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1. Introduction. Let F (x, y) ∈ Q[x, y] be a polynomial in two vari-
ables whose locus defines a plane model of an elliptic curve E over Q. We
say that a rational number x belongs to E(Q) if x is the x-coordinate of
a point P ∈ E(Q). We also say that P1, . . . , Pn ∈ E(Q) are in arithmetic
progression if the corresponding x-coordinates x1, . . . , xn form an arithmetic
progression. Several authors [1, 2, 6, 8, 11, 13, 14, 17–25] have studied arith-
metic progressions on E(Q) for different shapes of the polynomial F (x, y),
and some of these authors have worked with y-coordinates instead of x-
coordinates. It is interesting to point out that the shape of the polynomial
F (x, y) makes a big difference in this context. For example, if F (x, y) is
symmetric in both variables then there is no difference between studying
the points with respect to x-coordinates or to y-coordinates. This is the
case of the so called Edwards curves, when F (x, y) = x2 +y2−1−dx2y2 for
some d ∈ Q, d 6= 0, 1. These elliptic curves will be denoted by Ed. They have
been deeply studied in cryptography and it has been found that the result-
ing addition formulas are very efficient, simple and symmetric (for instance,
without distinction of addition and doubling).

In this paper we focus on Edwards curves. The starting point is Moody’s
paper [20] where the case 0,±1,±2, . . . is studied, and in particular it is
proved that there are infinitely many choices of d such that 0,±1, . . . ,±4 form
an arithmetic progression on Ed(Q). At the end of his paper, Moody asked if
this arithmetic progression could be longer and he tried, with no success, by
computer search, to find a rational d such that ±5 also belongs to the arith-
metic progression. We prove that a rational d such that 0,±1,±2,±3,±4,±5
form an arithmetic progression in Ed(Q) does not exist. Moreover, Moody
stated that it was an open problem whether there is an Edwards curve with
an arithmetic progression of length 10 or longer. Although we have found no
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answer to this question, we will try to convince the reader that the maximum
possible length of an arithmetic progression on an Edwards curve is 9.

Let m ∈ Z>0 and a, q ∈ Q with q > 0, and denote

APm(a, q) = {d ∈ Q | a, a+ q, a+ 2q, . . . , a+ (m− 1)q in Ed(Q)}.
Note that APm(a, q) = APm(a+ (m− 1)q,−q), so we can assume without
loss of generality that q > 0.

Let us restrict for a moment to the case of symmetric progressions, i.e.
such that if an element belongs to the sequence, then so does its opposite.
There are two possibilities: either a = 0 (central) or a = ±q/2 (non-central).
Note that if 0, q, . . . ,mq belong to Ed(Q), then so do −q, . . . ,−mq. Therefore
we denote

ScAP2m+1(q) = AP2m+1(−mq, q).
Similarly, if q/2, 3q/2, . . . , (2m − 1)/2q belong to Ed(Q), then so do −q/2,
−3q/2, . . . ,−(2m− 1)/2q, and we denote

SncAP2m(q) = AP2m(−(2m− 1)q/2, q).

Therefore if we denote by SAPm the set of rationals d such that a symmetric
arithmetic progression of length m belongs to Ed(Q), we have

SAPm(q) =

{
ScAPm(q) if m is odd,

SncAPm(q) if m is even.

Theorem 1.1 (Non-symmetric case). Let m ∈ Z>0 and a, q ∈ Q be
such that q > 0 and (a, q) does not correspond to a symmetric arithmetic
progression. Then

(i) #APm(a, q) = ∞ if m ≤ 3, except for maybe a finite number of
pairs (a, q).

(ii) #AP4(a, q) = ∞ if and only if a + kq ∈ {±1} for some k ∈
{0, 1, 2, 3}.

(iii) If m ≥ 5, then #APm(a, q) <∞ for any pair (a, q).

Theorem 1.2 (Central symmetric case). Let m ∈ Z>0 be odd and q ∈
Q>0. Then:

(i) #ScAPm(q) =∞ if m ≤ 7.
(ii) #ScAP9(q) =∞ if and only if q ∈ {1, 1/2, 1/3, 1/4}.

(iii) If m ≥ 11 and q ∈ {1, 1/2, 1/3, 1/4}, then #ScAPm(q) = 0.

Theorem 1.3 (Non-central symmetric case). Let m ∈ Z>0 even and
q ∈ Q>0. Then:

(i) #SncAPm(q) =∞ if m ≤ 6.
(ii) #SncAP8(q) =∞ if and only if q ∈ {2, 2/3, 2/5, 2/7}.

(iii) If m ≥ 10 and q ∈ {2, 2/3, 2/5, 2/7}, then #SncAPm(q) = 0.
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A computer search was undertaken (see Section 6) to find a q such that
the set SAPm(q) is non-empty for m ≥ 10, but it was not successful. So we
leave the following question to the reader:

Question. Is 9 the maximum length of an arithmetic progression on an
Edwards curve, or in other words, is #APm(a, q) = 0 for any pair a, q and
m ≥ 10?

2. Arithmetic-algebraic-geometric translation. Let d ∈ Q be such
that d 6= 0, 1. Then the Edwards curve is the elliptic curve defined by

Ed : x2 + y2 = 1 + dx2y2.

