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Vinogradov's exponential sum over primesby
Xiumin Ren (Jinan)

1. Introdution. Exponential sums play an important role in numbertheory. Non-trivial upper bound estimates for various exponential sums leadto solutions to problems from equi-distribution theory and additive numbertheory. In this paper, we are onerned with the exponential sum
Sβ(k, x) =

∑

x<m≤2x

Λ(m)e(kαmβ),(1.1)where x ≥ 2 and k ≥ 1 are the main parameters, α 6= 0 and 0 < β < 1are �xed, Λ(m) is the von Mangoldt funtion, and e(z) = e2πiz. We all
Sβ(k, x) Vinogradov's exponential sum, sine it was �rst onsidered by I. M.Vinogradov in the speial ase β = 1/2. Atually he proved (see [10, Chap-ter III, Setion 4, Theorem 6℄) that, for k ≤ x1/10,

S1/2(k, x) ≪ k1/4x7/8+ε,(1.2)where the implied onstant may depend on α. Iwanie and Kowalski (see [4,(13.55)℄) remarked that the stronger inequality
S1/2(1, x) ≪ x5/6 log4 x(1.3)follows from an appliation of Vaughan's identity. For general β and k as in(1.1), Murty and Srinivas [6℄ proved reently that

Sβ(k, x) ≪ k1/8x(7+β)/8 log(xk3).(1.4)They also onsidered the orresponding exponential sum over integers, andobtained the bound
∑

m≤x

e(kmβ) ≪ k1/4x(2+β)/4 log(xk3).In this diretion, we will prove the following result, where the impliedonstants may depend on α and β.2000 Mathematis Subjet Classi�ation: 11L07, 11L20, 11N05.Supported by the National Natural Siene Foundation (grant no. 10571107).[269℄



270 X. M. RenTheorem 1.(i) We have
Sβ(k, x) ≪ (k1/2x(1+β)/2 + x4/5 + k−1/2x1−β/2) logA x,where A is an absolute positive onstant.(ii) For β ≤ 1/2 and k ≤ x1/2−β, we have
Sβ(k, x) ≪ (k1/10x3/4+β/10 + k−1/2x1−β/2) log11 x.(iii) Under the density hypothesis for the Riemann zeta-funtion, we have
Sβ(k, x) ≪ (k1/2x(1+β)/2 + k−1/2x1−β/2) logB xfor some positive onstant B > 2.For the density hypothesis, the reader is referred to the statement after(2.3). Here we point out that the Riemann hypothesis implies the densityhypothesis. Moreover, if the density hypothesis is replaed by the Lindelöfhypothesis in Theorem 1(iii), the assertion is true but with logB x replaedby xε, where ε > 0 is arbitrary (see the Remark after Lemma 2.1).Theorem 1 with β = 1/2 gives, unonditionally,
S1/2(k, x) ≪ (k1/2x3/4 + x4/5) logA x,(1.5)
S1/2(1, x) ≪ x4/5 log11 x,(1.6)and, under the density hypothesis,

S1/2(k, x) ≪ k1/2x3/4 logB x.(1.7)Obviously, Theorem 1(i) improves (1.4), while (1.5) and (1.6) improve (1.2)and (1.3), respetively.The onditional result (1.7) is known to experts. For example, Iwanie,Luo, and Sarnak [5℄ studied the exponential sum
T (q, x) =

∑

x<n≤2x
n≡a (mod q)

Λ(n)e(2
√
n/q),

whih, roughly speaking, is S1/2(2, x) but with n in the arithmeti progres-sion n ≡ a (mod q) with (a, q) = 1. They pointed out that the estimate
T (q, x) ≪ x3/4+ε follows from the density hypothesis, and onjetured that(see [5, Hypothesis S, (1.62)℄)

T (q, x) ≪ x1/2+ε,(1.8)where the implied onstant depends only on ε. They were the �rst to showthat the lassial GL1 exponential sums suh as T (q, x) or Sβ(k, x) are inti-mately onneted to the Riemann hypothesis for L-funtions of GL2. Atu-ally they proved that (1.8) implies a quasi-Riemann hypothesis for L(s, f),



Vinogradov's exponential sum over primes 271i.e., the existene of a zero-free strip, where f is any holomorphi usp formof integral weight.Vinogradov was led to S1/2(k, x) via his study of
A(δ, x) = #{p ≤ x : {α√p} < δ},where 0 < δ ≤ 1 and α > 0 are �xed, and {α√p} is the frational part of

