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An application of a lower bound for linear forms
in two logarithms to the Terai—JeSmanowicz conjecture

by

ZHENFU CAO and XIAOLEI DONG (Shanghai)

1. Introduction. Let Z and N be the sets of integers and positive
integers respectively. The Terai-JeSmanowicz conjecture is stated as follows
(see [CD)):

CONJECTURE. For given coprime integers a,b,c > 1, the Diophantine
equation

(1) a®+b =", x,y,z€N,
has at most one solution in integers x,y,z > 1.

It is known (see Lemma 14) that if a, b, ¢ satisfy a® + b? = ¢3, then there
exist integers m,n such that a = m3 — 3mn?, b = 3m?n — n3, ¢ = m? + n?.
A similar result holds if a® + b?> = ¢®. In this paper we consider the case
n = 1.

(A) Suppose
(2) a=m>—3m, b=3m?>-1, c=m?>+1,

where 2| m € N. It has been proved that the Terai-Jesmanowicz conjecture
holds in the following cases:

(A.1) if b is an odd prime and there is a prime [ such that m? — 3 = 0
(mod!) and e = 0 (mod 3), where e is the order of 2 modulo [ (see [T1]);

(A.2) if b is an odd prime and 4{m (see [L1]);

(A.3) if b is an odd prime (see [DC]) and if ¢ is a prime (see [C1]
and [DC]).
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(B) Suppose
(3) a=m|m*—10m>+5|, b=>5m*—-10m*+1, c=m>+1,

where 2| m € N. It has been proved that the Terai-JeSmanowicz conjecture
holds in the following cases:

(B.1) if b is an odd prime and there is an odd prime [ such that ab =0
(mod!l) and e = 0 (mod5), where e is the order of ¢ modulo [ (see [T2]);

(B.2) if b is an odd prime (see [DC]) and if ¢ is a prime (see [C1] and
[DC]).

(C) Suppose that the positive integers a, b, ¢ satisfy a? + b? = ¢, where
24/r > 3. It has been proved that the Terai-JeSmanowicz conjecture holds
in the following cases:

(C.1)if ¢ =5 (mod8),b =3 (mod4) and c is a prime power (see [C1];
in a recent paper [L2], Le only got a special case of the result of [C1]);

(C.2) if b = 3 (mod8),2|a,($) = —1 and b > 30a, where | > 1is a
divisor of b and (%) denotes the Jacobi symbol (see [T3]; recently, in [CD]

we improved the result of Terai [T3], by proving that if b = 3 (mod4),2| a
and b > 25.1a, then the Terai-JeSmanowicz conjecture holds).

In this paper, using a lower bound for linear forms in two logarithms
and some recent results on Diophantine equations, we prove the following
further results.

THEOREM 1. For a,b,c as in (2) and (3), the Terai-Jesmanowicz con-
jecture holds. That is, if m € N with 2| m, then the equation

(4) (m® —3m)* 4+ (3m? —1)Y = (m* +1)*

has only the solution (x,y,z) = (2,2,3), and if m € N with 2|m, then the
equation

(5) (m|m* — 10m? 4 5))% + (5m* — 10m? + 1) = (m? + 1)*

has only the solution (x,y,z) = (2,2,5).

THEOREM 2. Let m,r € N with 2|m, 2¢r, r > 5. Define the integers
U, V. by (m+\/__1)r = ‘/Yr‘"i'UT\/__l If a= |V;“|7 b= |Ur"7 C:m2+1
with m = 2 (mod4), b = 3 (mod4), and if r < m/+/825log(m? +1) — 1
and m > 200, then equation (1) has only the solution (z,y,z) = (2,2,r).

REMARK. In [CD], we also proved that Theorem 2 holds when “r <

N 10g’(”m2+1)71 and m > 2007 is replaced by “bis a prime”. In addition, it

is easy to check that for every odd r > 5, if m > 80r+/logr, then
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m - 80r+/logr
V/825log(m2+1) — 1~ /825log(802r2logr + 1) — 1

- 6400 log r -
r r
8251og(2 - 80212 log r)
Hence, Theorem 2 also holds when “r < L and m > 2007 is
/825 log(m2+1)—1
replaced by “m > 80r+/logr”.