We have (±1, 0), (0,±1) ∈ Ed(Q) (called trivial points later). Moreover,
since the model defined above is symmetric, it follows that if (x, y) ∈ Ed(Q),
then (±x,±y), (±y,±x) ∈ Ed(Q).

If (x, y) ∈ Ed(Q) is a non-trivial point, then we can recover d from (x, y):

d(x, y) =
x2 + y2 − 1

x2y2
.

Assume that this point has the form (x, y) = (a+nq,w/zn), where n ∈ Z≥0
and a, q ∈ Q with q 6= 0. Then we define

dn := d

(
a+ nq,

w

zn

)
=
w2 + z2n((a+ nq)2 − 1)

(a+ nq)2w2
.

Notice that a + nq 6= 0,±1 and w 6= ±zn (resp. n, q, w 6= 0) since dn 6= 0, 1
(resp. the point is non-trivial).

Now, denote S = {n0, . . . , nm−1} ⊂ Z≥0. Then the finite set of equations

Ca,qS : {di = dj | i, j ∈ S, i < j}

defines a curve in Pm, where the points are [w : z0 : · · · : zm−1]. Moreover, it
is easy to check that a model for this curve may be obtained by fixing one
element of S, say n0, and varying the others:

Ca,qS : {(n0 − nj)q(2a+ q(n0 + nj))w
2 + (a+ njq)

2(1− (a+ n0q)
2)z2n0

= (a+ n0q)
2(1− (a+ njq)

2)z2nj}j=1,...,m−1.

That is, Ca,qS is the intersection of m − 1 quadric hypersurfaces in Pm and
therefore its genus is (m − 3)2m−2 + 1 (cf. [16, Prop. 4] or [3]). Moreover,
the points [1 : ±1 : · · · : ±1] ∈ Ca,qS correspond to the disallowed case d = 1.
Therefore, if d 6= 0, 1, we obtain the following bijection:

{(a+ niq, w/zni) ∈ Ed(Q) \ {(±1, 0), (0,±1)} |ni ∈ S}
↔ Ca,qS (Q) \ {[±1 : · · · : ±1]}.
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Remark 2.1. Note that if a and q are not fixed, then Ca,qS is a variety
of dimension 3 in Pm+2. Therefore, Edwards curves with m points in arith-
metic progression are characterized by the rational points of a variety of
dimension 3. However, the computation of the whole set of rational points
of a variety of dimension greater than one is still an intractable problem
nowadays.

We are going to rewrite the equations of Ca,qS . For this purpose, and for
any i, j, k ∈ Z>0, we denote

sij =
q(i− j)(2a+ (i+ j)q)

(a+ iq)2(1− (a+ jq)2)
, rij = s−1ij , tijk =

sik
sij
.

Then

Ca,qS : {X2
j+1 = ajX

2
0 + (1− aj)X2

1}j=1,...,m−1

where aj = sn0nj , X0 = w and Xj+1 = znj for any nj ∈ S.
Now we parametrize the first equation as

[X0 : X1 : X2] = [t2 − 2t+ a1 : −t2 + a1 : t2 − 2a1t+ a1].

Using this parametrization we substitute X0, X1 and X2 in the other equa-
tions to obtain a new system of equations of the curve, which depends on
the parameter t:

Ca,qS : {X2
j+1 = t4 − 4ajt

3 + 2(−a1 + 2aj + 2a1aj)t
2 − 4a1ajt+ a21}j=2,...,m−1.

Notice that each single equation defines an elliptic curve Q-isomorphic to
the elliptic curve with Weierstrass model

Ca,q{n0,n1,nj} : y2 = x(x+ a1 − aj)(x+ aj(a1 − 1)).

Here the isomorphism sends [1 : 1 : 1 : 1] to O = [0 : 1 : 0], and if we
denote P0 = (0, 0), P1 = (aj − a1, 0), Q = (aj , a1aj) then it sends the set
{[±1 : ±1,±1 : ±1]} to {O, P1, P2, P1 +P2, Q,Q+P1, Q+P2, Q+P1 +P2}.

Moreover, each pair of equations define a genus five curve Ca,q{n0,n1,ni,nj}
whose Jacobian Jac(Ca,q{n0,n1,ni,nj}) splits completely over Q as the product

of five elliptic curves. To check this, let us write Ca,q{n0,n1,ni,nj} as (see [5])

(2.1) Ca,q{n0,n1,ni,nj} :


X2

2 = b2X
2
0 + (1− b2)X2

1 ,

X2
3 = b3X

2
0 + (1− b3)X2

1 ,

X2
4 = b4X

2
0 + (1− b4)X2

1 ,

where X3 = Xi, X4 = Xj and b2 = a1, b3 = ai, b4 = aj . Then we have
five quotients of genus one, each being the intersection of two quadric sur-
faces in P3. These are elliptic curve E(k) whose equations are obtained by
removing the variable Xk from the previous system of equations. We display
the Weierstrass model for those elliptic curves together with a (generally)
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non-torsion point on it:

E(4) : y2 = x(x+ b2 − b3)(x+ b3(b2 − 1)), Q4 = (b3, b2b3),

E(3) : y2 = x(x+ b2 − b4)(x+ b4(b2 − 1)), Q3 = (b4, b2b4),

E(2) : y2 = x(x+ b3 − b4)(x+ b4(b3 − 1)), Q2 = (b4, b3b4),

E(1) : y2 = x(x+ b2(b3 − b4))(x+ b4(b3 − b2)), Q1 = (b2b4, b2b3b4),

E(0) : y2 = x(x+ (b2 − 1)(b3 − b4))(x+ (b4 − 1)(b3 − b2)),
Q0 = ((b4 − 1)(b2 − 1), (b2 − 1)(b3 − 1)(b4 − 1)).