α
√
p. Using (1.2), he proved that

A(δ, x) = δπ(x) +O(x9/10+ε),(1.9)where π(x) is the ounting funtion for prime numbers (see [10, Chapter III,Setion 4, Theorem 7℄). Reall that a sequene (xn) of numbers in [0, 1] is saidto be equi-distributed modulo 1 if for any �xed real numbers 0 ≤ a < b ≤ 1we have
1

x
#{n ≤ x : a ≤ xn ≤ b} → b− aas x→ ∞.We dedue from our Theorem 1 the following strong form of equi-distribution of {αpβ}, where the length δ of the interval may vary with x.Theorem 2. Let α 6= 0, 0 < β < 1, and 0 ≤ d < 1. Let δ(x) be anyfuntion suh that 0 < δ(x) ≤ 1 − d, and let

Aβ(δ, x) = #{p ≤ x : d ≤ {αpβ} ≤ d+ δ(x)}.Then
Aβ(δ, x) = δ(x)π(x) +O((x(2+β)/3 + x1−β/2) logA+1 x)for x ≥ 2, where the implied onstant depends only on β and α. In partiular ,the sequene {αpβ} is equi-distributed modulo 1.Taking β = 1/m, α = 1/2, d = 0 and δ(x) = 1/2, we �nd that

A1/m(1/2, x) is the number of primes whih do not exeed x and lie inthe intervals [(2n)m, (2n + 1)m) for integers n. Theorem 2 thus gives thefollowing result.Corollary 3. Fix a positive integer m ≥ 2. Then the number of primeswhih do not exeed x and lie in the intervals [(2n)m, (2n + 1)m) for inte-gers n, is
1
2π(x) +O(x1−θm logA+1 x),(1.10)where
θm =

{

1/6 if m = 2,

1/2m if m ≥ 3,and A is the same as in Theorem 1.In the speial ase m = 2, (1.10) in Corollary 3 redues to
1
2π(x) +O(x5/6+ε).



272 X. M. RenThis improves Vinogradov's result whih has the greater error term O(x9/10+ε)as a onsequene of his (1.9).Vinogradov proved his results by elementary methods; in ontrast, we willapply analyti methods to establish Theorem 1. Our main tools are mean-value estimates of Dirihlet polynomials and lassial zero-density estimatesfor the Riemann zeta-funtion.Combined with new ingredients, the idea in the present paper an alsobe used to investigate exponential sums of the form
∑

x<m≤2x

µ(m)e(kαmβ),(1.11)where µ(m) is the Möbius funtion. This will appear elsewhere.Di�erent ideas have been used by the author [8℄ to get new upper boundestimates for the exponential sum
∑

x<m≤2x

Λ(m)e(mκα),(1.12)where κ is a �xed positive integer, and α ∈ [0, 1]. This sum is di�erent from(1.1) in two aspets: (i) κ > 0 is an integer, (ii) it has the parameter α ∈ [0, 1]instead of the kα in (1.1). The reader is referred to [8℄ for an upper boundestimate of (1.12).2. Proof of the main resultsLemma 2.1. Let r be a positive integer and l = 2r + 1. Suppose that for
T ≥ 2 and v = 0, 1, there exists Cr ≥ 0 suh that

T\
−T

|ζ(v)(1/2 + it)|2r dt≪ T logCr T.(2.1)Then
Sβ(k, x) ≪ (k1/2x(1+β)/2 + x3/4+1/4l + k−1/2x1−β/2) logDr x,where Dr is an absolute positive onstant depending on r, and the impliedonstant may depend on α, β and r.

Remark. If we replae logCr T by T ε in (2.1), the assertion is true butwith logDr x replaed by xε. Note that under the Lindelöf hypothesis, onean let r → ∞, and thus get
Sβ(k, x) ≪ xε(k1/2x(1+β)/2 + k−1/2x1−β/2).We will prove Lemma 2.1 in Setion 3.Let N(σ, T ) denote the number of zeroes of the Riemann zeta-funtion

ζ(s) in the region
0 < ℜs ≤ σ ≤ 1, |ℑs| ≤ T.



Vinogradov's exponential sum over primes 273The zero-density theorems state that there exist funtions B(σ) satisfying
0 ≤ B(σ) ≤ 1 for 1/2 ≤ σ ≤ 1 suh that

N(σ, T ) ≪ TB(σ) logE T, where E ≥ 0.(2.2)By (1.7) and (1.8) in Huxley [3℄, the above estimate (2.2) is true for B(σ) =
A(σ)(1 − σ) and E = 9, where

A(σ) =

{

3/(2 − σ) if 1/2 ≤ σ ≤ 3/4,

12/5 if 3/4 < σ ≤ 1.
(2.3)The density hypothesis states that (2.2) is true for B(σ) = 2(1 − σ) andsome E > 0.Lemma 2.2. In terms of (2.2), we have
Sβ(k, x) ≪ (k1/2x(1+β)/2 + max