In the course of the proofs we derive some results on Diophantine equa-
tions which may be of independent interest. Lemma 7 implies that the equa-
tion 2° +7° = 1222 has no integer solutions with 2 and y coprime and z # 0.
Lemma 10 says that for every integer k > 1 the equation 22* + y* = 22 has
no solutions in positive coprime integers z,y, 2.

2. A lower bound for linear forms in two logarithms and its
applications

LEMMA 1. Let A = XlogA — YlogB, where X,Y,A, B € N satisfy
min{A, B} > 4. If A# 0, then
(6) log |A| > — 15.41761(h + 1.677)?log Alog B
—9.9(h 4+ 1.677)(log A + log B)
—22.2118(h + 1.59)%/%(log Alog B)*/?
—log((h 4 1.59)?log Alog B) — 2h — 5.424,

where

Y X
h = 1 17,7.2
max{og<logA+ B)+O 7,7. }

Proof. In a result of Mignotte [M] (see Lemma 1 of Terai [T3]), just as
in [T3, pp. 19-20], put ¢ = 4.9, A = log g,

a1 =(0—1)logA+2log A= (o+1)log A > ),
az = (0 —1)log B+2log B = (0+1)log B > A,
C =45 Ky=177 andf Ky) = 1.2879. Since

. Y
~1 1
( <logB * logA) og(e +1),

we can also take

X
= 1 A7,7.25%.
h max{ Og(logA 10gB> +0.17,7 }

Hence, Lemma 1 of [T3] proves (6). =
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LEMMA 2. Suppose that min(b,c) > 2002 and b > a*/", where n € N
and n < 422. If equation (1) has a solution with x = 2, then

y < 16501og c.
Proof. Let A = zlogc— ylogb. By Lemma 1, we obtain
(7) log |A| > — 15.41761(h + 1.677)*log clog b
—9.9(h + 1.677)(log ¢ + log b)
—22.2118(h + 1.59)%/%(log clog b) /2
—log((h + 1.59)?log clog b) — 2h — 5.424,

h=maxdlog( 2~ + =) 4+0.17,7.2
logec  loghb

On the other hand, if equation (1) has solution with z = 2, then

where

2 2
(8)  zloge=log(b’ +a?) = ylogb+1og<1+ ZZ) <ylogb+ L.
From (8), we see that

9) log |A| < 2loga — ylogb.

Hence, from (7) and (9), we get

Y 2loga

(10) + 15.41761(h + 1.677)?

logc logblogc
1 1
+99(h+1677)( + >

gb loge
22.2118(h 4 1.59)3/2  log((h + 1.59)%1log blog c)
(logblogc)l/2 * logblogc
2h + 5.424
logbloge

If h = 7.2, then log(% + @) < 7.03. Since ¢* > bY, we get

2y y

< + < €e™% =1130.03061018.. ..
loge loge  logb

So, the assertion holds. If h = log(logc + logb) +0.17, since n < 422 we can
suppose that y > n, then by (8), b > a? and min(b, c) > 2002, we obtain

a

(1) h=log( Y+ 2 ) 4007 <log( 2L + i +0.17
— % logc ' logh & loge  blogbloge ’

2y 1 2y
< log + +0.17 < log| —— +0.009 ) +0.17,
loge  logblogc log ¢
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2loga
and we have
logblogc
16501logc. =

LEMMA 3. Let m,r € N with 2|m, 2tr, r > 1. Define the integers U,,
Vi by (m+v=1)" =V, + UN/—1. If a = |V, b=|U,|, c =m?+ 1 with
m > 200, and if equation (1) has the solution (x,y,z) with x =2, 2|y and
y > 4, then

<

ee < 39-824. So, from (10) and (11) we get y <

> m
V/825log(m? +1) — 1

Proof. Tt is clear that if m > 200 then min(b,c) > 200% and b > a?/™,
where n < 422 is some positive integer (for example, n = 4). Hence, by
Lemma 2 we get