Thus we have obtained Jac(Ca,q{n0,n1,ni,nj})
Q∼ E(0)×E(1)× · · · ×E(4) (cf. [5]).

In general, rankZ Jac(Ca,q{n0,n1,ni,nj}) ≥ 5 = genus(Ca,q{n0,n1,ni,nj}), that is, the

classical Chabauty method [12] does not work to obtain Ca,q{n0,n1,ni,nj}(Q).

The curve Ca,q{n0,n1,ni,nj} has the same shape as the curve treated in [16] (with

m0 = b2−1, m1 = −b3 and m2 = −b4), where we developed a method based
on covering collections and elliptic Chabauty techniques to obtain (under
some hypotheses) the set of rational points of those curves (see also [15]).

We now apply this method to our curves, so let us write Ca,q{n0,n1,ni,nj} in

the form

Ca,q{n0,n1,ni,nj} : {X2
k = t4− 4bkt

3 + 2(−b2 + 2bk + 2b2bk)t
2− 4b2bkt+ b22}k=3,4.

For k ∈ {3, 4} denote:

l dk,l ek,l pk,l,±(t)

1 bk(bk − 1) bk(1− b2) t2 − 2(bk ± αk,1)t+ b2(−1 + 2(bk ± αk,1))

2 (bk − 1)(bk − b2) bk − b2 t2 − 2(bk ± αk,2)t+ b2

3 bk(bk − b2) 0 t2 − 2(bk ± αk,3)t− b2 + 2(bk ± αk,3)

where αk,l =
√
dk,l. Next, choose l3, l4 ∈ {1, 2, 3} and for any k ∈ {3, 4}

denote:

• φk : E′(k) → E(k) the 2-isogeny corresponding to the 2-torsion point

(ek,lk , 0) ∈ E(k)(Q),
• L = Q(α3,l1 , α4,l2),
• SL(φk) a set of representatives in Q of the image of the φk-Selmer

group Sel(φk) in L∗/(L∗)2 via the natural map,

• S̃L(φ3) a set of representatives of Sel(φ3) modulo the subgroup gener-
ated by the image of [1 : ±1 : ±1 : ±1 : ±1] in this Selmer group,

• S = {δ3δ4 : δ3 ∈ S̃L(φ3), δ4 ∈ SL(φ4)} ⊂ Q∗,
• Hδ

s : δz2 = p3,l3,s3(t)p4,l4,s4(t), a genus one curve for any δ ∈ S and
s = (s3, s4) ∈ {±} × {±}.
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So we obtain{
t ∈ P1(Q)

∣∣∣∣∃X3, X4 ∈ Q such that

(t,X3, X4) ∈ Ca,q{n0,n1,ni,nj}(Q)

}
⊆
⋃
δ∈S

{
t ∈ P1(Q)

∣∣∣∣∃w ∈ L such that (t, w) ∈ Hδ
s (L)

for some s ∈ {±} × {±}

}
.

Note that to compute Ca,q{n0,n1,ni,nj}(Q) we must find a pair l3, l4 ∈ {1, 2, 3}
such that for any δ ∈ S we can find s ∈ {±}×{±} for which we can carry out
all these computations to obtain the rational t-coordinates of Hδ

s (L). Before
undertaking this task, however, we must face several problems, which in
practice are solved by implementations in Magma [4]:

• Is Hδ
s (L) empty? To answer this question we use the Bruin and Stoll’s

algorithm [10]. If the answer is yes, we have finished with δ and turn to another
element of S. Otherwise, we must find (by brute force) a point on Hδ

s (L).

• Once we have found a point on Hδ
s (L), we use it to create an L-

isomorphism with its Jacobian Jac(Hδ
s ) and compute an upper bound for

the rank r of the Mordell–Weil group of the elliptic curve Jac(Hδ
s )(L).

• If the rank r < [L : Q] we use the elliptic Chabauty algorithm (see [9])
to compute the t-coordinates of Hδ

s (L). For this purpose, we must first
determine a system of generators of the Mordell–Weil group of Jac(Hδ

s )(L).

If S = {i, j, k, l}, then the curve Ca,qS is defined by {di = dj , di = dk,
di = dl}. Note that we may describe it by {dn1 = dn2 , dn3 = dn4 , dn5 = dn6}
with {n1, . . . , n6} = {i, j, k, l}. If the order of the equations is assumed to be
irrelevant, there are 16 such descriptions; that is, we can consider 16 models
of Ca,qS of the form (2.1). The possible values of b2, b3, b4 (as a set) appear
in Table 1. Thus, we parametrized the first conic and make the appropriate
substitutions on the other two conics. Therefore, if we take care now of
the order of the equations, we have 48 different models of Ca,qS of the form
(2.1). This is an important fact, since all the computations that we must
carry out may only work (if they do) in a particular model. Notice that we
only consider the case when L is an at most quadratic field, as some of the
computations are not well implemented for number fields of higher degree.