1/2<σ≤1
kB(σ)−1/2xf(σ,β) + k−1x1−β) log2+E x,where

f(σ, β) = σ + βB(σ) − β/2,(2.4)and the implied onstant may depend on α and β.The proof of Lemma 2.2 is postponed until the last setion of the paper.With Lemmas 2.1 and 2.2, the proof of Theorem 1 is immediate.Proof of Theorem 1. (i) The fourth power moment estimate for
ζ(ν)(1/2+ it) reveals that (2.1) is true for r = 2 and C2 = 8 (see for example[7, Chapter III℄). By Lemma 2.1, we get

Sβ(k, x) ≪ (k1/2x(1+β)/2 + x4/5 + k−1/2x1−β/2) logA x,where A = D2 is an absolute positive onstant.(ii) By Lemma 2.2 with A(σ) as in (2.3) and E = 9, we obtain
Sβ(k, x) ≪ (k1/2x(1+β)/2 + max

1/2<σ≤1
kA(σ)(1−σ)−1/2xf(σ,β) + k−1x1−β) log11 x,where, by (2.4),

f(σ, β) = σ + βA(σ)(1 − σ) − β/2.For 3/4 < σ ≤ 1, we have
kA(σ)(1−σ)−1/2xf(σ,β) = (k12/5x12β/5−1)1−σk−1/2x1−β/2.Thus for 0 < β < 1,

max
3/4<σ≤1

kA(σ)(1−σ)−1/2xf(σ,β) = max{k1/10x3/4+β/10, k−1/2x1−β/2}.For 1/2 < σ ≤ 3/4, we have
kA(σ)(1−σ)−1/2xf(σ,β) = k5/2x5β/2g(σ),where g(σ) = k−3/(2−σ)x−3β/(2−σ)+σ.
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(2 − σ)2

g′(σ)

g(σ)
= −3 log k + ((2 − σ)2 − 3β) logx

≥ −3 log k + (25/16 − 3β) log x,we have g′(σ) ≥ 0 for k ≤ x25/48−β. Hene
max

1/2≤σ≤3/4
kA(σ)(1−σ)−1/2xf(σ,β) = k5/2x5β/2g(3/4) = k1/10x3/4+β/10.Therefore, for 0 < β ≤ 1/2 and k ≤ x1/2−β, we have

Sβ(k, x) ≪ (k1/2x(1+β)/2 + k1/10x3/4+β/10 + k−1/2x1−β/2) log11 x.(iii) By the density hypothesis with B(σ) = 2(1− σ) and some E > 0 in(2.2), we have
f(σ, β) = (1 − 2β)σ + 3β/2in (2.4). Thus

kB(σ)−1/2xf(σ,β) = (k2x2β−1)1−σk−1/2x1−β/2.It follows that
max

1/2<σ≤1
kB(σ)−1/2xf(σ,β) = max{k1/2x(1+β)/2, k−1/2x1−β/2}.By Lemma 2.2, we get

Sβ(k, x) ≪ (k1/2x(1+β)/2 + k−1/2x1−β/2) logB x,where B = 2 + E.To prove Theorem 2, we reord the following results of Vinogradov (see[10, Chapter III, Setion 2, Lemmas 2 and 3℄).Lemma 2.3. Let ̺ be a positive integer. Let a, b and ∆ be real numberssuh that 0 < ∆ < 1/10, ∆ ≤ b − a ≤ 1 − ∆. Then there exists a periodifuntion ψ(x) of period 1 having the following properties:(1) ψ(x) = 1 in the interval a+∆/2 ≤ x ≤ b−∆/2,(2) 0 ≤ ψ(x) ≤ 1 in the interval −∆/2 ≤ x ≤ a +∆/2 and b −∆/2 ≤
x ≤ b+∆/2,(3) ψ(x) = 0 in the interval b+∆/2 ≤ x ≤ 1 + a−∆/2,(4) ψ(x) an be expanded in a Fourier series of the type

ψ(x) = b− a+
∞

∑

m=1

(gme(mx) + hme(−mx)),where gm and hm depend only on m, a, b, ∆, and
|gm| ≤ km, |hm| ≤ km, with km =

{

1/πm if m ≤ ∆−1,

(̺/πm∆)̺/πm if m > ∆−1.



