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On values of a modular form on Γ0(N)

by

D. Choi (Pohang)

1. Introduction. The values of a modular function at certain points
play a role in modular form theory. Especially, those of j(z) are related to
other number theoretical objects, where j(z) is the usual elliptic modular
function on SL2(Z). For example, if a complex number τ is a Heegner point,

i.e. τ =(−b +
√

b2 − 4ac)/2a with a, b, c∈Z, gcd(a, b, c)=1 and b2 − 4ac<0,
then the Hurwitz–Kronecker class number is related to the trace of j(τ) that
is called a singular modulus in [9].

After Borcherds’ work [2] on the infinite product expansion of modular
forms with no divisor except cusps and Heegner points, some results give
connections between the values of a modular function at divisor points and
the exponents of the infinite product expansion of modular forms. Bruinier,
Kohnen and Ono provided a relation between the infinite product expansion
of a modular form f and the values of a certain meromorphic modular form
at points in the divisor of f (see [3]). Ahlgren gave analogues of these results
for modular forms on Γ0(p) for p ∈ {2, 3, 5, 7, 13} (see [1]). Their results are
restricted to the genus zero group.

In this paper, we give analogues of their results for Γ0(N) for square
free N , and also describe the values of a modular function at certain points.
To do this we consider a certain sequence of modular functions. In Section 2,
we state the connection between the exponents of an infinite product expan-
sion of a modular form f and the values of a modular function at divisor
points of f , where θf = 1

2πif
′(z). In Section 3, we define (l, N)-type se-

quences of modular functions and give some related identities. In Section 4,
we obtain congruence properties of values of a modular function.

2. The values of a modular function at divisor points. Suppose
that N is a square free positive integer. The group Γ0(N) is the congruence

2000 Mathematics Subject Classification: Primary 11F11; Secondary 11F33.
Key words and phrases: modular forms, one variable, congruences for modular forms.
This work is partially supported by KOSEF R01-2003-00011596-0.

[299]



300 D. Choi

subgroup of SL2(Z) defined as

Γ0(N) =

{(

a b

c d

)

∈ SL2(Z)

∣

∣

∣

∣

c ≡ 0 (modN)

}

.

Let Γ denote SL2(Z) and FN be a fundamental domain for the action of
Γ0(N) on H. We denote the set of distinct cusps by SN ,

SN = {1/w |w 6= N and w |N} ∪ {0,∞}.
From now on, we suppose that if t is a cusp point, then t is in SN . The period
of q-expansion at t is denoted by Nt, where Nt is given by the following way:

Nt =







Nt if t ∈ SN \ {0,∞},
1 if t = ∞,

N if t = 0.

Adjoining the cusps to Γ0(N) \ H, we obtain a compact Riemann surface
X0(N). For τ ∈ H ∪ SN , let Qτ be the image of τ under the canonical map
from H ∪ SN to X0(N).

Suppose G is a meromorphic modular form of weight 2 on Γ0(N). The
residue of G at Qτ on X0(N), denoted by ResQτ

Gdz, is well defined since
we have the canonical correspondence between meromorphic modular forms
of weight 2 on Γ0(N) and meromorphic 1-forms of X0(N). If Resτ G denotes
the residue of G at τ on H, then for τ ∈ H we obtain

ResQτ
Gdz =

1

lτ
Resτ G.

Here, lτ is the order of the isotropy group at τ . In particular, if f is a
meromorphic modular form of weight k on Γ0(N) and G = θf

f , then the
residue of G at Qτ on τ ∈ H is computed from the order of zero or pole of

f at τ ∈ H. The latter is denoted by ν
(N)
τ (f) and has the form

ν(N)
τ (f) =

1

lτ
ordτ (f),

where ordτ (f) denotes the order of zero or pole of f at τ as a complex
function on H. Then we have

(2.1) 2πi · ResQτ

θf

f
= ν(N)

τ (f).

We introduce some notations to describe ResQt
Gdz at every cusp t. First,

recall the usual slash operator f(z)|kγ given as

f(z)|kγ = det(γ)k/2(cz + d)−kf(γz),

where γ =
(

a b
c d

)

∈ GL+
2 (Q) and γz denotes az+b

cz+d . From now on, q denotes
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e2πiz. We define a matrix γ
(N)
t in the following way:

γ
(N)
t :=















































(

1 0

1/t 1

)(

Nt 0

0 1

)

if 1/t |N ,

(

0 −1

1 0

)(

N 0

0 1

)

if t = 0,

(

1 0

0 1

)

if t = ∞.

If at each cusp, G has the Fourier expansion of the form

G(z)|2γ(N)
t =

∞
∑

n=mt

at(n)qn at ∞,

then we have

(2.2) ResQt
Gdz =

at(0)

2πi
for t ∈ SN .

From now on, we assume that all of the meromorphic modular functions in
this paper may have poles only at cusps. Let g be a meromorphic modular
function on Γ0(N) which at each cusp has the q-expansion of the form

g(z)|0γ(N)
t =

∞
∑

n=µt

rt(n)qn at ∞.

Using these results, we can obtain a connection between the Fourier
coefficients of θf

f and the values of a meromorphic modular function at the
divisor points of f , where f is a meromorphic modular form of weight k on
Γ0(N).