Table 1. Models for Ca,q{i,j,k,l}

N {b2, b3, b4} N {b2, b3, b4} N {b2, b3, b4} N {b2, b3, b4}
1 sij , sik, sil 2 sji, sjk, sjl 3 ski, skj , skl 4 sli, slj , slk

5 rij , tijk, tijl 6 rik, tikj , tikl 7 ril, tilj , tilk 8 rji, tjik, tjil

9 rjk, tjki, tjkl 10 rjl, tjli, tjlk 11 rki, tkij , tkil 12 rkj , tkji, tkjl

13 rkl, tkli, tklj 14 rli, tlij , tlik 15 rlj , tlji, tljk 16 rlk, tlki, tlkj
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We will use the following notation:

Table 2. Notation for Ca,qS

S Ca,qS genus(Ca,qS )

{i, j} Cij(a, q) 0

{i, j, k} Eijk(a, q) 1

{i, j, k, l} Dijkl(a, q) 5

3. Proof of Theorem 1.1. Non-symmetric case. We analyze under
which conditions a non-symmetric arithmetic progression a, a + q, . . . , a +
(m − 1)q belongs to Ed. In particular a /∈ {0,±q/2}. For this purpose, we
are going to use the translation given in the previous section with S =
{0, 1, . . . ,m− 1}. First notice that if a+ kq = 0 then this case corresponds
to the central symmetric case. Now, if a+ kq ∈ {±1} for some k ∈ S, then
we have dk = 1 and therefore we cannot use it and we should use instead the
curve Ca,qS∗ , where S∗ is S with such values of k removed. Finally, if there exist
i, j ∈ Z≥0, i 6= j, satisfying a+ iq = −1 and a+ jq = 1, then the arithmetic
progression must necessarily extend to a symmetric one. Therefore, we can
assume that there is at most one value of k ∈ S satisfying a + kq = 1 or
a+ kq = −1.

Let us prove the theorem depending on the set S∗:
• #S∗ ≤ 1: These cases are particularly simple. If a = ±1 then the

set APm(a, q) is described by d 6= 1 when m = 1 and by d1 when m = 2.
Meanwhile, d0 describes the case m = 1 with a 6= ±1, and m = 2 with
a+ q = ±1.

For the remaining cases (that is, when #S∗ > 1), there is a bijection
between the sets Ca,qS∗ (Q) and APm(a, q) for m = #S. The next table shows
Ca,qS∗ for each case (see Table 2).

m = 1 m = 2 m = 3 m = 4 m = 5

a = ±1 d 6= 1 d1 C12(a, q) E123(a, q) D1234(a, q)

a+ q = ±1

d0

d0 C02(a, q) E023(a, q) D0234(a, q)

a+ 2q = ±1

C01(a, q)

C01(a, q) E013(a, q) D0134(a, q)

a+ 3q = ±1
E012(a, q)

E012(a, q) D0124(a, q)

D0123(a, q)

We split the proof depending on the cardinality of S∗:
• S∗ = {i, j}: Then the curve is the conic Cij(a, q) with equation

Cij(a, q) : z2j = sijw
2 + (1− sij)z2i .
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This conic has been parametrized in the previous section by

[w : zi : zj ] = [t2 − 2t+ sij : −t2 + sij : t2 − 2sijt+ sij ],

and therefore #APm(a, q) = ∞ when m = #S and #S∗ = 2. These cases
correspond to S = {0, 1} and a+ kq /∈ {±1} for k ∈ {0, 1}, or S = {0, 1, 2}
and a+ kq ∈ {±1} for k ∈ {0, 1, 2}.
• S∗ = {i, j, k}: We have proved in the previous section that the corre-

sponding curve is elliptic, i.e. it is Q-isomorphic to the elliptic curve with
Weierstrass model

Eijk(a, q) : y2 = x(x+ sij − sik)(x+ sik(sij − 1)),

and such that it has full 2-torsion defined over Q and the extra rational
point Q = (sik, sijsik). Our first goal here is to prove that Q is not a point
of finite order for

(i, j, k, a) ∈ {(1, 2, 3,±1), (0, 2, 3,±1−q), (0, 1, 3,±1−2q), (0, 1, 2,±1−3q)}.
By Mazur’s theorem, Q has infinite order if and only if nQ is not a point of
order 2 for n = 1, 2, 3, 4, or equivalently, the y-coordinate yn of nQ (which
belongs to Q(q)) is not 0. We have factorized the numerator and denominator
of yn for n = 1, 2, 3, 4 and found that the factors of degree one correspond to
symmetric arithmetic progressions. Thus we have proved that Eijk(a, q) has
positive rank for any (i, j, k, a) as above and any q that do not correspond to
a symmetric arithmetic progression. Same arguments may be applied to the
case (i, j, k) = (0, 1, 2) and any a, q. In this case, yn ∈ Q(a, q) and therefore
the factors of its numerator and denominator define plane affine curves. All
the corresponding genus zero curves come from the locus of the polynomials
a, q, a + q, 2a + q, a + q ± 1, a + 2q ± 1. But these genus zero curves do
not provide solutions since the possible rational points correspond to cases
that have been excluded previously. The genus one curves define elliptic
curves of rank zero and therefore only a finite number of points (in fact,
the corresponding points are related to symmetric arithmetic progressions).
The rest of the curves are of genus greater than one, and so they have only
a finite number of rational points. In particular this concludes the proof of
the first two statements of Theorem 1.1.

