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Functions of bounded variation, signed measures,
and a general Koksma–Hlawka inequality

by

Christoph Aistleitner (Kobe) and Josef Dick (Sydney)

1. Introduction. Let x1, . . . ,xN be a set of points in the d-dimensional
unit cube [0, 1]d. The star-discrepancy D∗N of this point set is defined as

(1) D∗N (x1, . . . ,xN ) = sup
A∈A∗

∣∣∣∣ 1N
N∑
n=1

1A(xn)− λ(A)
∣∣∣∣.

Hereafter, we write 1A for the indicator function of the set A, λ for the
(d-dimensional) Lebesgue measure and A∗ for the class of all closed axis-
parallel boxes contained in [0, 1]d which have one vertex at the origin. We
generally write vectors in bold font. For vectors a,b we write a ≤ b and
a < b if the respective inequalities hold in each coordinate, and we write
[a,b] for the set {x : a ≤ x ≤ b}. We write 0 and 1 for the d-dimensional
vectors (0, . . . , 0) and (1, . . . , 1), respectively. Since the star-discrepancy D∗N
is the only discrepancy mentioned in this paper, we will use the word “dis-
crepancy” synonymously with “star-discrepancy”.

The Koksma–Hlawka inequality states that for any function f on [0, 1]d

which has bounded variation in the sense of Hardy and Krause and any point
set x1, . . . ,xN ∈ [0, 1]d we have

(2)
∣∣∣∣ 1N

N∑
n=1

f(xn)−
�

[0,1]d

f(x) dx

∣∣∣∣ ≤ (VarHK f)D
∗
N (x1, . . . ,xN ).

A definition of the variation in the sense of Hardy and Krause (denoted by
VarHK and abbreviated as HK-variation in this paper) is given in Section 2
below. More precisely, by VarHK and HK-variation we mean the variation
in the sense of Hardy and Krause anchored at 1 (later the HK-variation an-
chored at 0 will also play a role; however, the HK-variation anchored at 1
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is the “usual” HK-variation). The one-dimensional version of the inequal-
ity (2) was first proved by Koksma [24] in 1942, and the multidimensional
generalization by Hlawka [19] in 1961.

The Koksma–Hlawka inequality suggests that point sets having small
discrepancy can be used for the approximation of the integral of a multivari-
ate function—this observation is one of the cornerstones of the Quasi-Monte
Carlo method (QMC method) for numerical integration, which uses clev-
erly designed deterministic points as sampling points of a quadrature rule
(as opposed to the Monte Carlo method, where randomly generated points
are used). Since there exist several constructions of point sets x1, . . . ,xN in
[0, 1]d which achieve a discrepancy bounded by

(3) D∗N (x1, . . . ,xN ) ≤ cd(logN)d−1N−1,

for large N the error estimates in QMC integration can be much better than
the (randomized) error of the Monte Carlo method (MC method), which is of
order N−1/2. More information on discrepancy in the context of the previous
paragraphs can be found in the monographs [13, 14, 25]. Discrepancy the-
ory in a more general context (geometric, combinatorial, etc.) is described
in [11, 29]. A comparison between MC and QMC methods can be found
in [26].

The QMC method is widely applied to numerical integration problems,
for example to the problem of option pricing in financial mathematics. The
general idea is that the problem of calculating the expected value of a mul-
tidimensional random variable or the problem of calculating an integral over
a general domain Ω ⊂ Rd with respect to a general measure µ can be trans-
formed into an integration problem with respect to the uniform measure
on [0, 1]d. However, this transformation process is not without its pitfalls
(see [48, 49]). This is a particularly critical issue as the Koksma–Hlawka
inequality is extremely sensitive with respect to the smallest changes of
the function f , since the slightest deformation can turn a function having
small HK-variation into a function of infinite HK-variation. For example,
if a smooth function f on a general integration domain Ω ⊂ [0, 1]d is sim-
ply embedded into [0, 1]d by defining f(x) = 0 on [0, 1]d \ Ω, then clearly	
Ω f(x) dx =

	
[0,1]d f(x) dx but the Koksma–Hlawka inequality is not appli-

cable since the extended function is in general not of bounded HK-variation
(unless, roughly speaking, Ω itself is an axis-parallel box). Similar problems
appear if one tries to switch from an integral with respect to a general mea-
sure to an integral with respect to the uniform measure. Consequently, it is
desirable to find a variant of QMC integration which is directly applicable
to integration with respect to general measures (this includes the case of
general domains Ω ⊂ [0, 1]d, by taking a measure which is only supported
on Ω). Another motivation for studying such general problems comes from
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the fact that they are closely related to importance sampling for QMC; see
Corollary 1 below.

Let µ be a normalized Borel measure (1) on [0, 1]d. The star-discrepancy
with respect to µ of a point set x1, . . . ,xN ∈ [0, 1]d is defined as

(4) D∗N (x1, . . . ,xN ;µ) = sup
A∈A∗

∣∣∣∣ 1N
N∑
n=1

1A(xn)− µ(A)
∣∣∣∣.

Improving results of Beck [4], the authors of the present paper recently
showed that for any µ and any N there exists a point set x1, . . . ,xN ∈ [0, 1]d

for which

(5) D∗N (x1, . . . ,xN ;µ) ≤ cd(logN)(3d+1)/2N−1

(see [2]). There is a gap between this upper bound and that for the uniform
measure in (3), and it is an interesting open problem whether the smallest
possible discrepancy with respect to general measures µ is asymptotically
of the same order as the smallest possible discrepancy with respect to the
uniform measure. It should be noted that it is also unknown whether (3) is
optimal or if the exponent of the logarithmic term can be further reduced;
this is known as the Grand Open Problem of discrepancy theory (see [5, 6]).

To show that QMC integration is in principle also possible with respect
to general measures, the estimate (5) is not sufficient. Additionally one needs
a generalized Koksma–Hlawka inequality for non-uniform measures, which
is given in Theorem 1 below.

Theorem 1. Let f be a measurable (2) function on [0, 1]d which has
bounded HK-variation. Furthermore, let µ be a normalized Borel measure on
[0, 1]d, and let x1, . . . ,xN be a set of points in [0, 1]d. Then

(6)
∣∣∣∣ 1N

N∑
n=1

f(xn)−
�

[0,1]d

f(x) dµ(x)

∣∣∣∣ ≤ (VarHK f)D
∗
N (x1, . . . ,xN ;µ).

Theorem 1 directly implies the following result, which shows that the
method of importance sampling can be used for Quasi-Monte Carlo integra-
tion.

(1) Throughout this paper we understand that a measure is always non-negative, while
a signed measure may also have negative values.

(2) We use the word “measurable” in the sense of “Borel-measurable”, that is, in the
sense of “measurable with respect to Borel sets”. It is possible that a function which has
bounded HK-variation is always Borel-measurable as well, and that the assumption of f
being measurable can be omitted in the statement of the theorem. However, we have not
found in the literature any evidence of the assertion that bounded HK-variation implies
Borel-measurability.



146 C. Aistleitner and J. Dick

Corollary 1. Let f be a measurable function on [0, 1]d, and let g be
the density of a normalized Borel measure µg on [0, 1]d. Assume further that
f/g has bounded HK-variation, and that g(x) > 0 for all x ∈ [0, 1]d. Let
x1, . . . ,xN be a set of points in [0, 1]d. Then

(7)
∣∣∣∣ 1N

N∑
n=1

f(xn)

g(xn)
−

�

[0,1]d

f(x) dx

∣∣∣∣ ≤ (VarHK
f

g

)
D∗N (x1, . . . ,xN ;µg).

The idea of importance sampling is to find a function g for which the HK-
variation of f/g is significantly smaller than that of f ; in this case the error
bound in (7) can be much better than that in the standard Koksma–Hlawka
inequality (2).

