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of the Erdős–Ginzburg–Ziv Theorem II

by

Arie Bialostocki (Moscow, ID), Paul Dierker (Moscow, ID),
David Grynkiewicz (Pasadena, CA) and

Mark Lotspeich (Caldwell, ID)

1. Introduction. Let S be a sequence of elements from the cyclic group
Zm. We say S is zsf (zero-sum free) if there does not exist an m-term sub-
sequence of S whose sum is zero. Let g(m,k) (resp. g∗(m,k)) denote the
least integer such that every sequence S with at least (resp. with exactly)
k distinct elements and length g(m,k) (resp. g∗(m,k)) must contain an
m-term subsequence whose sum is zero. By an affine transformation in Zm
we mean a map of the form x 7→ ax+ b, with a, b ∈ Zm and gcd(a,m) = 1.
Furthermore, let E(m, s) denote the set of all equivalence classes of zsf
sequences S of length s, up to order and affine transformation, that are
not a proper subsequence of another zsf sequence. Using the above no-
tation, the renowned Erdős–Ginzburg–Ziv Theorem ([1], [11]) states that
g(m, 1) = g(m, 2) = 2m− 1 for m ≥ 2.

The function g(m,k) was introduced in [4], where it was shown that
g(m, 4) = 2m − 3 for m ≥ 4. Furthermore, based on a lower bound con-
struction the authors conjectured the value of g(m,k) for fixed k and suf-
ficiently large m. Concerning the upper bound, they established an upper
bound for m prime modulo the affirmation of the Erdős–Heilbronn conjec-
ture (EHC). Since then, the EHC has been affirmed [9], [2], moreover, the
bound given in [4] was extended for nonprimes in [19]. As will later be seen,
it is worthwhile to mention that the affirmation of the EHC has resulted
in several attempted generalizations and related results [6], [15], [22],[25].
Other relevant developments concerning g(m,k) appear in [3], [5], [7], [13],
[14], [16], [23]. For example, the value g(m, 3) = 2m − 2 was determined
in [3], and the closely related function g∗(m,k), introduced in [5] and fur-
ther investigated in [4], [14], [16], was determined for all m and k satisfying
k > m/2 + 1.

2000 Mathematics Subject Classification: Primary 11B75; Secondary 11B50, 05D10.

[173]



174 A. Bialostocki et al.

This paper started under the authorship of the first, second and fourth
authors, and was cited in [4] as in preparation. Actually, a rough draft was
ready determining g(m, 5) using the methods of [4]. The motivation for
the current paper is twofold. First, the third author was able to determine
exactly g(m,k) for fixed k and large m by improving the known lower bound
construction and adapting the proof used by Gao and Hamidoune [19] to
obtain a better upper bound than the one conjectured in [4]. Consequently,
the following conjecture of [4] has been affirmed.

Conjecture 1.1. For every k ≥ 2, there exists an integer m0 = m0(k)
such that if m > m0, then

(a) g(m,k) = 2m− c, where c = c(k) is independent of m,
(b) g∗(m,k) = g(m,k).

Thus, the g(m,k) problem for fixed k and large m has been put to
rest. Second, as several recent works, e.g. [21], [27], use the known values of
g(m,k) and E(m, s) for k ≤ 4 and s ≥ 2m−3, and as it is likely that g(m, 5)
will be needed for further zero-sum applications, we determine g(m, 5) for
every m ≥ 5.

The paper is organized as follows. In Section 2, definitions and notation
are introduced and known results needed later in the paper are listed. In
Section 3, first the upper bound proof of [19] is adapted to find, for a se-
quence S with |S| ≥ 2m − bm/4c − 2, necessary and sufficient conditions
in terms of a system of inequalities over the integers for S to be zsf. This
result and a lower bound construction imply the value of g(m,k) for fixed k
and large m. Following is the affirmation of Conjecture 1.1. Section 4 con-
tains the evaluation of g(m, 5) for every m ≥ 5. The paper concludes with
an appendix listing the elements of E(m, s) for every m and s satisfying
2m− 2 ≥ s ≥ max{2m− 8, 2m− bm/4c − 2}.