(12) y < 1650log(m? 4 1).
On the other hand, taking (1) mod m?, we have

1
r2m2 + (1 —y- 5 r(r — 1)m2> = (1 + zmz) (modm4),

mod m?), and so

[\
—~

ie. sr(r—ly+z=r

(N

(13) r(r—1y+z > 2 +m?,

~ DN

since y > 4 and %r(r — 1)y + z > r2. Now, we prove that z < %ry. Suppose
z > %ry. Since z > r, we have

c”:(a2+b2)zzi<]>( b2”>z<) I (v?)rv/2

§=0
= Z ( > YT = (a® +0)" =,

which is 1mp0551b1e. Thus, z < +ry and from (13) we get
2 5
(14) y>2+ 2

By (12) and (14), we get the assertion. m

3. Some results on Diophantine equations

LEMMA 4. Suppose that p is an odd prime and D > 0 is not divisible by
primes of the form 2kp + 1. If the Diophantine equation

o +y? =Dz*, w1,z €L, ged(z,y) =1,
has a solution with 2|z, then 2p| z
Proof. For the case D = 2 see Cao [C2] and for the case D > 2 see [C3]. m
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LEMMA 5. If p is an odd prime with p > 7, then the Diophantine equa-
tion
2P +yP =32%,  x,y,2€Z, ged(z,y) =1,

has no solution with z # 0.
Proof. This is a recent result of Bennett and Skinner [BS]. m
LEMMA 6. The Diophantine equation
(15) 12524 — 252%9% +y* = 2%, x,y,z €N, ged(z,y) =1,
has no solution.

Proof. 1t is clear that 21z +y and we may suppose that xy has the least
possible value. From (15), we have

(2y% — 252%)? — 1252 = 422,
and so
(16) (|2y? — 2522| — 22)(|2y? — 2522| + 22) = 125z*.

Suppose that 2 |y. We have 2{z. As is easily seen, ged(|2y? — 2522| — 22,
|2y? — 2522 + 22) = 1. Hence, from (16) we get

1207 — 252%| £ 22 = 12527,  |2y? — 2522| F 22 = 23,

and so either

(17) 4y? = 1251 + 25 + 50z723,
or
(18) —4y? = 125x1 + x5 — 50323,

where x = 122, x1,22 € N with ged(z1,22) = 1 and 2{x125. Reducing
mod 16, we see that (18) is impossible since 2 |y. For (17), write

2
<x§ + 25:6%) it g2,

2
and so
2 25 2 2 25 2
(19) i + Ty + Y i + Ty —y _ 53$411
2 2

2 2 2 2

Since gcd(mﬁ;&lcl + v, w2+225’31 —y) =1, from (19) we get
2 25 2 2 25 2

(20) BRI Ly o, gy
where 1 = wz3x4, x3,24 € N with ged(xs,24) = 1 and 2t{z3x4. From

x1 = x3w4 and (20), we have
12523 — 252302 + o} = 13

which is impossible by reduction mod 8 and 24 x3xy.
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Suppose that 2/y. We have 2| z. As is easily seen, ged(|2y? — 2522| — 22,
|2y? — 2522 + 22) = 4. Hence, from (16) we get

1207 — 2527 £ 22 = 412527,  |2y® — 252%| F 22 = 4x3,

and so

(21) y? = 12527 + x5 + 502723,
or

(22) —y? = 12521 + 25 — 50723,

where x = 2x129, 21,22 € N with ged(z1,22) = 1 and 2| z122. Reducing
mod 4, we see that (22) is impossible since 2 | z1x2. For (21), reducing mod 8,
we see that 2|z, 2¢z,. Write

(22 4 2522)% — 4. 5327 = o2,
and so

(23) <x§+22x%—l—y> <x§+22x%—y> _ 5o

2 2 2 2
Since gcd(m2+25ml+y, m2+25zl_y) =1, from (23) we get
(24) x5+ 2527 £y =2-5%3, w3+ 2527 Fy =2z},

where x1 = x324, 3,24 € N with ged(x3,24) = 1 and 2| z324. From 1 =
x3ry and (24), we have
2

12523 — 252202 + o} = 13
which is impossible by the method of descent since x3z4 =21 < x < zy. =
LEMMA 7. The Diophantine equation
(25) 5 4+9° =322, 2,9y,2€Z, ged(z,y) =1,
has no solution with 2|z and z # 0.