To finish the proof, notice that if m = #S ≥ 5 then #S∗ ≥ 4 and in this
case the corresponding curve is of genus greater than one. Then, by Faltings’
Theorem, this curve has a finite number of rational points. This proves that
#APm(a, q) <∞ when m ≥ 5.

4. Proof of Theorem 1.2. Central symmetric case. The same ar-
guments as above will be adapted to the central symmetric case. In this
instance a = 0, S = {1, . . . ,m} and the condition a + kq ∈ {±1} becomes
kq = 1. Let S∗ be the set S with k removed.
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If #S∗ ≤ 1 the set ScAP2s+1(q) is described by the function d1 when
s = 1 and q 6= 1; by d 6= 1 if (s, q) = (1, 1); by d2 when (s, q) = (2, 1); and
by d1 when (s, q) = (2, 1/2).

If #S∗ ≥ 2, we use the bijection between C0,qS∗ (Q) and ScAP2s+1(q) for

s = #S. Table 3 gives C0,qS∗ for each case (see Table 2).

Table 3. Moduli for ScAPm(q)

q m = 3 m = 5 m = 7 m = 9 m = 11

1 d 6= 1 d2 C23(0, 1) E234(0, 1) D2345(0, 1)

1/2

d1

d1 C13(0, 1/2) E134(0, 1/2) D1345(0, 1/2)

1/3

C12(0, q)

C12(0, 1/3) E124(0, 1/3) D1245(0, 1/3)

1/4
E123(0, q)

E123(0, 1/4) D1235(0, 1/4)

D1234(0, q)

Now, if S∗ = {i, j}, the corresponding curve is the conic Cij(0, q) that
has infinitely many points. Therefore #ScAP2s+1(q) = ∞ when s = #S
and #S∗ = 2. These cases correspond to S = {1, 2, 3} and q ∈ {1, 1/2, 1/3},
or S = {1, 2} and q /∈ {1, 1/2}.

The case S∗ = {i, j, k} corresponds to the elliptic curve Eijk(0, q) which
has full 2-torsion defined over Q and the extra rational pointQ = (sik, sijsik).
Our objective is to prove that Q is not a point of finite order for the cases
(i, j, k, q) ∈ {(2, 3, 4, 1), (1, 3, 4, 1/2), (1, 2, 4, 1/3)} and (i, j, k) = (1, 2, 3) for
any q ∈ Q>0, q /∈ {1, 1/2, 1/3}. The first attempt is to use the Nagell–Lutz
Theorem, so we compute an integral model of Eijk(0, q) and we check if
the coordinates of Q′ (the image of the point Q in this integral model) are
not rational integers. The following table shows, for every case, an integral
model and the x-coordinate of nQ′ for the first n such that nQ′ does not
have integral coordinates.

(i, j, k, q) Integral model n x(nQ′)

(2, 3, 4, 1) y2 = x3 − 25444800x− 35897472000 2 185721/16

(1, 3, 4, 1/2) y2 = x3 − 11697075x+ 15251172750 3 4532055/961

(1, 2, 4, 1/3) y2 = x3 − 308700x− 55566000 1 −4095/16

Therefore if (i, j, k, q) ∈ {(2, 3, 4, 1), (1, 3, 4, 1/2), (1, 2, 4, 1/3)} we infer
that the point Q is not of finite order.

Note that this procedure does not work for (i, j, k) = (1, 2, 3) with q ∈
Q>0, q /∈ {1, 1/2, 1/3}. By Mazur’s theorem, Q has infinite order if and only
if nQ is not a point of order 2 for n = 1, 2, 3, 4. That is, the y-coordinate yn
of nQ, which belongs to Q(q), is not 0. We have factorized the numerator and
denominator of yn for n = 1, 2, 3, 4 and found that they have no root q ∈ Q>0
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with q /∈ {1, 1/2, 1/3}. Thus, Eijk(0, q) has positive rank for any (i, j, k, q) as
above, and this proves that #ScAP2s+1(q) =∞ when s = #S and #S∗ = 3.
These cases correspond to S = {1, 2, 3, 4} and q ∈ {1, 1/2, 1/3, 1/4}, or
S = {1, 2, 3} and q /∈ {1, 1/2, 1/3, 1/4}. In particular this concludes the
proof of the statement that #ScAP7(q) =∞ for any q ∈ Q>0.

The last case is S∗ = {i, j, k, l}, which corresponds to the genus five
curve Dijkl(0, q). By Falting’s Theorem we have #Dijkl(0, q)(Q) <∞. This
proves that the set ScAP2s+1(q) is finite when s = #S and #S∗ = 4.
These cases correspond to S = {1, 2, 3, 4, 5} and q ∈ {1, 1/2, 1/3, 1/4},
or S = {1, 2, 3, 4} and q /∈ {1, 1/2, 1/3, 1/4}. This concludes the proof of
the fact that #ScAP9(q) = ∞ if and only if q ∈ {1, 1/2, 1/3, 1/4}, and
#ScAPm(q) <∞ for m ≥ 11 and any q ∈ Q>0.