Corollary 1 was obtained by Chelson [12] in his PhD thesis, which was
published in 1976; it is stated there with the incorrect conclusion that on
the right-hand side of (7) one can take the discrepancy with respect to the
uniform measure of a point set which is related to x1, . . . ,xN by a simple
transformation, instead of the discrepancy of x1, . . . ,xN with respect to the
measure induced by g. Chelson’s result and its correct and incorrect parts
are described in detail in Section 5 below. Chelson’s result is formulated
in the language of Corollary 1, which can only be sensibly considered with
the assumption that g is the density of a measure; accordingly, a variant
of Theorem 1 can only be deduced from Chelson’s formulation with the
additional assumption that µ has a density, and not for general µ.

Because of the issues mentioned in the previous paragraph, the main im-
pulse for writing this paper was to discuss Chelson’s result and method, and
to give a correct proof of Theorem 1 without assuming that the measure µ
has a density. However, when the present manuscript was almost finished,
we coincidentally found out that such a result had already been obtained
by Götz [15]. Götz’s paper was published in 2002, but apparently it was
almost completely overlooked until now; we only found it casually noted in
a short survey article of Niederreiter [30]. Apparently Götz did not know
of Chelson’s result. It should be noted that despite the remarks concerning
Chelson’s result in the previous paragraph, his method of proof is in prin-
ciple correct, and could be modified to give a correct proof of Corollary 1.
Chelson’s and Götz’s results are both proved using the same method which
is usually used for proving the standard Koksma–Hlawka inequality, namely
Abel partial summation. Our proof for Theorem 1 is simpler; it can be seen
as an application of a partial integration formula for the Stieltjes integral,
which, however, is nothing other than the continuous analogue of the Abel
summation formula. The proof is based on a correspondence principle be-
tween functions of bounded HK-variation and signed measures of finite total
variation, which is of some interest in its own right (see Theorem 3 below).
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Together with recent new results on the existence of low-discrepancy point
sets with respect to general measures µ, Theorem 1 implies strong conver-
gence results for QMC integration with respect to general measures (see
Corollaries 2 and 3 below).

A result somewhat similar to Theorem 1 in the case when µ is the uniform
measure on the unit simplex was obtained in [3, 37, 38]. A result similar to
Theorem 1 in the special case when µ is the uniform measure on a set Ω ⊂
[0, 1]d (or, more generally, for bounded Ω ⊂ Rd) has been obtained recently
by Brandolini et al. [10]; however, their error estimate contains multiplicative
factors which depend exponentially on the dimension, and which accordingly
spoil all tractability results (the case of star-discrepancy and HK-variation
is the special case p = 1 and q = ∞ of the more general result in their
paper). Another result of Brandolini et al. [9] gives a general Koksma–Hlawka
inequality for the uniform measure on compact parallelepipeds or simplices.

The following theorem establishes the existence of the Jordan decom-
position of a multivariate function of bounded HK-variation. It is a gen-
eralization of the well-known Jordan decomposition theorem for functions
of bounded variation in the one-dimensional case (see for example [51, §12,
Section III]). The key ingredient in its proof is a decomposition theorem of
Leonov [27, Theorem 3]. The statement of the theorem uses the notion of a
completely monotone function, which is defined in Section 2 below. It also
uses the notion of the HK-variation anchored at 0, defined in Section 2, and
denoted by HK0-variation and VarHK0 in this paper. The HK0-variation
of a function is in general different from the “usual” HK-variation anchored
at 1. However, a function which has bounded HK-variation also has bounded
HK0-variation, and vice versa (see Lemma 2 below). Thus in the assump-
tions of Theorems 1–3 and throughout this paper the phrase “f has bounded
HK-variation” could be replaced by “f has bounded HK0-variation”. How-
ever, the variations VarHK and VarHK0 must not be simply exchanged in the
conclusions of the respective theorems.

Theorem 2. Let f be a function on [0, 1]d which has bounded HK-
variation. Then there exist two uniquely determined completely monotone
functions f+ and f− on [0, 1]d such that f+(0) = f−(0) = 0 and

f(x) = f(0) + f+(x)− f−(x), x ∈ [0, 1]d,

and

(8) VarHK0 f = VarHK0 f
+ +VarHK0 f

−.

We call the unique decomposition f = f+ − f− having the properties
described in Theorem 2 the Jordan decomposition of the function f . We note
that using relation (20) below it is easy to obtain a variant of Theorem 2 for
the HK-variation instead of the HK0-variation.
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The following theorem shows, simply speaking, that any right-continuous
function of bounded HK-variation defines a finite signed measure and vice
versa, and that the HK0-variation of the function and the total variation of
the signed measure coincide. The Jordan decomposition of a signed measure
and the total variation of a signed measure, denoted by Vartotal, are defined
in Section 2.

Theorem 3.

(a) Let f be a right-continuous (3) function on [0, 1]d which has bounded
HK-variation. Then there exists a unique signed Borel measure ν on
[0, 1]d for which

(9) f(x) = ν([0,x]), x ∈ [0, 1]d.

In this case,

(10) Vartotal ν = VarHK0 f + |f(0)|.

Furthermore, if f(x) = f(0) + f+(x)− f−(x) is the Jordan decom-
position of f and ν = ν+ − ν− is the Jordan decomposition (4) of ν,
then

(11) f+(x) = ν+([0,x]\{0}), f−(x) = ν−([0,x]\{0}), x ∈ [0, 1]d.

(b) Let ν be a finite signed Borel measure on [0, 1]d. Then there exists
a unique right-continuous function f of bounded HK-variation on
[0, 1]d for which (9) and (10) hold. Furthermore, if f(x) = f(0) +
f+(x)− f−(x) is the Jordan decomposition of f and ν = ν+− ν− is
the Jordan decomposition of ν, then (11) holds.

This connection between functions of bounded HK-variation and finite
signed measures is quite natural, and has probably been observed and used in
a less specific form before. For example, this is the same mechanism by which
a multidimensional additive set-function of bounded variation defines a finite
signed measure and a corresponding multidimensional Stieltjes-integral, as
described in Chapter 3 of Stanisław Saks’ classical monograph [43] on the
Theory of the Integral. In essence, this is also the same principle which has
been used by Zaremba [52] for his proof of the Koksma–Hlawka inequality
by multidimensional Abel summation, which is now the standard method.

(3) We call a multivariate function right-continuous if it is coordinatewise right-
continuous in each coordinate, at every point.

(4) Note that in contrast to the Jordan decomposition of a multivariate function of
bounded variation, which we have not found in the literature and whose definition is given
and existence established by Theorem 2, the Jordan decomposition of a signed measure
is a well-known concept in measure theory; in particular, the Jordan decomposition of a
signed measure always exists and is unique. See Section 2 for details.
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However, the decomposition in Theorem 2 and the correspondence between
functions of bounded variation and finite signed measures in Theorem 3, and
in particular the relation between the HK0-variation of the function and the
total variation of the corresponding signed measure, are far from being self-
evident, and we have not found any explicit statement like Theorem 2 or
Theorem 3 in the literature.

A somewhat vague connection between functions of bounded HK-varia-
tion and signed measures is casually noted in [7]. A new notion of bounded
variation of a function (which has later been called bounded variation in the
measure sense), defined in terms of a signed measure corresponding to a func-
tion, is introduced in [8], and is used there to prove a general Koksma–Hlawka
inequality; however, it is not stated which functions are of bounded varia-
tion in this sense. A connection between functions of bounded HK-variation
and functions of bounded variation in the measure sense (significantly weaker
than our Theorem 3) is mentioned as a “Proposition” (without proof) in [50],
with reference to an unpublished manuscript. The same result is stated as a
“Theorem” (without proof) in [34], and then, by the same author and several
years later, in [35] as an “unproven conjecture”. As our Theorem 3 shows,
the notion of bounded variation in the measure sense is superfluous, since
it coincides with the notion of bounded HK-variation (aside from continuity
issues).

Finally, we want to state two consequences of Theorem 1 and the recent
results obtained in [2]. The first result shows that QMC integration with
respect to general measures is possible with a convergence rate for the error
which is almost the same as in the case of the uniform measure; the second
is a tractability result, which states that QMC integration is possible with
a moderate number of sampling points in comparison with the dimension,
just as in the case of the uniform measure.

