim for some i. The exponent on the right-hand side is
a multiple of m if s ≥ 2. Moreover, the exponent is always even, since p is
an odd prime. Thus

( ε(a)
B

)
m

= 1 and we have
(
p

a

)f

m

=
(
a

p

)f

m

.

But, by hypothesis, (m, f) = 1 so raising to the fth power is an automor-
phism of the group of mth roots of 1, and the proposition follows.

We note that if m is prime, then (m, f) = 1 is always satisfied, since f
is a divisor of φ(m) = m− 1.

Lemma 4.2. Let L be a prime ideal of D lying over the prime l ∈ Z.
Suppose l is coprime with n and m. Then(

n

L

)

m

= 1 iff n(l−1)/gcd(l−1,m) ≡ 1 mod l.

Note that this condition is automatically satisfied if gcd(n, l − 1) = 1.

Proof. We first note
(
n
L
)
m

= 1 iff n is an mth power mod l. Indeed, if n is
anmth power mod l, then it is anmth power mod L (since L divides l), hence(
n
L
)
m

= 1. Conversely,
(
n
L
)
m

= 1 implies n is an mth power mod L. Then,
since (l,m) = 1, l is unramified in D, hence a product of distinct primes, all
of them conjugates of L. It is easy to verify that n is also an mth power mod
each of the conjugates, so, by the Chinese remainder theorem, an mth power
mod l. The fact that n is an mth power mod l iff n(l−1)/gcd(l−1,m) ≡ 1 mod l
is an exercise in elementary group theory, based on the fact that (Z/lZ)∗ is
cyclic of order l − 1.

Proposition 4.3. Let q be a prime, q ≡ 1 mod m, and suppose n(q−1)/m

has order m mod q. Let a ∈ D be such that Nm a = tq, where every prime
divisor l of t satisfies n(l−1)/gcd(l−1,m) ≡ 1 mod l. Then

(
n
a

)
m

is a primitive
mth root of 1.

Proof. The ideal generated by a must be aD = TQ, where T has norm t
and Q is a prime ideal of D lying over q. Since

(
n
Q

)
m
≡ n(q−1)/m mod Q the

hypothesis implies that
(
n
Q

)
m

is a primitive mth root of 1. Also, each prime
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ideal L dividing T lies over a prime dividing t, hence the hypothesis allows
us to apply Lemma 4.2, and thus obtain

(
n
L
)
m

= 1. By multiplicativity
of the symbol this implies

(
n
T

)
m

= 1. The result follows since
(
n
a

)
m

=(
n
T

)
m

(
n
Q

)
m

.

From Proposition 4.1 it follows that to be able to apply the generalized
Proth theorem, it suffices to find a such that

(
n
a

)
m

is a primitive mth root
of 1. To do this, Proposition 4.3 shows us how to proceed. First, find a prime
q ≡ 1 mod m such that u = n(q−1)/m has order m mod q. Next, choose a
from the ideal Q generated by q and ζm−u, compute Nm a and see if it satis-
fies the hypotheses of Proposition 4.3. Our philosophy is that A,m are fixed,
while s (and hence w) vary. Then a prime q ≡ 1 mod m should satisfy the
hypotheses of Proposition 4.3 for many (though not all) s. Experiments in-
dicate that this is not a vain hope, and that once q is found, a is easy to find.

Finally, we record the following generalization of Theorem 2 which ex-
tends the scope of the corresponding primality tests.

Theorem 3. Let n=Ams1
1 m

s2
2 . . .mst

t +w, where gcd(mi,mj) = 1, i 6=j,
A < M =

∏t
i=1m

si
i , 2|w| < M , and w satisfies the system

wfi ≡ 1 mod msi
i

where fi is the order of n mod mi. Assume further that no solution of
xφ(mi) ≡ 1 mod msi

i , 1 < x < M , divides n. Suppose that for i = 1, . . . , t,
ai ∈ Z[ζmi ] is such that

(
ai
n

)
mi

is a primitive mith root of 1. Then the
following are equivalent :

(1) n is prime.
(2) For i = 1, . . . , t, (aτii )(nfi−1)/mi ≡

(
ai
n

)
mi

mod mi, where τi =∑
j∈Ii jσj−1 , and Ii is a set of coset representatives of Z∗mi/(n).

(3) For i = 1, . . . , t, (aτiγii )Φfi (n)/m ≡
(
ai
n

)
mi

mod n with τi as above and
γi =

∏
d|fi, d<fi Φd(σw).

(4) The same as (3), except that the congruences are taken mod η where
η ⊆ D is some ideal lying over n (i.e. such that η ∩ Z = nZ).

(5) n ∈ ⋂t
i=1Aφ(mi),m

si
i

.

The proof is essentially the same as the proof of Theorem 2. For (5)⇒(1),
observe that the hypothesis implies that n ∈ Aφ(m1...mt),M , M >

√
n, and

apply Proposition 2.1.

4.1. Complexity. We first record some accountancy involving exponen-
tiation in K. Throughout, log means log2.

Proposition 4.4. For a ∈ K = Q(ζm), j ∈ Z, the calculation of aj

needs at most
((3

2φ(m)
)2

+ φ(m)/2
)

log j integer multiplications.
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Proof. First observe that, if we write elements of K in the Q-basis ζ im,
i = 0, . . . , φ(m)−1, then multiplying distinct elements needs φ(m)2 multipli-
cations, while squaring an element needs φ(m)+

(
φ(m)

2

)
= (φ(m)+1)φ(m)/2

multiplications. Calculating aj in the usual way by writing j in binary form
needs at most log j squarings and at most log j multiplications of distinct
elements of K. The total number of multiplications is thus bounded above
by
((3

2φ(m)
)2

+ φ(m)/2
)

log j, which is the stated result.

In what follows the cost of an algorithm means the number of mod n
multiplications required by the algorithm. The cost of addition mod n is
neglected, since addition is an order of magnitude faster than multiplication.

Theorem 4. Assume that an a satisfying the conditions of Proposi-
tion 4.1 has been found , and that if 1 < x < ms and xφ(m) ≡ 1 mod ms

then x does not divide n. Then the primality of n can be tested with cost
bounded above by

(3φ(m)2 + φ(m))f logn
2

using (2) of Theorem 2, and with cost bounded above by

(3φ(m)2 + φ(m))φ(f) logn
2

using (3).

Proof. The first follows by observing that j = (nf − 1)/m < nf , and
the second by observing that j = Φf (n)/m < nφ(f), as can be seen fairly
easily.

With our philosophy of keeping A and m fixed, Theorem 4 just tells us
that the cost is C logn, where C is a constant that depends in principle on m
and f . We consider the verification of the condition on solutions of xφ(m) ≡
1 mod n to be part of the pre-computation, since this is a computation that
can be done when finding the n = Ams + ωs to be tested. Once we have q
as described in Proposition 4.3, a is easy to find. The problem of finding q
when m is prime is dealt with in [8].

We should like to make C as small as possible. With more sophisticated
methods of multiplication in K, φ(m)2 in Theorem 4 can be replaced by
2φ(m) (see [3]). In a sequel to the present paper, we will show that if the
factorization of the ideal nD can be obtained, then we can obtain a smaller
C that depends only on f .
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