2. Preliminaries. Let G denote an abelian group of order m. As we
work simultaneously with the cyclic group Zm of residue classes modulo
m and the additive group of the integers Z, for α ∈ Zm we denote by α
the least positive integer that is congruent to α modulo m. A sequence S
of elements from G is abbreviated as a string using exponential notation
(e.g. the sequence 1, 1, 1, 2, 2, 2, 2 is abbreviated by 1324). Furthermore, the
length of S is denoted by |S|. Let t be a nonnegative integer. Denote by

∑
S

the set of all sums over nonempty subsequences of S, and by
∑

t S (resp.∑
≥t S) the set of all sums over subsequences of S of length exactly (resp.

at least) t. If A,B ⊆ G, then their sumset , A+ B, is the set of all possible
pairwise sums, i.e. {a+ b | a ∈ A, b ∈ B}.

Following Kemperman [24], a set A ⊆ G is H-periodic if it is the union
of H-cosets for some nontrivial subgroup H ≤ G. Furthermore, an n-set
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partition of S is a sequence of n nonempty subsequences of S, pairwise
disjoint as sequences, such that every term of S belongs to exactly one
subsequence, and the terms in each subsequence are distinct. Thus such
subsequences can be considered sets. Finally let ϕ be the map that takes a
sequence to its underlying set (e.g. ϕ(1, 1, 1, 2, 2, 4) = {1, 2, 4}).

First, we state three well known theorems: the first one is a general-
ized version of what is known as the Caveman Theorem [12], followed by a
generalized form of the Erdős–Ginzburg–Ziv (EGZ) Theorem [1], [11], and
the affirmed EHC [2], [9]. The original EGZ Theorem is Theorem 2.2 with
r = 1; and Theorem 2.2 is obtained by r applications of the EGZ Theorem.
Theorem 2.1 is similarly obtained, where the original Caveman Theorem is
the case |S| = m.

Theorem 2.1. Let S be a sequence of elements from an abelian group
G of order m. If |S| ≥ m, then there exists a subsequence of S of length r
whose terms sum to zero, where r satisfies |S| − (m− 1) ≤ r ≤ |S|.

Theorem 2.2. Let r be a positive integer. If S is a sequence of
(r + 1)m − 1 elements from an abelian group G of order m, then S con-
tains an rm-term subsequence which sums to zero.

Theorem 2.3. Let S be a sequence of k distinct elements from Zm. If
m is prime, then |∑h S| ≥ min{m,hk − h2 + 1}.

The following two theorems of Gao [17], [18], respectively, are central to
the proof of Theorem 3.1.

Theorem 2.4. Let l and m be positive integers satisfying 2 ≤ l ≤
bm/4c + 2, and let S be a sequence of elements from Zm satisfying |S| =
2m − l. If 0 6∈ ∑m S, then up to order and affine transformation, S =
0u1vc1 . . . cw, where m− 2l + 3 ≤ v ≤ u ≤ m− 1 and w ≤ l − 2.

Theorem 2.5. Let m, n and h be positive integers. Suppose G is a finite
abelian group of order m, and g ∈ G. Furthermore, let S = 0ha1 . . . an be a
sequence of elements from G such that the multiplicity of every element in
the subsequence T = a1 . . . an is at most h. If g ∈∑≥m−h T , then g ∈∑m S.

Next, we state the Cauchy–Davenport Theorem [8], [26], and a recently
proved composite analog of it [20].

Theorem 2.6. For positive integers n and m, let A1, . . . , An ⊆ Zp. If m
is prime, then

∣∣∣
n∑

i=1

Ai

∣∣∣ ≥ min
{
m,

n∑

i=1

|Ai| − n+ 1
}
.

Theorem 2.7. Let n be an integer and let S be a sequence of elements
from an abelian group G of order m such that |S| ≥ n and every element of
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S appears at most n times in S. Furthermore, let p be the smallest prime
divisor of m. Then either

(i) there exists an n-set partition, A1, . . . , An, of S such that
∣∣∣
n∑

i=1

Ai

∣∣∣ ≥ min
{
m, (n+ 1)p,

n∑

i=1

|Ai| − n+ 1
}
,

or
(ii) there exists α ∈ G and a nontrivial proper subgroup H of index a,

such that all but at most a−2 terms of S are from the coset α+H, and there
exists an n-set partition, A1, . . . , An, of the subsequence of S consisting of
terms of S from α+H such that

∑n
i=1Ai = nα+H.