Corollary 2. For any normalized Borel measure µ on [0, 1]d and any
N ≥ 1 there exist points x1, . . . ,xN ∈ [0, 1]d for which

sup
f

∣∣∣∣ 1N
N∑
n=1

f(xn)−
�

[0,1]d

f(x) dµ(x)

∣∣∣∣ ≤ 63
√
d
(2 + log2N)(3d+1)/2

N
,

where the supremum is taken over all measurable functions f on [0, 1]d which
satisfy VarHK f ≤ 1.

Corollary 3. Let ε > 0 be given. Then for any normalized Borel mea-
sure µ on [0, 1]d there exists a point set x1, . . . ,xN ∈ [0, 1]d such that

(12) N ≤ 226dε−2
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and

(13) sup
f

∣∣∣∣ 1N
N∑
n=1

f(xn)−
�

[0,1]d

f(x) dµ(x)

∣∣∣∣ ≤ ε,
where the supremum is taken over all measurable functions f on [0, 1]d which
satisfy VarHK f ≤ 1.

The corollaries follow directly from Theorem 1 together with [2, Theo-
rem 1] and [2, Corollary 1], respectively. Corollary 3 implies that the prob-
lem of integrating d-dimensional functions whose HK-variation is uniformly
bounded with respect to any normalized measure is polynomially tractable.
For more information on tractability see the three volumes on Tractability of
Multivariate Problems by Novak and Woźniakowski [31, 32, 33]. In the case
of the function class being restricted to indicator functions of sets A ∈ A∗
(that is, in the case of the left-hand side of (13) being the star-discrepancy
with respect to µ) Corollary 3 was proved in [18] (without an effective value
for the constant in (12)). It should be noted that the results in [2] are pure
existence results, and that the problem of constructing point sets satisfying
the conclusions of Corollaries 2 and 3 is completely open. This issue is briefly
addressed in Section 5.

The outline of the remaining part of this paper is as follows. Section 2
contains all necessary definitions, and some basic properties of the concepts
needed for our proofs. In Section 3 the proof of Theorems 2 and 3 is given,
as well as the proof of a lemma establishing a connection between the HK-
variation and the HK0-variation (see Lemma 2 below). In Section 4 we de-
duce Theorem 1 from Theorem 3. In Section 5 we discuss Chelson’s result,
which is formulated together with a transformation process which supposedly
transforms low-discrepancy point sets with respect to λ into low-discrepancy
point sets with respect to a general measure µ. We show why this transfor-
mation does not have the alleged properties, and that it does actually work
when the measure µ is of product type.

2. Definitions and basic properties. To define the variation in the
sense of Hardy and Krause, we follow the exposition in [27]; however, ad-
ditionally we pay attention to the fact that we can put the anchor either
to the lower left corner 0 (as in [27]) or to the upper right corner 1 (as
is usually done in the context of discrepancy theory; see for example [25]).
Subsequently, we introduce completely monotone functions, following [27,
Section 3]. We note that a comprehensive survey on HK-variation and its
properties can be found in [36].

Let f(x) be a function on [0, 1]d. Let a = (a1, . . . , ad) and b = (b1, . . . , bd)
be elements of [0, 1]d such that a < b. We introduce the d-dimensional
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difference operator ∆(d), which assigns to the axis-parallel box A = [a,b]
a d-dimensional quasi-volume
(14)

∆(d)(f ;A) =

1∑
j1=0

· · ·
1∑

jd=0

(−1)j1+···+jdf(b1+ j1(a1− b1), . . . , bd+ jd(ad− bd)).

For s = 1, . . . , d, let

0 = x
(s)
0 < · · · < x(s)ms

= 1

be a partition of [0, 1], and let P be the partition of [0, 1]d which is given by

(15)

P = {[x(1)l1 , x
(1)
l1+1]× · · · × [x

(d)
ld
, x

(d)
ld+1] : ls = 0, . . . ,ms − 1, s = 1, . . . , d}.

Then the variation of f on [0, 1]d in the sense of Vitali is given by

(16) V (d)(f ; [0, 1]d) = sup
P

∑
A∈P
|∆(d)(f ;A)|,

where the supremum is extended over all partitions of [0, 1]d into axis-parallel
boxes generated by d one-dimensional partitions of [0, 1], as in (15). For
1 ≤ s ≤ d and 1 ≤ i1 < · · · < is ≤ d, let V (s)(f ; i1, . . . , is; [0, 1]

d) denote the
s-dimensional variation in the sense of Vitali of the restriction of f to the
face

(17) U
(i1,...,is)
d = {(x1, . . . , xd) ∈ [0, 1]d : xj = 1 for all j 6= i1, . . . , is}

of [0, 1]d. Then the variation of f on [0, 1]d in the sense of Hardy and Krause
anchored at 1, abbreviated to HK-variation, is given by

(18) VarHK(f ; [0, 1]
d) =

d∑
s=1

∑
1≤i1<···<is≤d

V (s)(f ; i1, . . . , is; [0, 1]
d).

Note that for the definition of the HK-variation in (18), we add the
d-dimensional variation in the sense of Vitali plus the variation in the sense
of Vitali on all lower-dimensional faces of [0, 1]d which are adjacent to 1. For
the HK0-variation, we take instead the sum over those lower-dimensional
faces which are adjacent to 0. More precisely, let V (s;0)(f ; i1, . . . , is; [0, 1]

d)
denote the s-dimensional variation in the sense of Vitali of the restriction of
f to the face

W
(i1,...,is)
d = {(x1, . . . , xd) ∈ [0, 1]d : xj = 0 for all j 6= i1, . . . , is}.

Then the variation of f on [0, 1]d in the sense of Hardy and Krause anchored
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at 0, abbreviated to HK0-variation, is given by

(19) VarHK0(f ; [0, 1]
d) =

d∑
s=1

∑
1≤i1<···<is≤d

V (s;0)(f ; i1, . . . , is; [0, 1]
d).

For any a ∈ [0, 1]d, a 6= 0, we can define the variation in the sense of
Vitali and the HK0-variation of f on [0,a] in a similar way to the above,
by considering decompositions of [0,a] into axis-parallel boxes instead of
decompositions of [0, 1]d, and again taking a sum over all lower-dimensional
faces adjacent to 0 as in (19). For notational convenience we also define
VarHK0(f ; [0,0]) = 0. Throughout this paper, we simply write VarHK f and
VarHK0 f for VarHK(f ; [0, 1]

d) and VarHK0(f ; [0, 1]
d), respectively.

The HK-variation and the HK0-variation of a function are in general
different; for example, the indicator function f of the closed axis-parallel
box stretching from the point (1/2, . . . , 1/2) to 1 has HK-variation 2d − 1,
but HK0-variation only 1. This difference reflects the fact that on the one
hand the function f can be written as the sum/difference of no less than
2d − 1 indicator functions of axis-parallel boxes which have one vertex at
the origin (which affects the error term in the Koksma–Hlawka inequality
for f in Theorem 1), but on the other hand f is the distribution function of
a measure whose total mass is only 1 (namely the Dirac measure centered
at (1/2, . . . , 1/2); consequently this version of the variation appears in The-
orem 3). This example represents the “worst case”: we will show in Lemma 2
that we always have VarHK ≤ (2d − 1)VarHK0 and vice versa.

We note that by a simple mirroring argument, for any function of bounded
HK-variation f we have

(20) VarHK f = VarHK0 g, where g(x) = f(1− x), x ∈ [0, 1]d;

this relation will be needed in the proof of Theorem 1, and explains why the
HK0-variation turns into the HK-variation when Theorem 3 is used to prove
Theorem 1 (see Section 4).

We will also need the following lemma.

Lemma 1. Let f and g be functions on [0, 1]d which have bounded HK0-
variation. Then for any a,b ∈ [0, 1]d, a ≤ b, we have

VarHK0(f + g; [0,b])−VarHK0(f + g; [0,a])

≤ VarHK0(f ; [0,b]) + VarHK0(g; [0,b])

−VarHK0(f ; [0,a])−VarHK0(g; [0,a]).