In the remainder of this section, we will check that #ScAPm(q) = 0
if q ∈ {1, 1/2, 1/3, 1/4} for m ≥ 11. Note that it is enough to prove this
for m = 11. That is, for S = {1, 2, 3, 4, 5} and q ∈ {1, 1/2, 1/3, 1/4} the
corresponding curve has genus five and therefore only a finite number of
rational points. In fact, we are going to prove that

C0,qS∗ (Q) = {[1 : ±1 : ±1 : ±1 : ±1]}

for those values of q. For this purpose we apply the algorithm described in
Section 2.

Let us start with the case (a, q) = (0, 1). Then the genus five curve is
D2345(0, 1) and we choose the model N = 11 from Table 1 with b2 = −4,
b3 = 7/32, b4 = −3/32, and the pair (l3, l4) = (1, 2). In this case L =
Q(
√
−7), S = {±1,±10} and we have the following polynomials:

p3,1,+(t) = t2 +
1

16
(−5
√
−7− 7)t+

1

4
(−5
√
−7 + 9),

p4,2,+(t) = t2 +
1

16
(−25

√
−7 + 3)t− 4.

Now for any δ ∈ S, we must compute all the points (t, w) ∈ Hδ
±,±(Q(

√
−7))

with t ∈ P1(Q) for some choice of signs s = (s3, s4) ∈ {±} × {±} where

Hδ
s : δw2 = p3,1,s3(t) p4,2,s4(t).

We have rankZH
±1
(+,+)(Q(

√
−7)) = 1, so we can apply elliptic Chabauty to

obtain the possible values of t. For δ = 1 (resp. δ = −1) we obtain t = ∞
(resp. t = −1 ). For all those values we obtain the trivial points [1 : ±1 : ±1 :
±1 : ±1] ∈ D2345(0, 1)(Q). For δ ∈ {±10}, we obtain Hδ

(+,+)(Q(
√
−7)) = ∅

using Bruin and Stoll’s algorithm [10].

The following table shows all the previous data. In the last column it
is stated whether the corresponding points attached to t in the curve are
trivial or not.
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δ s Hδ
s (Q(

√
−7)) = ∅? rankZH

δ
s (Q(

√
−7)) t trivial?

1 (+,+) no 1 ∞ yes

−1 (+,+) no 1 1 yes

10 (+,+) yes – – –

−10 (+,+) yes – – –

(i, j, k, l) = (2, 3, 4, 5), q = 1, N = 11, (b2, b3, b4) = (−4, 7/32,−3/32), (l3, l4) = (1, 2)

From the table we obtain D2345(0, 1)(Q) = {[1 : ±1 : ±1 : ±1 : ±1]},
and therefore #ScAPm(1) = 0 for any m ≥ 11. In particular, this answers
one of Moody’s questions (1).

The following three tables include the data related to the computa-
tion of all rational points of the curves Dijkl(0, q)(Q) with (i, j, k, l, q) ∈
{(1, 3, 4, 5, 1/2), (1, 2, 4, 5, 1/3), (1, 2, 3, 5, 1/4)}. In all these cases we have
Dijkl(0, q) = {[1 : ±1 : ±1 : ±1 : ±1]}.

δ s Hδ
s (Q(

√
14)) = ∅? rankZH

δ
s (Q(

√
14)) t trivial?

1 (+,−) no 1 ∞ yes

2 (+,+) yes – – –

−5 (+,+) yes – – –

−10 (+,+) yes – – –

(i, j, k, l)=(1, 3, 4, 5), q=1/2, N=3, (b2, b3, b4)=(−3/25, 32/25,−64/125), (l3, l4)=(1, 3)

δ s Hδ
s (Q(

√
21)) = ∅? rankZH

δ
s (Q(

√
21)) t trivial?

1 (+,+) no 1 ∞, 27/25 yes

−1 (+,+) yes – – –

6 (+,+) yes – – –

−6 (+,+) yes – – –

(i, j, k, l)=(1, 2, 4, 5), q=1/3, N=3, (b2, b3, b4)=(27/25, 189/125,−81/175), (l3, l4)=(1, 1)

δ s Hδ
s (Q(

√
105)) = ∅? rankZH

δ
s (Q(

√
105)) t trivial?

1 (+,−) no 1 ∞ yes

6 (+,+) yes – – –

(i, j, k, l) = (1, 2, 3, 5), q = 1/4, N = 1, (b2, b3, b4) = (128/3,−4,−128/7), (l3, l4) = (3, 2)

These computations conclude the proof of Theorem 1.2.

5. Proof of Theorem 1.3. Non-central symmetric case. We invoke
the same arguments again. In this case we choose a = −q/2, S = {1, . . . ,m},
and the condition a+ kq ∈ {±1} becomes (2k − 1)q = 2. Let S∗ = S \ {k}.

(1) Moody [20] asked if there exists d ∈ Q, d 6= 0, 1, such that 0,±1,±2,±3,±4,±5
form an arithmetic progression in Ed(Q). Note that after this paper was online (arXiv:
1304.4361), Bremner [7] obtained a different proof of the non-existence of such a d.
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If #S∗ ≤ 1 the set SncAPm(q) is described by the function d1 when
m = 2 and q 6= 2; by d 6= 1 if (m, q) = (2, 2); by d2 when (m, q) = (4, 2);
and by d1 when (m, q) = (4, 2/3).

Table 4 identifies C−q/2,qS∗ when #S∗ > 1 (see Table 2).