Vinogradov's exponential sum over primes 275Lemma 2.4. Let δ1, . . . , δQ be numbers in the interval [0, 1]. Let numbers
̺, a, b, ∆ and the funtion ψ(x) satisfy the onditions of Lemma 2.3, anda number R satisfy the ondition R > ∆Q. For the sum

U(a, b) =

Q
∑

s=1

ψ(δs),let
U(a, b) − (b− a)Q≪ R.For any σ suh that 0 < σ ≤ 1, let Aσ be the number of δs satisfying δs < σ.Then

Aσ = σQ+Rσ, where Rσ ≪ R.Proof of Theorem 2. In the notation of Lemma 2.3, let ̺ be an arbitrarilylarge positive integer and
∆ = ∆(β) = xmax{−β/2,(β−1)/3}.For real numbers a, b satisfying the onditions of Lemma 2.3, let ψ(x) =

ψ(β, x) be given in the lemma. For prime numbers p ≤ x, let δp = {αpβ}.Consider the sum
U(a, b) =

∑

p≤x

ψ(δp).

Then by Lemma 2.3(4), we have
U(a, b) − (b− a)π(x) ≪

∞
∑

k=1

Hk(β)|Tk(β)|,(2.5)
where

Tk(β) =
∑

p≤x

e(kαpβ),

and
Hk(β) =

{

1/k if k ≤ ∆−1,

1/∆̺k1+̺ if k > ∆−1.
(2.6)
By partial summation and Theorem 1(i), we easily obtain

Tk(β) ≪ (k1/2x(1+β)/2 + x4/5 + k−1/2x1−β/2) logA x.(2.7)Let H = ∆−(1+1/̺). By (2.6), (2.7), and the trivial bound Tk(β) ≪ x, theright-hand side of (2.5) is
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≪

∆−1

∑

k=1

1

k
(k1/2x(1+β)/2 + x4/5 + k−1/2x1−β/2) logA x

+∆−̺
∑

∆−1<k≤H

1

k1+̺
(k1/2x(1+β)/2 + x4/5 + k−1/2x1−β/2) logA x+ x(∆H)−̺

≪ (∆−1/2x(1+β)/2 + x4/5 + x1−β/2) logA+1 x+ x∆

≪ (x(2+β)/3 + x1−β/2) logA+1 x.By Lemma 2.4 and notiing that Aβ(δ, x) = Ad+δ(x) −Ad, the desired asser-tion follows immediately.3. Proof of Lemma 2.1. Let M ≥ 2. For j = 1, . . . , 2l, let Mj bepositive numbers suh that
2−2l+1M < M1 · · ·M2l ≤M, 2Ml+1, . . . , 2M2l ≤ (2M)1/l.(3.1)For

aj(m) =







logm if j = 1,

1 if j = 2, . . . , l,

µ(m) if j = l + 1, . . . , 2l,

(3.2)
we de�ne the following funtions of a omplex variable s:

fj(s) =
∑

m∼Mj

aj(m)

ms
, F (s) = f1(s) · · · f2l(s).(3.3)

Here we reall that m ∼Mj means Mj < m ≤ 2Mj .The mean-value estimate below is important.Lemma 3.1. Let 2 ≤ T ≤ M c where c ≥ 1. Suppose that (2.1) is true.Then
T\
−T

|F (1/2 + it)| dt≪ (T + T 1/2M1/4+1/4l +M1/2) logHr M,where Hr is a positive onstant depending on r, and the implied onstantdepends only on c, r and the implied onstant in (2.1).To prove Lemma 3.1, we quote the following two well known results (seefor example [7, Chapter II℄, and [9, Lemma 3.19℄).Lemma 3.2. Let T,N0 ≥ 1 and N ≥ 0. Let an be any omplex numbers.Then
T\
−T

∣

∣

∣

∣

N0+N
∑

n=N0

an

nit

∣

∣

∣

∣

2

dt≪
N0+N
∑

n=N0

(T + n)|an|2.



Vinogradov's exponential sum over primes 277Lemma 3.3. Let an be omplex numbers and let the series F (s) =
∑∞

n=1 an/n
s be absolutely onvergent for σ = ℜs > σa. De�ne

A(x) = max
x/2≤n≤2x

|an|, x ≥ 1; B(σ) =
∞

∑

n=1

|an|
nσ

, σ > σa.Let T ≥ 2. Then for any s0 = σ0 + it0 and b > 0 with σ0 + b > σa, one has
∑

n≤x

an

ns0
=

1

2πi

b+iT\
b−iT

F (s0 + s)
xs

s
ds+R(x, T ),where, on writing ‖x‖ for the distane from x to the nearest integer N ,

R(x, T ) ≪ xbB(b+ σ0)