Proof. Suppose that equation (25) has a solution with 2|z and z # 0.
We may assume that z € N. Then by Lemma 4, we have 10| z. Hence, (25)
gives
(26) r+y=060z2, at—2Py+ 2%y —ayd + oyt =522,
where z = 102122, 21, 22 € N with ged(z1, 22) = 1 and 24 2z9. Without loss of
generality, we may assume that x > y. Let x + y = 10a,x — y = 2b, where
a =622 and b € N with ged(a,b) = 1. Then from (26), we have

(27) 125a* + 50a%b* + b* = 23, a,be N.

By the same argument as in the proof of (21), we deduce from (27) that
equation (15) has a solution. This is impossible by Lemma 6. m
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LEMMA 8 ([DM]). If n € N with n > 4, then the equation
"yt =22 x,y,2€7Z, xyz #0, ged(z,y) = 1,
has no solution.

LEMMA 9 ([CD, Theorem 3]). Suppose that k € N with k > 1. If 2| A,
then the Diophantine equation

A%k 1 B2 =(C*  A/B,CeZ, gcd(A B) =1,
has no solution with AB # 0.
LEMMA 10. If k € N with k > 1, then the Diophantine equation
(28) A%k BY*=(C? A /B,CeZ, ged(A,B) =1,
has no solution with AB # 0.

Proof. If 2| k, then it is clear that the conclusion holds (see [R] or [C4]).
If k = 3, then it also holds (see [B, Theorem 1.3.1]).

Now, we suppose that 2¢k > 3 and equation (28) has a solution with
AB #0.

If 24 B, then from (28), we have
(29) A" = 2uv, B? =u? -

where u,v € N with ged(u,v) = 1,2tu + v. Then from the second equality
of (29), we see that 2|v. So, from the first equality of (29), we get

(30) 20=AY —u=A},

where A, As € N with ged(Ay, A3) = 1,21 As. From the second equality of
(29), we get

(31) u+tv=DB], u—-v=DB3 B=DB DBy,

where By, By € N with By > By, ged(By, Bz) = 1,24 B Bs. From (30) and
(31), we have

(32) AP =pB? B2, 24k =B?4+ B2
Notice that gcd(B1, B2) = 1,21 By By. From the first equality of (32), we get
(33) By + By =2A% By F By =2"1A%

where Az, Ay € N with ged(As, A4) = 1. Clearly, from (33) we have
By = Ak 4 2k=2Ak 1B, = Ak — 224k,
Substituting these into the second equality of (32), we have
A= A (27

which is impossible by Lemma 8.
If 2| B, then from (28), we have

(34) |AF =u? — 0%, B? =2uw,
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where u,v € N with ged(u,v) = 1,24u + v. Then from the first equality of
(34), we get
u+v:A’f, u—U:AS,
and so
(35) 2u= AN+ Ak 2p = Ak — AL
where Ay, A; € N with ged(A;, A2) = 1. From the second equality of (34),
we get 2u = B? or 2v = B?, where B; € N. Hence,
(36) A + A =B? or Ay — AL = B2
By Lemma 8, (36) is impossible since £ > 3. m

4. Proof of theorems. We also need the following lemmas to prove
our theorems.

LEMMA 11 ([CD, Lemma 2]). Let a,b,c € N satisfy a®> + b* = ¢ with
ged(a,b) =1 and r odd > 3. Suppose that b =3 (mod4), 2| a. If equation
(1) has solutions (z,y,z), then © =2, 2|y, 21z.

LEMMA 12 ([DC, Lemmas 2.1 and 2.2)). If either equation (4) or (5) has
a solution, then 2|z, 2|y.