Note that as a special case of the lemma (for a = 0) we get

(21) VarHK0(f + g; [0,b]) ≤ VarHK0(f ; [0,b]) + VarHK0(g; [0,b]),

which is just the triangle inequality for the HK0-variation. In a similar way
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we could prove the (well-known) triangle inequality for the HK-variation:

(22) VarHK(f + g) ≤ VarHK f +VarHK g.

Proof of Lemma 1. There exist a number m and axis-parallel boxes

[ai,bi], i = 1, . . . ,m,

such that [a1,b1] = [0,a] and such that
m⋃
i=1

[ai,bi] = [0,b] and [ai,bi) ∩ [aj ,bj) = ∅ for i 6= j.

The system [ai,bi], 1 ≤ i ≤ m, is called a split of [0,b], and for any function
h which has bounded variation on [0, 1]d we have

(23) V (d)(h; [0,b]) =
m∑
i=1

V (d)(h; [ai,bi])

(this is stated, for example, in [36, Lemma 1]). Thus by the triangle inequal-
ity for the variation in the sense of Vitali (which follows directly from the
ordinary triangle inequality for real numbers) we have

V (d)(f + g; [0,b])− V (d)(f + g; [0,a]) =

m∑
i=2

V (d)(f + g; [ai,bi])

≤
m∑
i=2

(
V (d)(f ; [ai,bi]) + V (d)(g; [ai,bi])

)
= V (d)(f ; [0,b])− V (d)(f ; [0,a]) + V (d)(g; [0,b])− V (d)(g; [0,a]).

Similar inequalities hold for the variation in the sense of Vitali on all lower-
dimensional faces of [0,b] adjacent to 0. Since the HK0-variation is defined
as the sum over these variations in the sense of Vitali, and since the required
inequality holds in each summand, we obtain the conclusion of the lemma.

The following lemma establishes the connection between HK-variation
and HK0-variation, which was already announced before the statement of
Theorem 2. Its proof relies upon Theorem 3, and will be given at the end of
Section 3.

Lemma 2. Let f be a function on [0, 1]d which has bounded HK0-vari-
ation. Then f has bounded HK-variation as well, and

VarHK f ≤ (2d − 1)VarHK0 f.

The same statement holds if the roles of HK0-variation and HK-variation
are interchanged.

A function h on [0, 1]d is called completely monotone if for any closed
axis-parallel box A ⊂ [0, 1]d of arbitrary dimension s (where 1 ≤ s ≤ d)
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its s-dimensional quasi-volume ∆(s) generated by the function h is non-
negative (other terms which are used for this property are quasi-monotone,
monotonely monotone and entirely monotone). A function of bounded HK-
variation can be split into the difference of two completely monotone func-
tions; for the two-dimensional case this is mentioned in [1], where it is at-
tributed to Hobson [22]. The following result of Leonov [27] shows a way for
obtaining such a decomposition.

Lemma 3 ([27, Theorem 3]). Let f(x) be a function on [0, 1]d which has
bounded HK0-variation. Then the functions

(24) f1(x) = VarHK0(f ; [0,x]) and f2(x) = f1(x)− f(x)

are completely monotone, and

f(x) = f1(x)− f2(x), x ∈ [0, 1]d.

Note that the decomposition into two completely monotone functions is
not unique. If f has bounded HK0-variation and g, h are completely mono-
tone functions such that f = g − h, then for any completely monotone
function r the two functions f + r and g+ r also form a decomposition of f
as the difference of two completely monotone functions. Thus the decompo-
sition given in Lemma 3 is just one of many possible decompositions of f ;
in particular, it is not the outstanding decomposition which is mentioned in
Theorem 2.

For a completely monotone function h, VarHK0(h; [0,x]) = h(x) − h(0)
(as noted after [27, Definition 2], this follows from equations (6), (7) and The-
orem 1 of [27]). Consequently, for the functions f1, f2 in Lemma 3 we have
VarHK0 f1 = VarHK0 f and VarHK0 f2 = VarHK0 f − f(1) + f(0), which im-
plies that both f1, f2 are of bounded HK0-variation (and thus, by Lemma 2,
also of bounded HK-variation).

A signed measure is a measure which is also allowed to have nega-
tive values. A formal definition can be found for example in [51, Chapter
10]. By the Jordan Decomposition Theorem (see for example [51, Theorem
10.21]) any signed measure ν on a measurable space (Ω,A ) can be uniquely
decomposed into a “positive” and a “negative” part which are orthogonal
to each other. More precisely, there exist measures ν+ and ν− such that
ν+ ⊥ ν− and ν = ν+ − ν−. Here ν+ ⊥ ν− means that there exist two sets
C+, C− ∈ A such that Ω = C+ ∪ C− and C+ ∩ C− = ∅, and such that
ν−(C+) = 0 and ν+(C−) = 0. Furthermore, at least one of the measures
ν+, ν− is finite; as a consequence, if ν is finite, then both ν+ and ν− must
be finite. The pair (ν+, ν−) is called the Jordan decomposition of ν. The
measure |ν| = ν++ν− is called the variation measure of ν, and the quantity
Vartotal ν = |ν|(Ω) = ν+(Ω) + ν−(Ω) is called the total variation of ν.
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3. Functions of bounded variation and signed measures: Proof
of Theorems 2 and 3 and Lemma 2. In the proofs of Theorems 2 and 3
below, only the variation anchored at 0 (that is, the HK0-variation) plays a
role. Subsequently, in Lemma 2, the connection between HK0-variation and
HK-variation is established.

Proof of Theorem 2. Let f be a function on [0, 1]d which has bounded
HK0-variation, and let f1, f2 be the functions defined in Lemma 3. These
functions do not provide the desired decomposition; in fact,

VarHK0 f1 +VarHK0 f2 = f1(1)− f1(0) + f2(1)− f2(0)
= VarHK0 f +VarHK0 f − f(1) + f(0)

= 2VarHK0 f − f(1) + f(0),

and while for any function f of bounded HK0-variation we have

(25) f(1)− f(0) ≤ VarHK0 f,

there is in general no equality in (25). Consequently, the sum of the varia-
tions of the functions f1 and f2 from Lemma 3 is in general larger than the
variation of f .

Instead, we define the functions

f+(x) = 1
2(VarHK0(f ; [0,x]) + f(x)− f(0)),(26)

f−(x) = 1
2(VarHK0(f ; [0,x])− f(x) + f(0)),(27)

for x ∈ [0, 1]d. Then obviously f(x) = f(0) + f+(x) − f−(x) for every x.
Furthermore, since the function f2 in Lemma 3 is completely monotone, the
same is true for the function f− in (27). Now set g = −f . Then it is easily
seen that for any x we have VarHK0(g; [0,x]) = VarHK0(f ; [0,x]). Applying
Lemma 3 to g we see that the function

VarHK0(g; [0,x])− g(x) = VarHK0(f ; [0,x]) + f(x) = 2f+(x) + f(0)

is completely monotone, which implies that so is f+. Thus both f+ and f−
are completely monotone, and we have

VarHK0 f
+ = f+(1)− f+(0) = 1

2(VarHK0 f + f(1)− f(0))
and similarly

VarHK0 f
− = 1

2(VarHK0 f − f(1) + f(0)),

which proves that

VarHK0 f = VarHK0 f
+ +VarHK0 f

−.

It is easily seen that f+(0) = f−(0) = 0, and thus the functions f+ and f−
from (26) and (27) have the properties required in Theorem 2.

It remains to show that this decomposition is the only one satisfying the
statement of Theorem 2. Thus, suppose that g+ and g− are two completely
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monotone functions such that f(x) = f(0) + g+(x)− g−(x) for every x and
g+(0) = g−(0) = 0. Then for every x we have

(28)
g+(x) + g−(x) = VarHK0(g

+; [0,x]) + VarHK0(g
−; [0,x])

≥ VarHK0(f ; [0,x]) = f+(x) + f−(x),

where (28) follows from the triangle inequality for the HK0-variation, that
is, from (21). By adding f+ − f− = g+ − g− to each line of this inequality
we obtain

(29) g+(x) ≥ f+(x), x ∈ [0, 1]d,

and by subtracting the same quantity from each line we similarly get

(30) g−(x) ≥ f−(x), x ∈ [0, 1]d.