T
+ x1−σ0A(x) min

{

1,
log x

T

}

+ x−σ0 |aN |min

{

1,
x

T‖x‖

}

.Proof of Lemma 3.1. Without loss of generality, we an assume that
‖Mi‖ = 1/4 for i = 1, . . . , l. We assume further that M1 ≥ · · · ≥ Ml, sinefor other ases the proof is similar.
Case I: ∏r

i=1Mi > M1/2−1/2l. Writing
F1(t) =

r
∏

j=1

fj(1/2 + it), F2(t) =
2l
∏

j=r+1

fj(1/2 + it),we have
F (1/2 + it) = F1(t)F2(t).(3.4)By Lemma 3.3 with T = M c, s0 = 1/2 + it, and b = 1/2 + 1/logM ,

f1(1/2 + it) = − 1

2πi

1/2+1/L+iMc\
1/2+1/L−iMc

ζ ′(1/2 + it+ w)
(2M1)

w −Mw
1

w
dw

+O(M−1/2L),where L = logM . Now we move the integral leftward along the retangularontour with verties ±iM c, 1/2+1/L± iM c to the line ℜw = 0. Note that
ζ ′(s) has a double pole at s = 1. Thus the residue at w = 1/2 − it is

−(2M1)
1/2−it log(2M1) −M

1/2−it
1 logM1

1/2 − it
+

(2M1)
1/2−it −M

1/2−it
1

(1/2 − it)2
,whih is ≪ M1/2L/(1 + |t|). By the well known onvexity bound (see forexample [9, �5.1℄),

ζ(v)(σ + it) ≪ (1 + |t|)(1−σ)/2 logv+1(|t| + 2) for 0 < σ ≤ 1,



278 X. M. Renthe ontribution from the two horizontal segments from ±iM c to 1/2+1/L±
iM c is

≪ L2 max
0≤u≤1/2+1/L

M c(1−(1/2+u))/2 M
u
1

M c
≪M−1/2L2.Moreover, on the vertial segment from −iM c to iM c, one has

(2M1)
iv −M iv

1

iv
≪ 1

1 + |v| .Therefore on writing
g1(t) =

Mc\
−Mc

|ζ ′(1/2 + it+ iv)| dv

1 + |v| + 1,(3.5)we get
f1(1/2 + it) ≪ g1(t) +

M
1/2
1 L

1 + |t| .Similarly, for j = 2, . . . , r, we have
fj(1/2 + it) ≪ gj(t) +

M
1/2
j L

1 + |t| ,where
gj(t) =

Mc\
−Mc

|ζ(1/2 + it+ iv)| dv

1 + |v| + 1.Thus
F1(t) ≪

r
∏

j=1

{

gj(t) +
M

1/2
j L

1 + |t|

}

≪
{

1 +
(M1 · · ·Mr)

1/2Lr

1 + |t|

} r
∏

j=1

gj(t),(3.6)where for all t > 0, the implied onstant depends only on c and r.By de�nition
F2(t) =

∑

Mr+1···M2l<m≤22l−rMr+1···M2l

b(m)

m1/2+it
,(3.7)

where |b(m)| ≤ d2l−r(m), and ds(m) denotes the number of ways of express-ing m as a produt of s fators. Thus
F2(t) ≪

∑

Mr+1···M2l<m≤22l−rMr+1···M2l

d2l−r(m)

m1/2
≪ (Mr+1 · · ·M2l)

1/2Lr1 ,

where r1 is a positive onstant depending on r. This together with (3.4) and(3.6) gives
F (1/2 + it) ≪

{

|F2(t)| +
M1/2Lr+r1

1 + |t|

} r
∏

j=1

gj(t).



Vinogradov's exponential sum over primes 279By Hölder's inequality, we get
T\
−T

|F (1/2 + it)| dt≪
{

T\
−T

|F2(t)|2 dt
}1/2{

r
∏

i=1

T\
−T

g2r
i (t) dt

}1/2r(3.8)
+M1/2Lr+r1 max

2≤X≤T
X−1

{

r
∏

i=1

X\
−X

gr
i (t) dt

}1/r
.

By Lemma 3.2, (3.7), and in view of Mr+1 · · ·M2l ≪ M/(M1M2 · · ·Mr) <
M1/2+1/2l, we have

T\
−T

|F2(t)|2 dt≪
∑

Mr+1···M2l<m≤22l−rMr+1···M2l

(T +m)
d2

2l−r(m)

m
(3.9)

≪ (T +M1/2+1/2l)Lr2,where r2 is a positive onstant depending on r.Let 2 ≤ X ≤ T. By (3.5) and Hölder's inequality, we have
X\
−X

g2r
1 (t) dt≪ (logX)

X\
−X

Mc\
−Mc

|ζ ′(1/2 + it+ iv)|2r dv dt

1 + |v| +X.