When applying the above theorem, the following two basic propositions
about n-set partitions and sumsets are often used, and for the sake of clarity,
we provide their proofs.

Proposition 2.1. A sequence S has an n-set partition A if and only if
the multiplicity of each element in S is at most n and |S| ≥ n. Furthermore,
a sequence S with an n-set partition has an n-set partition A′ = A1 . . . An
such that

∣∣|Ai| − |Aj |
∣∣ ≤ 1 for all i and j satisfying 1 ≤ i ≤ j ≤ n.

Proof. Suppose S has an n-set partition. Then from the definition the
multiplicity of each element in S is at most n, and since empty sets are
not allowed in the n-set partition, it follows that |S| ≥ n. Next suppose
that the multiplicity of each element in S is at most n and |S| ≥ n. Let
ϕ(S) = {s1, . . . , su}, and rearrange the terms of S so that all the terms that
are equal to s1 come first, followed by all the terms that are equal to s2,
and so forth, terminating with the terms equal to su. Let us denote this new
sequence by S′ = x1x2 . . . xkn+r, where |S| = |S′| = kn+ r and 0 ≤ r < n.
Consider the following sequence A of n subsequences of S ′ written vertically:

A =




x1

xn+1
...

x(k−1)n+1

xkn+1



. . .




xr

xn+r
...

x(k−1)n+r

xkn+r







xr+1

xn+r+1
...

x(k−1)n+r+1

.



. . .




xn

x2n
...

xkn

.



.

We will show that A is an n-set partition of S ′ and hence of S. Indeed,
since |S| ≥ n, it follows that none of the sets in A are empty. Furthermore,
in view of the definition of S ′ and the fact that the maximum multiplicity
of a term in S′ does not exceed n, it follows that xj1n+i 6= xj2n+i, for every i
and every j1 6= j2. Thus A is an n-set partition of S. The furthermore part
is clear from the definition of A.
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Proposition 2.2. Let S be a sequence of elements from a finite abelian
group G, and let A=A1 . . . An be an n-set partition of S, where |∑n

i=1Ai|= r,
and s is the cardinality of the largest set in A. Furthermore, let a1 . . . an be
a subsequence of S such that ai ∈ Ai for i = 1, . . . , n.

(i) There exists a subsequence S′ of S and an n′-set partition A′ =
A′1 . . . A

′
n′ of S′, which is a subsequence of the n-set partition A = A1 . . . An,

such that n′ ≤ r − s+ 1 and |∑n′
i=1A

′
i| = r.

(ii) There exists a subsequence S′ of S of length at most n+r−1, and an
n-set partition A′ = A′1 . . . A

′
n′ of S′, where A′i ⊆ Ai for i = 1, . . . , n, such

that
∑n

i=1A
′
i =

∑n
i=1Ai. Furthermore, ai ∈ A′i for i = 1, . . . , n.

Proof. We first prove (i). Assume without loss of generality that |A1| = s.
We will construct the n′-set partition A′ in n steps as follows; and S ′ will
be implied implicitly. Denote by A(k) = A′1 . . . A

′
ak

the sequence constructed
after k steps, and hence A′ = A(n) and n′ = an. Let A(1) = A1, and for
k = 1, . . . , n− 1, let

A(k+1) =

{
A(k) if |∑ak

i=1A
′
i + Ak+1| = |

∑ak
i=1A

′
i|,

A(k)Ak+1 if |∑ak
i=1A

′
i + Ak+1| > |

∑ak
i=1A

′
i|.

It is easily seen by the above algorithm that |∑an
i=1A

′
i| = |

∑n
i=1Ai| = r.

Furthermore, since each kept term increases the cardinality of the sumset of
the previous terms of A′ by at least one, and since |A1| = s, it follows that
at most r− s terms, excluding A1, were kept, and thus an = n′ ≤ 1 + r− s.