LEMMA 13 ([DC, Lemma 2.7]). Let m,r € N with 2|m, 24r, r > 1.
Define the integers U,,V, by (m + /-1)" = V., + U./~1. If a = |V,|,
b= U], c=m?+1, and if equation (1) has a solution (z,y,z) with 2|y,
2%z, then x = 2.

LEMMA 14 ([T1]). The positive integer solutions of the equation a? + b?
= 3 with ged(a, b) = 1 are given by

2” c:m2+n2,

a=mlm?—3n?, b=n|3m*—n
where m,n € N are such that gcd(m,n) =1 and m # n (mod2).

Proof of Theorem 1. By Lemma 12, we have 2|z, 2|y. There are two
cases.

CASE (i): 21z. By Lemma 13, we know that x = 2. First consider equa-
tion (4). If y = 2 then there is the only solution (z,y,2) = (2,2,3). For
y > 4, Lemma 3 shows that if m > 200 then 3 > m/,/825log(m? + 1) — 1.
This is impossible if m > 300. If m < 300, then by Claim 1 of [T3] and by
computer calculations, we have 3|z. Using the method of [T3], we verify
that equation (4) has no solution.

REMARK. Using the results of [C1] and [DC], if m?+1 or 3m?—1 is prime,
then the conclusion of the theorem holds. By computing, if both m? +1 and
3m? — 1 are not primes, then the first values of m are 32, 38,42, 46,62, ...
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By a similar method, we can find that equation (5) has only the solution
(x’ y? Z) = (27 27 5)'

CASE (ii): 2|z. Put @ = 221, y = 2y1, 2 = 221, where x1,y1,21 € N.
Then by taking equation (1) mod m*, we see that if z; = 1, then

(37) ir(r—1)-2y; + 22 = r? (modm?), r e {3,5},
and if 1 > 1, then
(38) Ir(r—1) -2y + 22z =0 (modm?), e {3,5}.

Clearly, (37) is impossible since 2 | m. So 1 > 1 and (38) holds. By Lemma 9,
21 is odd. We see that (38) is impossible if r = 5.

Now, we consider the case r = 3. By Lemma 11, it suffices to prove
the theorem if 4 | m. From (38), we know that 2{y; since 21z;. Notice that
equation (4) implies
(39)  (m®—=3m)*™ = ((M*+1)" —(Bm>—1)¥")((m* +1)* + (3m> —1)¥").
Clearly,

(m?+ 1) —(3m? —1)¥) =2
(m? +1)** + (3m? — 1)¥*) = 0 (modm?)
since 2{y121. So, from (39) we get
(m? +1)" — (3m? — 1)V = 2u>"1,
(m? +1)* + (3m? — 1)V = o127,
where u,v € N with
(41) ged(u,v) =1,  wv=m? —3.
By (40), we have (m? + 1)** — (3m? — 1)¥* = 0 (modu) and (m? + 1) +
(3m? — 1)¥* = 0 (modw). Since (41) gives m? = 3 (modu) and m? =
(mod v), we infer, using Jacobi’s symbol, that (%) =1 and (%2) = 1. Thus,
from 4 |m and (41), we get u =7 (mod 8) and v = 3 (mod8). If 2|z, then
from Lemma 10 and equation (4), we have y; = 1. By (40), we have
3m? —1=(3m? - 1)¥ = %mzmv%l —u2n

= (3m™ 0™ 4+ u™) (3m™0™ — u™) > Tm™ o™ + Ut

(40)

It follows that 3m? — 1 > %m2 3241 > 3m? — 1, a contradiction. Hence,
we get 2fx1y121 and &1 > 1, y; > 1.