Table 4. Moduli for SncAPm(q)

q m = 2 m = 4 m = 6 m = 8 m = 10

2 d 6= 1 d2 C23(−1, 2) E234(−1, 2) D2345(−1, 2)

2/3

d1

d1 C13(−1/3, 2/3) E134(−1/3, 2/3) D1345(−1/3, 2/3)

2/5

C12(−q/2, q)
C12(−1/5, 2/5) E124(−1/5, 2/5) D1245(−1/5, 2/5)

2/7
E123(−q/2, q)

E123(−1/7, 2/7) D1235(−1/7, 2/7)

D1234(−q/2, q)

If #S∗ = 2, then SncAP2s(q) is parametrized by a conic with infinitely
many rational points. Therefore #SncAP2s(q) = ∞ when s = #S and
#S∗ = 2. These cases correspond to S = {1, 2, 3} and q ∈ {2, 2/3, 2/5} or
S = {1, 2} and q /∈ {2, 2/3}.

Now, the elliptic curve Eijk(−q/2, q) parametrizes the case when S∗ =
{i, j, k}. This curve has all the 2-torsion points defined over Q and the extra
rational point Q = (sik, sijsik). Using the Nagell–Lutz Theorem we can
prove that Q has infinite order for the cases

(i, j, k, q) ∈ {(2, 3, 4, 2), (1, 3, 4, 2/3), (1, 2, 4, 2/5)}.
First we compute a suitable integral model of Eijk(−q/2, q). The next table
shows for every case the corresponding integral model and the x-coordinate
of nQ′ for the first n such that nQ′ does not have integral coordinates (where
Q′ is the image of Q in this model):

{i, j, k, q} Integral model n x(nQ′)

{2, 3, 4, 2} y2 = x3 − 22427712x− 33269059584 3 2550847992/151321

{1, 3, 4, 2/3} y2 = x3 − 735300x+ 242352000 2 18649/36

{1, 2, 4, 2/5} y2 = x3 − 4615488x− 3696371712 2 109761/25

The proof that Q has infinite order in the case (i, j, k, a, q) = (1, 2, 3,−q/2, q)
with q /∈ {2, 2/3, 2/5} is analogous to the case (i, j, k, a, q) = (1, 2, 3, 0, q)
with q /∈ {1, 1/2, 1/3} already discussed on the proof of Theorem 1.2. This
proves that #SncAP2s(q) = ∞ when s = #S and #S∗ = 3. These cases
correspond to S = {1, 2, 3, 4} and q ∈ {2, 2/3, 2/5, 2/7}, or S = {1, 2, 3} and
q /∈ {2, 2/3, 2/5, 2/7}. Thus #SncAP6(q) =∞ for any q ∈ Q>0.

Finally, the genus five curve Dijkl(−q/2, q) corresponds to the case S∗ =
{i, j, k, l}. Now, since #Dijkl(−q/2, q)(Q) <∞, the set SncAP2s(q) is finite
when s = #S and #S∗ = 4. These cases correspond to S = {1, 2, 3, 4, 5}
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and q ∈ {2, 2/3, 2/5, 2/7}, or S = {1, 2, 3, 4} and q /∈ {2, 2/3, 2/5, 2/7}. So
we have proved that #SncAP8(q) = ∞ if and only if q ∈ {2, 2/3, 2/5, 2/7}
and #SncAPm(q) <∞ for m ≥ 10 and any q ∈ Q>0.

The following four tables include the data related to the computation of
all rational points of the curves Dijkl(−q/2, q) with

(i, j, k, l, q) ∈ {(2, 3, 4, 5, 2), (1, 3, 4, 5, 2/3), (1, 2, 4, 5, 2/5), (1, 2, 3, 5, 2/7)}.

In all these cases we have Dijkl(−q/2, q)(Q) = {[1 : ±1 : ±1 : ±1 : ±1]}.

δ s Hδ
s (Q(

√
15)) = ∅? rankZH

δ
s (Q(

√
15)) t trivial?

1 (+,+) no 1 ∞ yes

−1 (+,+) yes – – –

6 (+,+) no 1 1 yes

−6 (+,+) yes – – –

(i, j, k, l) = (2, 3, 4, 5), a = −1, q = 2, N = 9, (b2, b3, b4) = (7/5, 50,−4), (l3, l4) = (2, 3)

δ s Hδ
s (Q(

√
10)) = ∅? rankZH

δ
s (Q(

√
10)) t trivial?

1 (+,−) no 1 ∞, 0 yes

−6 (+,+) yes – – –

(i, j, k, l) = (1, 3, 4, 5), a = −1/3, q = 2/3, N = 2, (b2, b3, b4) = (7/25, 27/25, 27/125), (l3, l4) = (2, 2)

δ s Hδ
s (Q(

√
21)) = ∅? rankZH

δ
s (Q(

√
21)) t trivial?

1 (+,+) no 1 ∞ yes

−1 (+,+) yes – – –

6 (+,+) yes – – –

−6 (+,+) yes – – –

(i, j, k, l) = (1, 2, 4, 5), a = −1/5, q = 2/5, N = 6, (b2, b3, b4) = (5/7, 1/50,−1/4), (l3, l4) = (2, 3)

δ s Hδ
s (Q(

√
7)) = ∅? rankZH

δ
s (Q(

√
7)) t trivial?