The proof of (ii) is similar to that of (i). First, for i = 1, . . . , n, let the
elements of Ai be {a(i)

1 , . . . , a
(i)
|Ai|}, where a(i)

1 = ai. We will construct the n-
set partition A′ in a two loop algorithm. The outer loop has n steps, where at
the ith step the set A′i is constructed using the inner loop. In turn, the inner
loop, at the ith step of the outer loop, constructs A′i in |Ai| steps. For a given
i, where 1 ≤ i ≤ n, let A(k)

i denote the set constructed after k steps of the

inner loop at the ith step of the outer loop, and hence A′ = A
(|A1|)
1 . . . A

(|An|)
n

with S′ implied implicitly. For a given j, where 1 ≤ j ≤ n, let A(1)
j = {aj},

and for k = 1, . . . , |Aj | − 1, let

A
(k+1)
j =





A
(k)
j if |∑j−1

i=1A
(|Ai|)
i +A

(k)
j |= |

∑j−1
i=1A

(|Ai|)
i +(A(k)

j ∪ {a
(j)
k+1})|,

A
(k)
j ∪ {a

(j)
k+1}

if |∑j−1
i=1A

(|Ai|)
i +A

(k)
j |< |

∑j−1
i=1A

(|Ai|)
i +(A(k)

j ∪ {a
(j)
k+1})|.

It is easily seen by the above algorithm that A(|Ai|)
i ⊆ Ai and ai ∈

A
(|Ai|)
i for i = 1, . . . , n, and that |∑n

i=1A
(|Ai|)
i | = |∑n

i=1Ai| = r; and since∑n
i=1A

(|Ai|)
i ⊆ ∑n

i=1Ai, it follows that
∑n

i=1A
(|Ai|)
i =

∑n
i=1Ai. Further-
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more, since each kept element a(j)
k , where k 6= 1 if j 6= 1, increases the

cardinality of the sumset by at least one, it follows that at most r−1 terms,
excluding the ai’s, were kept, and hence |S ′| ≤ n+ r − 1.

We will also need the following theorem of [16].

Theorem 2.8. Let m and k be integers with m ≥ k ≥ 2 and m ≥ 5.

(a) If m/2 + 1 < k ≤ m− 1, then g(m,k) = m+ 2.

(b) If k = m, then g(m,k) =
{
m, m odd ,

m+ 1, m even.
We conclude the preliminaries with a theorem of Eggleton and Erdős [10].

Theorem 2.9. Let S be a sequence of k distinct elements from a finite
abelian group. If 0 6∈∑S and k ≥ 4, then |∑S| ≥ 2k.

3. A theorem of Gao and Hamidoune revisited. Theorem 3.1 gives
necessary and sufficient conditions for a sequence S of sufficient length to
be zsf. More precisely, it reduces the problem of determining extremal zsf
sequences of sufficient length to the problem of finding integer partitions
with a fixed number of parts and all parts greater than 1. Its proof is an
adaption of a proof of Gao and Hamidoune [19].

Theorem 3.1. For integers m and l, let S be a sequence of elements
from Zm, satisfying |S| = 2m − l ≥ 2m − bm/4c − 2. The sequence S does
not contain an m-term zero-sum subsequence if and only if there exists a
sequence S′ = 0u1va1 . . . aw1b1 . . . bw2 , where 1 < ai ≤ m/2 and 1 ≤ −bi <
m/2, that is equivalent to S up to order and affine transformation, and for
which the following four inequalities are satisfied :

w1∑

i=1

ai ≤ m− v − 1 and
w2∑

i=1

−bi ≤ m− u− 1− w2,(1)

m− 2l + 3 ≤ v ≤ u ≤ m− 1 and w1 + w2 ≤ l − 2.(2)

Moreover , equality holds in both inequalities of (1) if and only if S belongs
to an equivalence class of E(m, 2m− l).