Suppose that there exists a point x ∈ [0, 1]d such that g+(x) 6= f+(x).
By (29) this implies g+(x) > f+(x), which together with (30) and the as-
sumption that g+(0) = g−(0) = 0 also implies

VarHK0(g
+; [0,x]) + VarHK0(g

−; [0,x]) = g+(x) + g−(x)(31)
> VarHK0(f ; [0,x]).

By Lemma 1,

VarHK0(g
+; [0,1]) + VarHK0(g

−; [0,1])

−VarHK0(g
+; [0,x])−VarHK0(g

−; [0,x])

≥ VarHK0(f ; [0,1])−VarHK0(f ; [0,x]).

Combining this with (31) we get

VarHK0 g
+ +VarHK0 g

− > VarHK0 f.

Thus the decomposition of f into g+ and g− violates (8), which means that
it does not have the properties required in Theorem 2. Consequently, the
decomposition of f described in Theorem 2 is unique.

We note that the functions f+ and f− are the positive variation and the
negative variation of f , respectively. They could also be defined by taking
into consideration only the positive or only the negative contributions in (16),
respectively, instead of taking absolute values. However, this aspect is not
important for our paper, so we do not pursue it any further.

Proof of Theorem 3(a). Assume that f is a right-continuous function on
[0, 1]d which has bounded HK0-variation. Let f+ and f− be the functions
in the Jordan decomposition of f as in Theorem 2. As noted, both f+ and
f− are completely monotone.

Now we will show that f+ and f− are right-continuous. We define func-
tions f̃+ and f̃− by setting



Functions of bounded variation 157

(32)
f̃+(x) = lim

ε↘0
f+(x1 + ε, x2, . . . , xd),

f̃−(x) = lim
ε↘0

f−(x1 + ε, x2, . . . , xd),

for x = (x1, . . . , xd) ∈ [0, 1)d, and f̃+(x) = f+(x) and f̃−(x) = f−(x)
for x ∈ [0, 1]d \ [0, 1)d. Note that the limits in (32) exist since f+ and f−

are monotone in every coordinate and bounded. By construction, the func-
tions f̃+ and f̃− are right-continuous in the first coordinate, at every point.
Also, both f̃+ and f̃− are completely monotone (this property is inherited
from f+ and f−, respectively). Furthermore VarHK0 f̃

+ = f̃+(1)− f̃+(0) ≤
f+(1)− f+(0) = VarHK0 f

+, and a similar inequality holds for f̃−. We also
have

f̃+(x)− f̃−(x) = lim
ε↘0

(
f+(x1 + ε, x2, . . . , xd)− f−(x1 + ε, x2, . . . , xd)

)
= lim

ε↘0
f(x1 + ε, x2, . . . , xd)− f(0)(33)

= f(x)− f(0),(34)

where we used the fact that f is right-continuous to get from (33) to (34).
Thus by (21) we must actually have

(35) VarHK0 f̃
+ = VarHK0 f

+ and VarHK0 f̃
− = VarHK0 f

−,

and
VarHK0 f̃

+ +VarHK0 f̃
− = VarHK0 f.

Since by construction f̃+(1) = f+(1) and f̃−(1) = f−(1), and since the
functions f̃+ and f̃− are completely monotone, by (35) we have

f̃+(0) = f̃+(1)−VarHK0 f̃
+ = f+(1)−VarHK0 f

+ = f+(0) = 0,

and similarly f̃−(0) = 0. Overall, the functions f̃+ and f̃− have all the
properties required from the decomposition in Theorem 2. However, since
this decomposition is unique, we must have f̃+ = f+ and f̃− = f−. In other
words, the functions f+ and f− must already be right-continuous in the first
coordinate. The same argument can be applied to show that f+ and f− must
be right-continuous in all other coordinates as well.

We can define a set-function ν+f on the elements of A∗ by setting

ν+f ([0,x]) = f+(x) for x ∈ [0, 1]d.

This function can be extended in a unique way into a countably additive
set-function on the algebra of all finite unions of elements of A∗ (here it
is important that f+ is right-continuous, to ensure that the resulting set-
function is countably additive). Finally, by the Carathéodory extension the-
orem, this countably additive set-function can be extended in a unique way
into a measure ν+f on the sigma-field generated by A∗. Since this sigma-field
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consists of the Borel sets on [0, 1]d, the measure ν+f is a Borel measure. All
the necessary extension theorems for this construction are contained in [51,
Chapter 5]; however, this is just the standard construction of how a mul-
tivariate distribution function (namely f+) defines a measure, as described
for example in [23, Chapter 3]. In the same way, we can construct a measure
ν−f from f−. Note that both ν+f and ν−f are finite.

Let δf(0) be the signed Borel measure on [0, 1]d for which

δf(0)(A) =

{
f(0) if 0 ∈ A,
0 otherwise.

We define

(36) νf = ν+f − ν
−
f + δf(0).

Then νf is a finite signed Borel measure, and

νf ([0,x]) = f+(x)− f−(x) + f(0) = f(x) for x ∈ [0, 1]d.

By the Jordan Decomposition Theorem (see the end of the previous section)
there exist measures ν+ and ν− such that ν+ ⊥ ν− and νf = ν+ − ν−.
Furthermore there exist two (Borel) sets C+, C− such that [0, 1]d = C+∪C−
and C+ ∩ C− = ∅, and such that ν−(C+) = 0 and ν+(C−) = 0. It is
not a priori clear that the Jordan decomposition of the measure νf is in
direct correspondence with the Jordan decomposition of the function f , that
ν+f ⊥ ν

−
f , and that (36) already gives the Jordan representation of νf−δf(0).

However, we will now show that this is actually the case.
Let (ν+, ν−) be the Jordan decomposition of νf . We define functions

g+(x) and g−(x) on [0, 1]d by setting

g+(x) = ν+([0,x] \ {0}), g−(x) = ν−([0,x] \ {0})), x ∈ [0, 1]d.

Then it is easily seen that g+ and g− are completely monotone, and that
f(x) = f(0) + g+(x) − g−(x) for all x ∈ [0, 1]d. Furthermore g+(0) =
g−(0) = 0. Let C+, C− be the two sets from above. Then

VarHK0 g
+ = g+(1)− g+(0)︸ ︷︷ ︸

=0

= ν+([0,1] \ {0}))

= ν+(C+ \ {0}) = νf (C
+ \ {0}) = ν+f (C

+)− ν−f (C
+)

≤ ν+f ([0,1]) = f+(1) = VarHK0 f
+.

Similarly we obtain VarHK0 g
− ≤ VarHK0 f

−, which implies

(37) VarHK0 g
+ +VarHK0 g

− ≤ VarHK0 f
+ +VarHK0 f

− = VarHK0 f.

By (21) the inequality sign in (37) must actually be an equality sign. Con-
sequently, f(x) = f(0) + g+(x) − g−(x) is a decomposition having all the
properties described in Theorem 2. Now since the decomposition in Theo-
rem 2 is unique, this implies that f+ = g+ and f− = g−. As a consequence,
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we have

Vartotal νf = ν+([0, 1]d) + ν−([0, 1]d) = f+(1) + f−(1) + |f(0)|
= VarHK0 f + |f(0)|.

This proves part (a) of the theorem.

Proof of Theorem 3(b). Assume that a finite signed measure ν on [0, 1]d

is given. Then by the Jordan Decomposition Theorem there exist two finite
measures ν+ and ν− such that ν = ν+ − ν−, and such that ν+ ⊥ ν−. We
define two functions f+, f− on [0, 1]d by setting

f+(x) = ν+([0,x] \ {0}), f−(x) = ν−([0,x] \ {0}), x ∈ [0, 1]d.