Write TMc

−Mc =
T2X
−2X +

T
2X<|v|≤Mc . Then the �rst term on the right splitsaordingly into two quantities whih we denote by G1(X) and G2(X), re-spetively. We have

G1(X) = (logX)

2X\
−2X

dv

1 + |v|

X+v\
−X+v

|ζ ′(1/2 + iw)|2r dw

≪ (log2X)

3X\
−3X

|ζ ′(1/2 + iw)|2r dw ≪ X logCr+2X,

by (2.1). To bound G2(X), we let w = t+ v. Note that 2X < |v| ≤M c and
|t| ≤ X imply |v| ≥ |w|/2 and X < |w| ≤ 2M c. It follows that

G2(X) ≪ X(logX)

2Mc\
X

|ζ ′(1/2 + iw)|2r dw

1 + |w|

≪ X(log2X) max
X≤X′≤Mc

1

X ′

2X′\
−2X′

|ζ ′(1/2 + iw)|2r dw

≪ X logCr+2M.



280 X. M. RenThus we obtain
X\
−X

g2r
1 (t) dt≪ XLCr+2.(3.10)

Similarly, for i = 2, . . . , r,
X\
−X

g2r
i (t) dt≪ XLCr+2.(3.11)

Moreover, for i = 1, . . . , r,
X\
−X

gr
i (t) dt≪ X1/2

(

X\
−X

g2r
i (t) dt

)1/2
≪ XLCr/2+1.(3.12)

Putting (3.9)�(3.12) into (3.8), we get
(3.13)

T\
−T

|F (1/2 + it)| dt

≪ (T +M1/2+1/2l)1/2T 1/2L(r2+Cr)/2+1 +M1/2Lr+r1+Cr/2+1

≪ (T + T 1/2M1/4+1/4l +M1/2)Lr3 ,where r3 = max{r2/2, r + r1} + Cr/2 + 1.

Case II:
∏r

i=1Mi ≤M1/2−1/2l. Sine M1 ≥ · · · ≥Ml, we have ∏r
i=1Mi

≥ M r
r , and hene Mr ≤ M (l−1)/2lr = M1/l. Therefore Mj ≤ M1/l holdsfor j = r, r + 1, . . . , l, and also for j = l + 1, . . . , 2l, by (3.1). Let r1 be thelargest integer suh that ∏r1

i=1Mi ≤ M1/2−1/2l. Let J1 = {1, . . . , r1 + 1},
J2 = {r1 + 2, . . . , 2l}. Then we have

∏

j∈J1

Mj +
∏

j∈J2

Mj ≪M1/2+1/2l.

For ν = 1, 2, de�ne
F ∗

ν (s) :=
∏

j∈Jν

fj(s) =
∑

n≤Nν

bν(n)

ns
,

where Nν =
∏

j∈Jν
(2Mj) and bν(n) ≪ Ld2l(n). By Lemma 3.2, we have

T\
−T

|F ∗
ν (1/2 + it)|2 dt≪ L2

∑

n≤Nν

(T + n)
d2

2l(n)

n
≪ (T +Nν)Lr4,

where r4 is a positive onstant depending on r. Cauhy's inequality now
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T\
−T

|F (1/2 + it)| dt≪ (T +N1)
1/2(T +N2)

1/2Lr4

≪ (T + T 1/2M1/4+1/4l +M1/2)Lr4 ,sine N1 + N2 ≪ M1/2+1/2l and N1N2 ≪ M. This together with (3.13)�nishes the proof of Lemma 3.1 with Hr = max{r3, r4}.Proof of Lemma 2.1. Integrating by parts, we have
∑

x<m≤2x

Λ(m)e(kαmβ) =

2x\
x

e(kαuβ) d
∑

x<m≤u

Λ(m).(3.14)
Now we apply Heath-Brown's identity (see [2, Lemma 1℄) whih states thatfor m ≤ 2x,
Λ(m) =

l
∑

j=1

(−1)j−1

(

l

j

)

∑

m1···m2j=m

mj+1,...,m2j≤(2x)1/l

(logm1)µ(mj+1) · · ·µ(m2j).