Also, by the second equality of (40), we have 3|m. From this and (38),
we see that 3|z;. Let z; = 329, 20 € N. Hence, (40) implies that

(42) u2$1 + im2zlv2a:1 — <m2 + 1)3Z2.
By Lemma 14, from (42) we get

(43) Im®® = s|s® = 3t3],  u"t =t — 37,



Terai—Jesmanowicz conjecture 163

where s,t € N with ged(s,t) = 1 and 21s + ¢. Since 3 |m, we know from
(43) that 3|s. Hence, ged(t,t? — 3s%) = 1 since ged(s,t) = 1. Thus, by the
second equality of (43), we have t = u{?, |[t? — 3s?| = u3*, and so

(44) uf™ + (fug)® = 3s%

where uy,us € N with ged(uq,u2) = 1 and 24 ujusg. Since 24x; > 1, we have
p|x1, where p is an odd prime. If p = 3, then equation (4) is impossible by
Lemma 8 and 6|z, 6|z. If p = 5, then (44) is impossible by Lemma 7. If
p > 7, then (44) is also impossible by Lemma 5. u

Proof of Theorem 2. It is clear that 2| a when m = 2 (mod4). Then
from Lemma 11, we get x = 2, y = 2y; and 21z, where y; € N. Assume
that y; > 1. By Lemma 3, we have 7 > m/,/825log(m?2 + 1) — 1. This
contradicts the assumption. Thus y; = 1 and from (1) we obtain z =7. m

Acknowledgements. The authors would like to thank the referee for
his valuable suggestions.

References

[BS] M. Bennett and C. Skinner, Ternary Diophantine equations via Galois representa-
tions and modular forms, Canad. J. Math., to appear. Or see http://www.math.
ubc.ca/bennett/publ.html.

[B] N. Bruin, Chabauty methods and covering techniques applied to generalized Fermat
equations, thesis, 1999.

[C1] Z. F. Cao, A note on the Diophantine equation a® + bY = ¢®, Acta Arith. 91
(1999), 85-93.

[C2]  —, On the Diophantine equation z*" — Dy?> = 1, Proc. Amer. Math. Soc. 98
(1986), 11-16.

[C3]  —, On the Diophantine equation =P — yP = Dz%, Dongbei Shuxue (Northeast.
Math. J.) 2 (1986), 219-227; MR88b:11013.

[C4] —, Introduction to Diophantine Equations, Harbin Institute Technology Press,

1989; MR92e: 11018.

[CD] Z.F. Cao and X. L. Dong, On the Terai-Jesmanowicz conjecture, Publ. Math.
Debrecen 61 (2002), 253-265.

[DM] H. Darmon and L. Merel, Winding quotients and some variants of Fermat’s Last
Theorem, J. Reine Angew. Math. 490 (1997), 81-100.

[DC] X. L. Dong and Z. F. Cao, The Terai-Jesmanowicz conjecture on the equation
a” +bY = ¢, Chinese Ann. Math. Ser. A 21 (2000), 709-714.

[L1] M. Le, A note on the Diophantine equation (m>—3m)® +(3m? —1)¥ = (m?>+1)?,
Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 7, 148-149.

[L2] —, On Terai’s conjecture concerning Pythagorean numbers, Bull. Austral. Math.
Soc. 61 (2000), 329-334.

[M] M. Mignotte, A corollary to a theorem of Laurent—Mignotte—Nesterenko, Acta
Arith. 86 (1998), 101-111.

[R] P. Ribenboim, 13 Lectures on Fermat’s Last Theorem, Springer, 1979.



164 Z. F. Cao and X. L. Dong

[T1]  N. Terai, The Diophantine equation a®+b¥ = ¢®, Proc. Japan Acad. Ser. A Math.
Sci. 70 (1994), no. 1, 22-26.

[T2] —, The Diophantine equation a® 4+ b¥Y = ¢*, I, ibid. 71 (1995), no. 6, 109-110.

[T3] —, Applications of a lower bound for linear forms in two logarithms to exponential
Diophantine equations, Acta Arith. 90 (1999), 17-35.

Department of Computer Science Department of Mathematics
Shanghai Jiao Tong University Shanghai Jiao Tong University
Shanghai 200030 Shanghai 200030
P.R. China P.R. China
E-mail: zfcao@cs.sjtu.edu.cn E-mail: xldong@mail.sjtu.edu.cn

Received on 19.4.2002
and in revised form on 25.11.2002 (4265)