Proof. First, suppose S is a sequence of elements from Zm, satisfying
|S| = 2m − l ≥ 2m − bm/4c − 2, and 0 6∈ ∑m S. Hence from Theorem 2.4
it follows that S is equivalent, up to order and affine transformation, to a
sequence S′ = 0u1va1 . . . aw1b1 . . . bw2 satisfying the inequalities in (2), where
1 < ai ≤ m/2 and 1 ≤ −bi < m/2. Since the fact that S is zsf implies that
S′ is zsf, it follows from Theorem 2.5 that for any given subsequence T of
a1 . . . aw1b1 . . . bw2 ,

either
∑

ti∈T
ti ≤ m− v − 1 or

∑

ti∈T
ti ≥ u+ 1 + |T |(3)
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and

either −
∑

ti∈T
ti ≤ m− u− 1− |T | or −

∑

ti∈T
ti ≥ v + 1.(4)

Induction on r, in view of (3) and the following three inequalities (i) l ≤
bm/4c + 2, (ii) m − v − 1 ≤ bm/2c (follows from (2) and l ≤ bm/4c + 2),
(iii) 3m− 4l + 5 ≤ u+ 2v (follows from (2)), implies

r∑

i=1

ai =
r∑

i=1

ai ≤ m− v − 1(5)

for every r satisfying 1 ≤ r ≤ w1.
Similarly, induction on r, in view of (4) and the inequalities (i)–(iii), and

the fact that u ≥ v, implies
r∑

i=1

−bi = −
r∑

i=1

bi ≤ m− u− 1− r(6)

for every r satisfying 1 ≤ r ≤ w2. Hence (5) and (6) imply (1).
Next suppose S is an arbitrary sequence of residues from Zm that satisfies

(1) and (2). Actually, we will use only the fact that (1) is satisfied and
v ≤ u ≤ m − 1. It follows from (1) that any m-term zero-sum modulo m
subsequence of S must be zero-sum in Z as well. In addition, it follows from
(1) that the longest zero-sum in Z subsequence of S that does not contain
a zero is of length w2 +

∑w2
i=1−bi ≤ m− u− 1. Hence any m-term zero-sum

subsequence must use at least u+ 1 zeros, which exceeds the multiplicity of
zero in S. Thus S is zsf, and as affine transformations and reordering preserve
m-term zero-sum subsequences, the proof of the main part of the theorem
is complete. Notice that the two inequalities in (1) are interchanged by the
affine transformation which interchanges 0 and 1. Hence, the moreover part
of the theorem is easily deduced from the main part of the theorem.

Theorem 3.2. Let m ≥ k ≥ 2 be positive integers. If k is odd and m ≥
(k2 + 4k + 3)/8 + 1 or k is even and m ≥ (k2 + 2k)/8 + 1, then g∗(m,k) ≥
2m− b(k2 − 2k + 5)/4c.

Proof. If k is even, consider the sequence

S0 =
(
−k − 2

2

)
. . . (−1)(0)m−(k2+2k)/8(1)m−(k2+2k)/8(2) . . .

(
k

2

)
,

and if k is odd, consider the sequence

S1 =
(
−k − 3

2

)
. . . (−1)(0)m−(k2−1)/8(1)m−(k2+4k+3)/8(2) . . .

(
k + 1

2

)
.

It follows from the hypotheses that both strings are well defined. Since both
S1 and S2 satisfy (1), and since v ≤ u ≤ m − 1, where u and v are the
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multiplicities of 0 and 1 respectively, it follows from the proof of the second
direction of Theorem 3.1 that S1 and S2 are zsf.

We conclude the section with Theorem 3.3, which determines the value of
g(m,k) for fixed k and sufficiently large m, disproving Conjecture 5.1 of [4],
and proving Conjectures 1.1(a) and 1.1(b) in parts (a) and (b) respectively.
Again, its proof is an adaptation of the proof in [19].

Theorem 3.3. Let m ≥ k ≥ 2 be positive integers. If k is even and
m ≥ k2 − 2k − 4 or k is odd and m ≥ k2 − 2k − 3, then

(a) g(m,k) = 2m− b(k2 − 2k + 5)/4c,
(b) g∗(m,k) = g(m,k).