Then f+ and f− are two finite, right-continuous, completely monotone func-
tions. Furthermore, f(x) = f+(x) − f−(0) + ν({0}), x ∈ [0, 1]d, is a right-
continuous function of bounded HK0-variation (since it can be written as the
difference of two finite, completely monotone functions; see [27, Corollary 3]).
As explained in part (a) of this proof, the function f defines measures ν+f
and ν−f and a finite signed measure νf . It is then easily seen that νf coin-
cides with ν, that the pair (ν+f , ν

−
f ) is the unique Jordan decomposition of

νf − δf(0), and that consequently f+ and f− are the Jordan decomposition
of the function f . As a consequence,

VarHK0 f = VarHK0 f
+ +VarHK0 f

− = ν+([0, 1]d \ {0}) + ν−([0, 1]d \ {0})
= Vartotal ν − |ν({0})|︸ ︷︷ ︸

=|f(0)|

,

which proves the theorem.

Proof of Lemma 2. Let a function f on [0, 1]d be given, and assume that
f has bounded HK0-variation. In the first step we assume that f is right-
continuous. Then by Theorems 2 and 3 there exist completely monotone
functions f+ and f− such that (8) holds, and there exists a signed measure
ν which, together with its Jordan decomposition ν = ν+ − ν−, satisfies
(9)–(11).

To calculate the HK-variation of f , we have to calculate its variation in
the sense of Vitali on faces of the form (17). However, the situation becomes
much easier if we separately calculate the variations in the sense of Vitali of
f+ and f− instead. For a completely monotone function h we have

(38) V (d)(h; [0, 1]d) = ∆(d)(h; [0, 1]d).

This equality follows from the fact that for a completely monotone function
all summands in the sum in (16) are non-negative, and consequently this
sum is a sort of telescoping sum, no matter which partition P is chosen
(alternatively, this equality may be deduced from the fact that it trivially
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holds in the one-dimensional case, and that the d-dimensional difference
operator ∆(d) actually is the composition of d one-dimensional difference
operators). For the same reason, the same equality as (38) holds for the
s-dimensional variation in the sense of Vitali V (s) on every s-dimensional
face of [0, 1]d, for 1 ≤ s ≤ d. In particular,

(39) V (s)(h;U
(i1,...,is)
d ) = ∆(s)(h;U

(i1,...,is)
d ),

provided h is completely monotone.
A little combinatorial reasoning now shows that the representation (11)

implies that for any s-dimensional face U (i1,...,is)
d of the form (17), 1 ≤ s ≤ d,

we have

∆(s)(f+;U
(i1,...,is)
d ) = ν+({(x1, . . . , xd) ∈ [0, 1]d : xi1 > 0, . . . , xis > 0})

(this is how a distribution function is used to calculate the measure of a
half-open axis-parallel box). Together with (39) this implies

(40) V (s)(f+;U
(i1,...,is)
d )

≤ ν+({(x1, . . . , xd) ∈ [0, 1]d : xi1 > 0, . . . , xis > 0})
≤ ν+([0, 1]d \ {0}) = f+(1) = VarHK0 f

+.

We note that the number of summands in the definition of the HK-variation
is 2d − 1. Since by (40) each of these summands is bounded by ν+([0, 1]d),
we have

VarHK f
+ ≤ (2d − 1)VarHK0 f

+.

In a similar way we obtain

VarHK f
− ≤ (2d − 1)VarHK0 f

−.

Thus (8) and (22) lead to

VarHK f ≤ VarHK f
+ +VarHK f

− ≤ (2d − 1)VarHK0 f,

which proves the lemma under the additional assumption that f is right-
continuous.

Without assuming that f is right-continuous we can still use Theorem 2
to find a Jordan decomposition f = f+− f− of f , but the functions f+ and
f− are (in general) not right-continuous and consequently cannot be used
to define a measure (as in Theorem 3). However, as (38) and (39) show, the
variation in the sense of Vitali (on [0, 1]d as well as on lower-dimensional
faces) of a completely monotone function h depends only on the values of
h at the corners of [0, 1]d, and consequently the same must be true for the
HK0-variation and the HK-variation of h. We set

f+(x1, . . . , xd) = f(τ(x1), . . . , τ(xd)) for x = (x1, . . . , xd) ∈ [0, 1]d,
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where τ(y) = 0 for 0 ≤ y < 1 and τ(1) = 1. Informally speaking, the value
of f+ at a point x is the value of f at the maximal corner of [0, 1]d which
is ≤ x. Trivially f+ coincides with f+ on all corners of [0, 1]d, and it is easy
to see that f+ is also completely monotone. Furthermore, f+(0) = 0 and
f+ is right-continuous. Thus, since we have already shown the lemma for
right-continuous functions, we have

VarHK f+︸ ︷︷ ︸
=VarHK f+

≤ (2d − 1)VarHK0 f+︸ ︷︷ ︸
=VarHK0 f+

.

A similar inequality holds for f−. Together with (8) and (22) this proves the
lemma also in the case when f is not right-continuous.

To show that the statement of the lemma also holds when the role of
the HK0-variation and the HK-variation are interchanged, we define g(x) =
f(1−x) for x ∈ [0, 1]d. Then by (20) and by the version of the lemma which
we proved above we have

VarHK0 f = VarHK g ≤ (2d − 1)VarHK0 g = (2d − 1)VarHK f.

4. A Koksma–Hlawka inequality for general measures: proof of
Theorem 1. The proof of Theorem 1 follows similar proofs in [8, Theorem
C.1.4] and [35, Theorem 3.2].

Let x1, . . . ,xN be given. Throughout the proof we may assume without
loss of generality that f(1) = 0 (since otherwise we may replace f(x) by
f(x) − f(1), which changes neither the left-hand side nor the right-hand
side of (6)).

In a first step, we assume that f is left-continuous. We define the function
g(x) = f(1 − x) for x ∈ [0, 1]d. Since we assumed that f is left-continuous
and f(1) = 0, this clearly implies that g is right-continuous and g(0) = 0.
Furthermore, by (20), we have VarHK0 g = VarHK f . Now we apply Theo-
rem 3 to g. Let ν be the signed measure from Theorem 3 which is defined
by g. Let ν̂ be the “reflected” measure of ν, which satisfies

ν̂(A) = ν(1−A)

for any Borel set A ⊂ [0, 1]d, where we write 1 − A = {1 − x : x ∈ A}.
It is easily verified that the fact that ν is a signed Borel measure implies
that ν̂ is a signed Borel measure as well, and that they have the same total
variation. Let |ν̂| be the variation measure of ν̂ (see the end of Section 2);
then according to the previous remarks and Theorem 3 we have

(41) Vartotal ν̂ = VarHK0 g + |g(0)| = VarHK f.

Now on the one hand,
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1

N

N∑
n=1

f(xk) =
1

N

N∑
n=1

g(1− xk) =
�

[0,1]d

1

N

N∑
n=1

1[0,1−xn](y) dν(y)

=
�

[0,1]d

1

N

N∑
n=1

1[xn,1](y) dν̂(y) =
�

[0,1]d

1

N

N∑
n=1

1[0,y](xn) dν̂(y).

On the other hand, in a similar way, by Fubini’s theorem we have�

[0,1]d

f(x) dµ(x) =
�

[0,1]d

�

[0,1]d

1[0,1−x](y) dν(y) dµ(x)

=
�

[0,1]d

�

[0,1]d

1[x,1](y) dν̂(y) dµ(x)

=
�

[0,1]d

�

[0,1]d

1[0,y](x) dν̂(y) dµ(x)

=
�

[0,1]d

�

[0,1]d

1[0,y](x) dµ(x) dν̂(y) =
�

[0,1]d

µ([0,y]) dν̂(y).

Consequently∣∣∣∣ 1N
N∑
n=1

f(xk)−
�

[0,1]d

f(x) dµ(x)

∣∣∣∣
≤

�

[0,1]d

∣∣∣∣ 1N
N∑
n=1

1[0,y](xn)− µ([0,y])
∣∣∣∣︸ ︷︷ ︸

≤D∗
N (x1,...,xN ;µ)

d|ν̂|(y)≤D∗N (x1, . . . ,xN ;µ)Vartotal ν̂.