Then the right hand side of (3.14) beomes a linear ombination of O(log2l x)terms of the form
2x\
x

e(kαuβ) dΣ(u;M),where
Σ(u;M) =

∑

m1∼M1

· · ·
∑

m2l∼M2l

x<m1···m2l≤u

a1(m1) · · · a2l(m2l)

with aj(m), j = 1, . . . , 2l, as in (3.2), and Mj positive integers suh that(3.1) holds withM = x. Here M is written for the vetor (M1, . . . ,M2l). Let
fj(s) and F (s) be de�ned by (3.3). Then Lemma 3.3 gives

Σ(u;M) =
1

2πi

1+1/log x+iT\
1+1/log x−iT

F (s)
us − xs

s
ds+R(u, T ),

where
R(u, T ) ≪ u log2 u

T
+ (log u) min

{

1,
u

T‖u‖

}

.(3.15)We now move the integral along the retangular ontour with verties
1/2± iT , 1 + 1/log x± iT to the line ℜs = 1/2. Notie that the integrand isregular inside the retangular region, and the integral on the two horizontal
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≪ |F (σ ± iT )| x

σ

T
≪

(

2l
∏

j=1

M1−σ
j

) xσ log x

T
≪ x log x

T
.

Therefore
Σ(u;M) =

1

2π

T\
−T

F (1/2 + it)
u1/2+it − x1/2+it

1/2 + it
dt+

x log x

T
+R(u, T ).

Without loss of generality, we assume that ‖x‖ = 1/4. By (3.15), and by thefat that
2x\
x

min

{

1,
u

T‖u‖

}

du≪
∑

x<m≤2x

1/2\
0

min

{

1,
m+ t

T t

}

dt≪ x2 log x

T
,

we �nd
2x\
x

e(kαuβ) dR(u, T ) ≪ (1 + βk|α|xβ)
x log2 x

T
≪ 1,(3.16)on taking

T = T0 = (1 + k|α|xβ)x log2 x.(3.17)We thus get
(3.18)

2x\
x

e(kαuβ) dΣ(u;M)

=
1

2π

T\
−T

F (1/2 + it)

2x\
x

u−1/2+ite(kαuβ) du dt+O(1).

To bound the main term in (3.18), we write
(3.19)

2x\
x

u−1/2+ite(kαuβ) du =
1

β

(2x)β\
xβ

v−1+1/2βe

(

t

2βπ
log v + kαv

)

dv.

By Lemmas 4.3 and 4.5 in [9℄, the last integral is
≪ x1/2 min

{

1,
1

minxβ≤v≤(2x)β |t+ 2βπkαv| ,
1

√

|t|

}(3.20)
≪ x1/2















1
√

1 + βk|α|xβ
if |t| ≤ 4βkπ|α|(2x)β,

1

1 + |t| if 4βkπ|α|(2x)β < |t| ≤ T0.
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2x\
x

e(kαuβ) dΣ(u;M) ≪ x1/2

√

1 + βk|α|xβ

\
|t|≤4βkπ|α|(2x)β

∣

∣

∣

∣

F

(

1

2
+ it

)
∣

∣

∣

∣

dt

+ x1/2
\

4βkπ|α|(2x)β<|t|≤T0

∣

∣

∣

∣

F

(

1

2
+ it

)∣

∣

∣

∣

dt

1 + |t| .By Lemma 3.1, the right-hand side is
≪ x1/2

√

1 + βk|α|xβ
(βk|α|xβ + (βk|α|xβ)1/2x1/4+1/4l + x1/2) logHr x

+ x1/2 max
4βπk|α|(2x)β≤T≤T0

T−1(T + T 1/2x1/4+1/4l + x1/2) logHr x

≪ (k1/2x(1+β)/2 + x3/4+1/4l + k−1/2x1−β/2) logHr x,where the implied onstant may depend on β and α. Thus we get
2x\
x

e(kαuβ) dΣ(u;M) ≪ (k1/2x(1+β)/2 + x3/4+1/4l + k−1/2x1−β/2) logHr x.Let Dr = Hr + 2l. We �nally obtain
∑

x<m≤2x

Λ(m)e(kαmβ) ≪ (k1/2x(1+β)/2 + x3/4+1/4l + k−1/2x1−β/2) logDr x.

This ompletes the proof of Lemma 2.1.4. Proof of Lemma 2.2. By partial integration we have
∑

x<m≤2x

Λ(m)e(kαmβ) =

2x\
x

e(kαuβ) d
∑

m≤u

Λ(m).

We now apply the expliit formula (see [1, Setion 17, (9)℄):
∑

m≤u

Λ(m) = u−
∑

|γ|<T

u̺

̺
− ζ ′(0)

ζ(0)
− 1

2
log(1 − u−2) +R(u, T ),

where R(u, T ) satis�es (3.15) and ̺ denotes a non-trivial zero of ζ(s) withimaginary part γ in the retangular region 0 < ℜs < 1, |ℑs| ≤ T . Thus
∑

x<m≤2x

Λ(m)e(kαmβ) =

2x\
x

e(kαuβ) du−
∑

|γ|<T

2x\
x

u̺−1e(kαuβ) du

−
2x\
x

e(kαuβ)

u(u2 − 1)
du+

2x\
x

e(kαuβ) dR(u, T ).