1 (−,+) no 1 ∞, 0 yes

2 (+,+) yes – – –

5 (+,+) yes – – –

10 (+,+) yes – – –

(i, j, k, l) = (1, 2, 3, 5), a = −1/7, q = 2/7, N = 1, (b2, b3, b4) = (245/2,−49/5,−49), (l3, l4) = (2, 2)

This concludes the proof of Theorem 1.3.

6. Some computations. We would like to find an arithmetic progres-
sion on an Edwards curve as long as possible. As in the symmetric cases
fewer restrictions appear, we have undertaken a computer search on Magma
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to find a non-trivial rational point P of height H(P ) ≤ 106 on the curve
D1234(0, q) or on the curve D1234(−q/2, q) for positive rationals q of height
H(q) ≤ 100 and q /∈ {1, 1/2, 1/3, 1/4} or q /∈ {2, 2/3, 2/5, 2/7} respectively.
There are 6087 such q’s. We have used the following models for D1234(0, q)
and D1234(−q/2, q):

D1234(0, q) :


3X2

0 + 4(q2 − 1)X2
1 + (1− 4q2)X2

2 = 0,

8X2
0 + 9(q2 − 1)X2

1 + (1− 9q2)X2
3 = 0,

15X2
0 + 16(q2 − 1)X2

1 + (1− 16q2)X2
4 = 0,

D1234(−q/2, q) :


32X2

0 + 9(q2 − 4)X2
1 + (4− 9q2)X2

2 = 0,

96X2
0 + 25(q2 − 4)X2

1 + (4− 25q2)X2
3 = 0,

192X2
0 + 49(q2 − 4)X2

1 + (4− 49q2)X2
4 = 0.

We have found no such rational point. On the other hand, using the tech-
niques of the proof of the last item of Theorems 1.2 and 1.3, we are able to
prove that #D1234(0, q) = 16 for

q ∈


19/11, 11/13, 49/46, 13/3, 3/2, 3/7, 2, 11/43, 1/11,

7/11, 1/8, 1/7, 1/6, 8/17, 1/5, 11/38, 5/17, 2/3, 11/37,

7/13, 59/61, 29/53, 3/4, 11/19, 3/8, 37/95, 11/28

 ,

and #D1234(−q/2, q) = 16 for

q ∈


2/9, 22/13, 14, 22/7, 14/11, 2/35, 6/7, 22/25, 34/19,

2/17, 2/15, 22/73, 62/33, 2/13, 38/35, 10/7, 34/49, 22/31,

26/21, 10/23, 34/77, 14/19, 26/11, 38/77, 22/43, 6/11

 ,

Thus for the corresponding list we have proved that

#ScAP9(q) = 0 and #SncAP8(q) = 0

respectively.
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[13] I. Garćıa-Selfa and J. M. Tornero, Searching for simultaneous arithmetic progres-

sions on elliptic curves, Bull. Austral. Math. Soc. 71 (2005), 417–424.

[14] I. Garćıa-Selfa and J. M. Tornero, On simultaneous arithmetic progressions on el-

liptic curves, Experiment. Math. 15 (2006), 471–478.
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[17] J.-B. Lee and W. Y. Vélez, Integral solutions in arithmetic progression for y2 =

x3 + k, Period. Math. Hungar. 25 (1992), 31–49.

[18] A. J. MacLeod, 14-term arithmetic progressions on quartic elliptic curves, J. Integer

Sequences 9 (2006), no. 1, art. 06.1.2, 4 pp.

[19] S. P. Mohanty, On consecutive integer solutions for y2−k = x3, Proc. Amer. Math.

Soc. 48 (1975), 281–285.

[20] D. Moody, Arithmetic progressions on Edwards curves, J. Integer Sequences 14

(2011), no. 1, art. 11.1.7, 4 pp.

[21] D. Moody, Arithmetic progressions on Huff curves, Ann. Math. Inform. 38 (2011),

111–116.

[22] R. Schwartz, J. Solymosi, and F. de Zeeuw, Simultaneous arithmetic progressions

on algebraic curves, Int. J. Number Theory 7 (2011), 921–931.

[23] B. K. Spearman, Arithmetic progressions on congruent number elliptic curves,

Rocky Mountain J. Math. 41 (2011), 2033–2044.

[24] M. Ulas, A note on arithmetic progressions on quartic elliptic curves, J. Integer

Sequences 8 (2005), no. 8, art. 05.3.1, 5 pp.

[25] M. Ulas, Rational points in arithmetic progressions on y2 = xn + k, Canad. Math.

Bull. 55 (2012), 193–207.

http://dx.doi.org/10.1215/S0012-7094-92-06612-9
http://magma.maths.usyd.edu.au/magma
http://dx.doi.org/10.1080/10586458.1999.10504629
http://dx.doi.org/10.1006/jnth.1999.2430
http://dx.doi.org/10.1090/S0025-5718-09-02255-8
http://dx.doi.org/10.1017/S0004972700038429
http://dx.doi.org/10.1080/10586458.2006.10128979
http://dx.doi.org/10.1112/S1461157013000259
http://dx.doi.org/10.1007/BF02454382
http://dx.doi.org/10.1142/S1793042111004198
http://dx.doi.org/10.1216/RMJ-2011-41-6-2033


132 E. González-Jiménez
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Departamento de Matemáticas
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