Together with (41) this proves the theorem in the case that f is left-contin-
uous.

Now we show that we can reduce the general case to that of f being left-
continuous. Let f be given. By the strong law of large numbers and by the
multidimensional Glivenko–Cantelli theorem (see for example [45, Chapter
26]) for any ε > 0 there exist a number M and points y1, . . . ,yM ∈ [0, 1]d

such that

(42)
∣∣∣∣ 1M

M∑
m=1

f(ym)−
�

[0,1]d

f(x) dµ

∣∣∣∣ ≤ ε
and

(43) D∗N (y1, . . . ,yM ;µ) ≤ ε.
Set

G = {0,1,x1, . . . ,xN ,y1, . . . ,yM},
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and let H be the d-dimensional grid that is generated by the elements of G,
that is, the set of all points in z ∈ [0, 1]d such that the jth coordinate
of z appears as the jth coordinate of an element of G, for 1 ≤ j ≤ d. For
x ∈ [0, 1]d, let succ(x) denote the uniquely defined element z of H for which
x ≤ z and for which z ≤ y for all y ∈ H such that x ≤ y. Informally
speaking, succ(x) is the smallest element of H which is ≥ x (that is, succ(x)
is the successor of x within H). We define a function f̃ by setting

f̃(x) = f(succ(x)), x ∈ [0, 1]d.

Note that by construction f̃(z) = f(z) for all points z ∈ G. Furthermore,
by construction the function f̃ is left-continuous. Additionally, it is easily
seen that VarHK f̃ ≤ VarHK f . Since we have already proved the theorem for
left-continuous functions, we get∣∣∣∣ 1N

N∑
n=1

f(xn)︸ ︷︷ ︸
=f̃(xn)

−
�

[0,1]d

f(x) dµ

∣∣∣∣
≤
∣∣∣∣ 1N

N∑
n=1

f̃(xn)−
�

[0,1]d

f̃(x) dµ

∣∣∣∣+ ∣∣∣∣ �

[0,1]d

f̃(x) dµ− 1

M

M∑
m=1

f̃(ym)︸ ︷︷ ︸
=f(ym)

∣∣∣∣(44)

+

∣∣∣∣ 1M
M∑
m=1

f(ym)−
�

[0,1]d

f(x) dµ

∣∣∣∣.(45)

The first term in (44) is at most (VarHK f̃)D
∗
N (x1, . . . ,xN ;µ), since f̃ is left-

continuous. The second term in (44) is at most εVarHK f̃ , also since f̃ is left-
continuous and by (43). Finally, the term in (45) is at most ε by (42). Since
VarHK f̃ ≤ VarHK f and since ε > 0 was arbitrary, this proves Theorem 1.

5. Transformations of point sets and Chelson’s general Koksma–
Hlawka inequality. In this section we will present the transformation
method proposed by Chelson [12], which supposedly transforms a low-dis-
crepancy point set with respect to the uniform measure into a low-discrep-
ancy point set with respect to a general measure µ. We will show, contrary
to what is claimed in [12], that this transformation method generally fails,
and only gives the desired result in the case when µ is of product type.

Before turning to Chelson’s method, we want to note that the problem of
transforming a low-discrepancy sequence with respect to the uniform mea-
sure into a low-discrepancy sequence with respect to another measure µ has
been considered by several other authors, for example in [16, 20, 21, 44]. Let
x1, . . . ,xN be a point set in [0, 1]d. If µ is of product type, that is, if it is the
d-dimensional product measure of d one-dimensional measures, and if µ has



164 C. Aistleitner and J. Dick

a density (with respect to λ), then in [16, 21] transformation methods are
presented which (in a computationally tractable way) generate a sequence
y1, . . . ,yN ∈ [0, 1]d such that

D∗N (y1, . . . ,yN ;µ) ≤ c(d, µ)D∗N (x1, . . . ,xN ).

In the case of more general measures, the known results are much less satis-
factory. Even under some technical assumptions on µ, the best known trans-
formation [21] only gives

D∗N (y1, . . . ,yN ;µ) ≤ c(d, µ)(D∗N (x1, . . . ,xN ))
1/d.

Chelson claims that even in the general case one can reach

D∗N (y1, . . . ,yN ;µ) = D∗N (x1, . . . ,xN ),

but as noted his argument is incorrect.
Now we turn to the description of the transformation method suggested

in [12]. We change the notation (in such a way that it fits the rest of the
paper) and simplify some statements, but our exposition is a truthful re-
narration of the presentation in [12]. Let g(y1, . . . , yd) be a probability density
on [0, 1]d, let G(y1, . . . , yd) be its distribution function, and let µG be the
corresponding probability measure. We require that g is non-zero on [0, 1]d.
Let g1 be defined by

g1(y1) =

1�

0

. . .

1�

0︸ ︷︷ ︸
d−1 integrals

g(y1, . . . , yd) dy2 . . . dyd,

that is, g1 is the marginal density for y1. Let G1(y1) be the distribution
function of g1, and let G−11 be its inverse (which exists because g is positive).
Similarly, for 2 ≤ s < d, let

g1,...,s(y1, . . . , ys) =

1�

0

. . .

1�

0︸ ︷︷ ︸
d−s integrals

g(y1, . . . , ys) dys+1 . . . dyd

be the marginal density for y1, . . . , ys. Note that g1,...,d = g. Then, for 1 ≤
s ≤ d, let

gs(ys) = g(ys|y1, . . . , ys−1) =
g1,...,s(y1, . . . , ys)

g1,...,s−1(y1, . . . , ys−1)
.

Furthermore, let Gs(ys) be the (conditional) distribution function of gs(ys),
that is,

(46) Gs(ys) = Gs(ys|y1, . . . , ys−1) =
ys�

0

g(us|y1, . . . , ys−1) dus.

Let G−1s denote the inverse of Gs.
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Chelson introduced the transformation as follows:
Let x = (x1, . . . , xd) ∈ [0, 1]d be given. First, set z1 = G−1

1 (x1). Then
set z2 = G−1

2 (x2), and so on, until zd = G−1
d (xd). This gives a number

z = (z1, . . . , zd) ∈ [0, 1]d. Note that the values z1, z2, . . . must be calculated
sequentially, since each depends on those which are already chosen (5). We
write T for the transformation which maps x 7→ Tx = z in this way.

It is not mentioned in [12], but this transformation is the Rosenblatt trans-
formation, which was introduced in [42].

Chelson proves that if X is a uniformly distributed random variable on
[0, 1]d, then Z = TX has distribution µG. This is true, and was also shown
in [42]. However, Chelson also claims the following [12, Theorem 2-5]:

Let x1, . . . ,xN be a sequence in [0, 1]d, and let z1 = Tx1, . . . , zN = TxN

be its image under the transformation T described above. Then

(47) D∗
N (z1, . . . , zN ;µG) = D∗

N (x1, . . . ,xN ).

For the “proof”, Chelson [12, p. 29] argues as follows:
We define a vector-valued function G̃(z) : [0, 1]d 7→ [0, 1]d by

(48) G̃(z) = (G1(z1), . . . , Gd(zd)).

Then, by construction, for any a ∈ [0, 1]d,

(49)
N∑

n=1

1[0,a](zn) =

N∑
n=1

1[0,G̃(a)](xn),

since by z ≤ a for z = Tx we mean
z1 = G−1

1 (x1) ≤ a1,
...

zd = G−1
d (xd) ≤ ad,

and this occurs if and only if xs ≤ Gs(as) for 1 ≤ s ≤ d.

This looks reasonable, but is actually false. We will give a counterexample
below. Chelson continues claiming that

(50) µG([0,a]) = λ([0, G̃(a)]).

This is also false (again see the counterexample below). The error comes
from treating the dependent functions

G1(y1), G2(y2 | y1), . . . , Gd(yd | y1, . . . , yd−1)
as independent functions

G1(y1), G2(y2), . . . , Gd(yd).