284 X. M. RenLet T = T0 be as in (3.17). Then by (3.16), the last term is O(1). Moreoverwe have
2x\
x

e(kαuβ) du =
1

β

(2x)β\
xβ

u1/β−1e(kαu) du≪ k−1x1−β,and
2x\
x

e(kαuβ)

u(u2 − 1)
du≪ x−2.Consequently,

∑

x<m≤2x

Λ(m)e(kαmβ) = −
∑

|γ|<T0

2x\
x

u̺−1e(kαuβ) du+O(1 + k−1x1−β).

By Lemmas 4.3 and 4.5 in [9℄, and similarly to (3.19) and (3.20), we have
2x\
x

u̺−1e(kαuβ) du≪ xσ















1
√

1 + βk|α|xβ
if |γ| ≤ 4βkπ|α|(2x)β,

1

1 + |γ| if 4βkπ|α|(2x)β < |γ| < T0.Therefore,
∑

|γ|<T0

2x\
x

u̺−1e(kαuβ) du≪ 1

(1 + k|α|xβ)1/2

∑

|γ|≤4βkπ|α|(2x)β

xσ(4.1)
+

∑

4βkπ|α|(2x)β<|γ|<T0

xσ

1 + |γ| .Integrating by parts and applying (2.2), we have, for t ≥ 2,
(4.2)

∑

|γ|≤t

xσ = −
1\
0

xσ dN(σ, t) ≪ (log t)(x1/2t+ (logE t) max
1/2≤σ≤1

tB(σ)xσ).

Here we have used the fat that N(σ, t) ≪ t log t. Thus the �rst term in theright-hand side of (4.1) is
≪ (log1+E x)(k1/2x(1+β)/2 + max

1/2≤σ≤1
kB(σ)−1/2xσ+βB(σ)−β/2).By (4.2) and in view of B(σ) ≤ 1, we also have

∑

4βkπ|α|(2x)β<|γ|<T0

xσ

1 + |γ| ≪ (log x) max
4βkπ|α|(2x)β≤t≤T0

t−1
∑

|γ|∼t

xσ

≪ (log2+E x)(x1/2 + max
1/2≤σ≤1

kB(σ)−1xσ+βB(σ)−β).



Vinogradov's exponential sum over primes 285Let f(σ, β) be as in (2.4). We an onlude that
∑

x<m≤2x

Λ(m)e(kαmβ)

≪ (log2+E x)(k1/2x(1+β)/2 + max
1/2≤σ≤1

kB(σ)−1/2xf(σ,β) + k−1x1−β),where the implied onstant depends on α and β.Aknowledgements. The author is grateful to the referee for valuablesuggestions that larify the argument of the paper and for suggesting thestudy of the exponential sum (1.11).
Referenes[1℄ H. Davenport, Multipliative Number Theory, 2nd ed., Springer, Berlin, 1980.[2℄ D. R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan'sidentity, Canad. J. Math. 34 (1982), 1365�1377.[3℄ M. N. Huxley, On the di�erene between onseutive primes, Invent. Math. 15(1972), 164�170.[4℄ H. Iwanie and E. Kowalski, Analyti Number Theory, Amer. Math. So. Colloq.Publ. 53, Amer. Math. So., Providene, RI, 2004.[5℄ H. Iwanie, W. Luo and P. Sarnak, Low lying zeros of families of L-funtions, Inst.Hautes Études Si. Publ. Math. 91 (2000), 55�131.[6℄ M. R. Murty and K. Srinivas, On the uniform distribution of ertain sequenes,Ramanujan J. 7 (2003), 185�192.[7℄ C. D. Pan and C. B. Pan, Goldbah Conjeture, Siene Press, Beijing, 1992.[8℄ X. M. Ren, On exponential sums over primes and appliation in Waring�Goldbahproblem, Si. China Ser. A 48 (2005), 785�797.[9℄ E. C. Tithmarsh, The Theory of the Riemann Zeta-Funtion, 2nd ed., Oxford Univ.Press, Oxford, 1986.[10℄ I. M. Vinogradov, Speial Variants of the Method of Trigonometri Sums, Nauka,Mosow, 1976 (in Russian); English transl.: I. M. Vinogradov, Seleted Works,Springer, Berlin, 1985.Department of MathematisShandong UniversityJinan, Shandong 250100, P.R. ChinaE-mail: xmren�sdu.edu.n Reeived on 19.9.2005and in revised form on 18.4.2006 (5068)