Proof. From Theorem 3.2, and from the trivial fact that g∗(m,k) ≤
g(m,k), it suffices for both parts (a) and (b) to show g(m,k) ≤ 2m −
b(k2 − 2k + 5)/4c. Assume to the contrary that there is a sequence S of
elements from Zm with |S| = 2m − b(k2 − 2k + 5)/4c and 0 6∈ ∑

m S.
From the hypotheses and the fact that k2 ≡ 0 or 1 mod 4, it follows that
b(k2 − 2k + 5)/4c ≤ bm/4c + 2. Hence from Theorem 3.1 it follows that
without loss of generality S satisfies (1) and (2). Let c1 = |{a1, . . . , aw1}|
and c2 = |{b1, . . . , bw2}|. It follows from the first inequality in (1) that
2 + 3 + . . .+ (c1 + 1) + 2(w1 − c1) ≤ m− v − 1, implying that

c2
1 − c1

2
+ 2w1 ≤ m− v − 1.(7)

Likewise from the second inequality in (1), it follows that

c2
2 − c2

2
+ 2w2 ≤ m− u− 1− w2.(8)

Inequalities (7) and (8) imply

c2
1 − c1

2
+
c2

2 − c2

2
≤ m− v − 1− w1 +m− u− 1− w2 = l − 2,

which, in turn, yields

l ≥ (c1 + c2)2

4
+
c1 + c2

2
+ 2 ≥ (k − 2)2

4
+
k − 2

2
+ 2 =

k2 − 2k + 4
4

+ 1 > l,

which is a contradiction; and the proof is complete.

4. The Erdős–Heilbronn conjecture and g(m, 5). In view of Theo-
rem 3.3, g(m, 5) has been determined for m ≥ 12. In this section, we present
an abbreviated proof determining g(m, 5) for all m ≥ 5. We will make use
of the following conjecture, which can be verified for k ≤ 5 with some ef-
fort by considering the equations generated by the 2-sums of a 5-set S with
|∑2 S| < 7.



Erdős–Ginzburg–Ziv Theorem II 181

Conjecture 4.1. Let S be a sequence of k ≥ 2 distinct elements from
Zm. If |∑2 S| < 2k − 3, then either

∑
h S is H-periodic, where |H| > 2, or

S is K-periodic, where |K| = 2.

Theorem 4.1. Let m ≥ 5. Then g(6, 5) = 8, and if m 6= 6, then
g(m, 5) = 2m− 5.

Proof. For m ≤ 6 the result follows from Theorem 2.8. Suppose S is zsf
and |S| = 2m− 5. We may assume that 0 has the greatest multiplicity in S.

Case 1: The multiplicity of 0 in S is at most m− 2. Applying Conjec-
ture 4.1 with k = 5 to all possible 5-sets of ϕ(S) that include 0, we can
either find a 5-set A ⊆ ϕ(S) such that |∑2A| = |∑3A| ≥ 7 and 0 ∈ A,
or else there exists a subgroup H of cardinality h = 5 or h = 6 such that
ϕ(S) ⊆ H. In the latter case, m ≥ 10, and so from Theorem 2.2 it follows
that any subsequence with length m + h − 1 ≤ 2m − 5 must contain an
m-term zero-sum subsequence, a contradiction. So

∑
3A ≥ 7. In view of the

assumption of the case and Proposition 2.1, there exists an (m− 3)-set par-
tition P of S \A with m− 7 sets of cardinality two. Applying Theorem 2.7
to S \ A, and using

∑
3A ≥ 7, we obtain an m-term zero-sum subsequence

of S, provided conclusion (i) of Theorem 2.7 holds. Hence we are done for
m ≤ 8.

So assume that conclusion (ii) of Theorem 2.7 holds with coset α+H of
index a, and without loss of generality assume α = 0. Let P be the (m−3)-set
partition implied by conclusion (ii) of Theorem 2.7. Applying Proposition
2.2(i) followed by Proposition 2.2(ii) to P we obtain an (m/a− 1)-set par-
tition P ′ of a subsequence Q of S \ A of length at most 2m/a − 2, whose
sumset is also H. Then there exists a subsequence R of S \ A of length
a − 1 whose terms are from H and are not used in P ′. We can apply The-
orem 2.1 to a subsequence of S \ {Q ∪ R} of length m − m/a + 1 with
its terms considered as elements from Zm/H to obtain a subsequence T of
S \ {Q∪R} whose sum is an element of H and of length r, where r satisfies
m−m/a− a+ 2 ≤ r ≤ m−m/a+ 1. Since the sumset of P ′ is H, we can
find m/a− 1 terms from P ′ which along with T and an appropriate number
of terms from R give an m-term subsequence with sum zero.