In the definition (46) the dependent nature of G1, . . . , Gd is suppressed
merely in order to shorten formulas; however, it seems that by suppress-

(5) The dependent nature of the inverse functions is suppressed in Chelson’s notation.
What is meant is that z2 = G−1

2 (x2|z1), . . . , zd = G−1
d (xd|z1, . . . , zd−1), which explains

why the values z1, . . . , zd have to be calculated consecutively.
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ing the dependent nature of G1, . . . , Gd in the notation, Chelson made the
error of simply ignoring this dependence, which of course is not justified (6).
A correct form of (49) and (50) would require the set {G̃(y) : y ∈ [0,a]}
instead of [0, G̃(a)] on the right-hand side of the equation; however, because
of the dependent nature of G1, . . . , Gd the set {G̃(y) : y ∈ [0,a]} is in gen-
eral not an axis-parallel box, and consequently the discrepancy of x1, . . . ,xN
cannot be used to estimate the number of elements of the original point set
which are contained in such a set (see the example below).

In dimension d = 1, Chelson’s claim is right (there are no conditional
distributions in this case). The simplest counterexample can be given for
d = 2 and N = 1. For instance, let the density g be given by

g(y) =

{
1/2 if y1 ≤ y2,
3/2 if y1 > y2,

for y = (y1, y2) ∈ [0, 1]2.

Thus g = 1/2 on the upper left half of the unit square divided by the diagonal
linking 0 to 1, and g = 3/2 on the lower right half. Clearly g is a probability
density, and g is positive. Note that g cannot be written as the product of
two one-dimensional densities. Constructing g1 and g2 in the way described
above, we get

g1(y1) =

1�

0

g(y1, y2) dy2 = (3/2)y1 + (1/2)(1− y1) = y1 + 1/2,

g2(y2|y1) =
g(y1, y2)

g1(y1)
=


1

1 + 2y1
if y1 ≤ y2,

3

1 + 2y1
if y1 > y2.

Accordingly, we get

G1(y1) =
y21 + y1

2
, G2(y2|y1) =


y2 + 2y1
1 + 2y1

if y1 ≤ y2,

3y2
1 + 2y1

if y1 > y2.

Let x be the point x = (x1, x2) = (56/81, 20/23). The transformed point
is z = Tx = (7/9, 20/27), since

G1

(
7

9

)
=

56

81
and G2

(
20

27

∣∣∣∣79
)

=
20

23
.

Let a = (1, 8/10). For the function G̃ defined in (48) we have G̃(1, 8/10) =
(1, 8/10). According to (49) we should have

1[0,a](z) = 1[0,G̃(a)](x).

(6) To be more precise, the dependent nature of G1, . . . , Gd is only irrelevant when G
is of product form; in this case the conditional one-dimensional distributions are just the
(unconditional) one-dimensional distributions of the product representation themselves,
and the transformation method works correctly; see Theorem 4 below.
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However, instead we have

1[0,a](z) = 1[0,(1,8/10)]

((
7

9
,
20

27

))
= 1,

but

1[0,G̃(a)](x) = 1[0,(1,8/10)]

((
56

81
,
20

23

))
= 0.

Thus (48) fails to hold. In a similar way we can show that the claim (50) is
also false. We have

µG([0,a]) =
�

[0,(1,8/10)]

g(y) dµG =
22

25
= 0.88, but λ([0, G̃(a)]) =

8

10
.

Now it is not surprising anymore that (47) is also false. After some calcula-
tions we get

D∗N (z;µG) = µG

([
0,

(
1,

20

27

)])
=

610

729
≈ 0.84,

but

D∗N (x) = λ

([
0,

(
1,

20

23

)])
=

20

23
≈ 0.87.

As already mentioned, the error is caused by ignoring the fact that the
function G2(y2) = G2(y2 | y1) depends on y1 (and not only on y2), and by
the incorrect assumption that the image of an axis-parallel box under G̃ is
again an axis-parallel box. Figure 1 shows, for the example above, the set
A = {G̃(y) : y ∈ [0,a]}, the set B = [0, G̃(a)], and the point x. Note that
A and B do not coincide, and A is not an axis-parallel box.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Fig. 1. The sets A (everything below the dotted line) and B (everything below the solid
line), and the point x. We have x ∈ A, so z ∈ [0,a], but x /∈ B.



168 C. Aistleitner and J. Dick

Chelson’s generalized Koksma–Hlawka inequality is mentioned several
times in the literature; it is explicitly stated, in differing forms, in [16, 17, 35,
39, 40, 41, 46, 47]. In some of these instances it is stated without the transfor-
mation procedure and without using the incorrect identity (47) (which means
that in those cases it is stated roughly in the same form as our Theorem 1
or Corollary 1). In other cases, the transformation from uniform distribution
to another distribution and the (incorrect) identity (47) are explicitly ac-
centuated. For example, after stating Chelson’s theorem in its original form,
in [47] the authors write

It is important to note in [the statement of Chelson’s theorem] that even
though the sampling technique has changed the sequence used to evaluate
[the function], the discrepancy appearing in the error bound is still that of
the original sequence.

A generalization of Chelson’s results is apparently contained in the PhD the-
sis of Maize [28], which we cannot access (but judging from the statement
of [47, Theorem 4.2], it probably suffers from the same problem as Chelson’s
original results). In [35] a generalization of Chelson’s results is “proved”, re-
peating Chelson’s errors. Actually, in [35] the author proves the analogue
of (47) only in the one-dimensional case (in which it is true) and writes that
the generalization to higher dimensions is straightforward (which is actually
not the case). It seems that the first time that a correct version of (47) is
stated in the literature is in [40, Theorem 5], where it is assumed that the
measure µ has a density which is the product of d one-dimensional densities.
Strangely, in [40] this result is attributed to [35], where the additional as-
sumption that µ is of product form does not appear (and the result is stated
in an incorrect form, as noted above). However, it is easy to see that the
assumption that µ has a density is not necessary in order to ensure that the
µ-discrepancy of the transformed point set is dominated by the discrepancy
of the original point set when µ is of product form. Thus a general correct
version of (47) would look as follows.

Theorem 4. Let µ be a normalized Borel measure on [0, 1]d, and let G(x)
be its distribution function. Assume that there exist d one-dimensional nor-
malized Borel measures µ1, . . . , µd having distribution functions G1, . . . , Gd
such that

G(x1, . . . , xd) =

d∏
s=1

Gs(xs).

Let
G−1s (y) = min{y ∈ [0, 1] : Gs(x) ≥ y}, y ∈ [0, 1],

be the (pseudo-)inverse of Gs for s = 1, . . . , d. Let T be the transformation
on [0, 1]d which maps a point x ∈ [0, 1]d to

T (x) = T (x1, . . . , xd) = (G−11 (x1), . . . , G
−1
d (xd)).
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Let x1, . . . ,xN be a set of points in [0, 1]d. Then
(51) D∗N (T (x1), . . . , T (xN );µ) ≤ D∗N (x1, . . . ,xN ).

If all the functions G1, . . . , Gd are invertible, then in (51) we have equality.
Proof. We define a function T̃ which maps y = (y1, . . . , yd) to T̃ (y) =

(G1(y1), . . . , Gd(yd)). Let A ∈ A∗ be given, and let T̃ (A) denote the set
{T̃ (x) : x ∈ A}. Note the important fact that T̃ (A) is again an element
of A∗. We have

1

N

N∑
n=1

1A(T (xn))︸ ︷︷ ︸
=1T̃ (A)(xn)

− µ(A)︸ ︷︷ ︸
=
∏d

s=1Gs(as)

=
1

N

N∑
n=1

1T̃ (A)(xn)− λ(T̃ (A)).

Taking absolute values and the supremum over all sets A ∈ A∗ yields (51).
If all functions G1, . . . , Gd are invertible, then the mapping A 7→ T (A)

is a bijection from the class A∗ to itself, and T̃ is the inverse of T . Thus
in this case the suprema supA∈A∗ and supT̃ (A):A∈A∗ coincide, which implies
that in (51) there must be equality.
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