Case 2: The multiplicity of 0 in S is m− 1. Let T ′ be a subsequence of
S that consists of 4 distinct nonzero residue classes and 3 zeros. In view of
Proposition 2.1, it follows that there exists an (m−4)-set partition P ′ of S\T ′
with m−8 cardinality two sets. Applying Theorem 2.7 to P and Theorem 2.9
to ϕ(T ′)\{0}, we find an m-term zero-sum subsequence provided conclusion
(i) of Theorem 2.7 holds. If conclusion (ii) of Theorem 2.7 holds instead, then
since m−4 > a−2 implies 0 ∈ α+H, the arguments from the end of Case 1
complete the proof.



182 A. Bialostocki et al.

Appendix. In the following table, Theorem 3.1 is used to list the
values of E(m, s) for all m and s satisfying 2m − 2 ≥ s ≥ max{2m − 8,
2m− bm/4c − 2}.

m s E(m, s)

m ≥ 2 2m− 2 0m−11m−1

m ≥ 4 2m− 3 0m−11m−32

m ≥ 8 2m− 4 0m−11m−522 (−1)0m−31m−32 0m−11m−43

m ≥ 12 2m− 5 0m−11m−723 (−1)0m−31m−522 0m−11m−623

(−1)0m−31m−43 0m−11m−54

m ≥ 16 2m− 6 0m−11m−924 (−1)0m−31m−723 (−1)20m−51m−522

0m−11m−8223 (−1)0m−31m−623 (−2)0m−41m−522

0m−11m−724 0m−11m−732 (−1)0m−31m−54

(−2)0m−41m−43 0m−11m−65

m ≥ 20 2m− 7 0m−11m−1125 (−1)0m−31m−924 (−1)20m−51m−723

0m−11m−10233 (−1)0m−31m−8223 (−2)0m−41m−723

(−1)20m−51m−623 0m−11m−9232 0m−11m−9224

(−1)0m−31m−724 (−1)0m−31m−732 (−2)0m−41m−623

(−1)20m−51m−54 0m−11m−825 0m−11m−834

(−1)0m−31m−65 (−2)0m−41m−54 0m−11m−76

m ≥ 24 2m− 8 0m−11m−1326 (−1)0m−31m−1125 (−1)20m−51m−924

(−1)30m−71m−723 0m−11m−12243 (−1)0m−31m−10233

(−2)0m−41m−924 (−1)20m−51m−8223 (−2)(−1)0m−61m−723

0m−11m−11234 0m−11m−112232 (−1)0m−31m−9224

(−1)0m−31m−9232 (−2)0m−41m−8223 (−1)20m−51m−724

(−1)20m−51m−732 (−3)0m−51m−723 (−2)(−1)0m−61m−623

0m−11m−10225 0m−11m−10234 0m−11m−1033

(−1)0m−31m−825 (−1)0m−31m−834 (−2)0m−41m−724

(−2)0m−41m−732 (−1)20m−51m−65 (−3)0m−51m−623

0m−11m−926 0m−11m−935 0m−11m−942

(−1)0m−31m−76 (−2)0m−41m−65 (−3)0m−516m−54

0m−11m−87
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lem, Acta Arith. 89 (1999), 331–336.

[17] W. D. Gao, An addition theorem for finite cyclic groups, Discrete Math. 163 (1997),
257–265.

[18] —, Addition theorems for finite abelian groups, J. Number Theory 53 (1995), 241–
246.

[19] W. D. Gao and Y. O. Hamidoune, Zero sums in abelian groups, Combin. Probab.
Comput. 7 (1998), 261–263.

[20] D. Grynkiewicz, On a partition analog of the Cauchy–Davenport Theorem, preprint.
[21] D. Grynkiewicz and R. Sabar, Monochromatic and zero-sum sets of nondecreasing

modified-diameter , preprint.
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