Theorem 2.1. Suppose that f(z) is a meromorphic modular form of

weight k on Γ0(N) with square free N . For each cusp t let {ct(n)}∞n=1 be the

complex numbers for which

(2.3) f |kγ(N)
t = αtq

ht

∞
∏

n=1

(1 − qn)ct(n) for a complex number αt.

If g(z) is a meromorphic modular function on Γ0(N) with possible poles only

at cusps, then
∑

t∈SN

∑

µt≤n<0

(

∑

d|−n

ct(d)d
)

rt(n)

=
∑

τ∈FN

ν(N)
τ (f)g(τ) +

∑

t∈SN

(

ht − Nt
k

12

)

rt(0) + Pg,
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where

Pg =
∑

t∈SN

2kNt

∑

µt≤n<0

σ(−n/Nt)rt(n)

and σ(n) =
∑

0<d|n d.

Proof. We begin by stating a lemma which was proved by Eholzer and
Skoruppa in [4].

Lemma 2.2. Suppose that f =
∑∞

n=h a(n)qn is a meromorphic modular

function in a neighborhood of q = 0 and that a(h) = 1. Then there are

uniquely determined complex numbers c(n) such that

f = qh
∞
∏

n=1

(1 − qn)c(n),

where the product converges in a small neighborhood of q = 0. Moreover ,
the following identity is true

θf

f
= h −

∑

n≥1

∑

d|n

c(d)dqn.

Let
F (z) =

θf(z)

f(z)
− k

12
E2(z).

Here, E2(z) is the usual normalized Eisenstein series of weight 2 defined by

E2(z) = 1 − 24
∑

n≥1

σ(n)qn.

The function F (z) is a meromorphic modular form of weight 2 on Γ0(N).
Its Fourier expansion at t ∈ SN is given by

F (z)|2γ(N)
t =

(

θf(z)

f(z)

)
∣

∣

∣

∣

2

γ
(N)
t − k

12
E2(z)|2γ(N)

t

=
θ(f |kγ(N)

t )

f |kγ(N)
t

− k

12
NtE2(Ntz)

= ht −
∑

n≥1

∑

d|n

ct(d)dqn − k

12
Nt + 2kNt

∑

n≥1

σ(n/Nt)q
n.

Since F (z)g(z)dz is a meromorphic 1-form on X0(N), we deduce that for
t ∈ SN ,

2πiResQt
F (z)g(z)dz =

(

ht − Nt
k

12

)

rt(0) + 2kNt

∑

µt≤n<0

σ(−n/Nt)rt(n)

−
∑

µt≤n<0

(

∑

d|−n

ct(d)d
)

rt(n)

from (2.2).
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Next we compute ResQτ
F (z)g(z)dz for τ ∈ H. For each τ ∈ H, from

(2.1) we find that

2πiResQτ
F (z)g(z)dz = 2πi

1

lτ
Resτ

θf(z)

f(z)
g(z) = ν(N)

τ (f)g(τ)

since E2(z) and g(z) are holomorphic on H.

The residue theorem implies that

2πi
∑

Qτ∈X0(N)

ResQτ
F (z)g(z)dz = 0

since X0(N) is a compact Riemann surface. This completes the proof of
Theorem 2.1.

Remark 2.3. Suppose that j(z) is the usual j-function

j(z) =
1

q
+ 744 + 196884q + · · ·

and jm(z) = (j(z)−744) |T0(m), where T0(m) is the normalized mth weight
zero Hecke operator. When g(z) = jn(z), Kohnen and Ahlgren point out
that Theorem 2.1 can be extended to every finite index subgroup G of Γ
in the following way. Let S be the set of equivalence classes of cusps of G
and hs denote the period of f(z)|kγs where s = γs∞. Let {cs(n)}∞n=1 be the
complex numbers for which

f |kγs = qµs
s

∞
∏

n=1

(1 − qn
s )cs(n),

where qs = q1/hs . Using the residue theorem with

jm(z)

(

θ(
∏

γ∈G\Γ f(z)|kγ)
∏

γ∈G\Γ f(z)|kγ
− [Γ : G]

k

12
E2(z)

)

= jm(z)

(

∑

γ∈G\Γ

θ(f(z)|kγ)

f(z)|kγ
− [Γ : G]

k

12
E2(z)

)

,

we obtain
∑

τ∈G\H

ντ (f)jm(τ) + 2kσ(m)[Γ : G] =
∑

s∈S

∑

d|mhs

dcs(d),

where ντ (f) = (1/lτ ) ordτ (f) and lτ is the order of the isotropy subgroup of
G at τ .

We give an example of application of Theorem 2.1 for a meromorphic

modular function j
(p)
m = q−m +

∑∞
n=0 anqn whose order of pole at every cusp

except ∞ is bounded by a fixed constant for every positive integer m.
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Example 2.4. Let

φp(z) :=

(

η(z)

η(pz)

)24u/(p−1)

for a prime number p,

where u = (p − 1)/gcd(p − 1, 24) and η(z) is defined by the product

η(z) = q1/24
∞
∏

n=1

(1 − qn).

For each m ≥ 1, let j
(p)
m be a polynomial in φp(z) and j(z) defined by

(2.4) j(p)
m (z) := φp(z)[m/u]j(z)m−[m/u]u +

m−1
∑

n=0

b(p)
m (n)φp(z)[n/u]j(z)n−[n/u]u,

where the constants b
(p)
m (n) are so chosen that j

(p)
m has the q-expansion of

the form

j(p)
m (z) = q−m + α(p)

m (0) +

∞
∑

n=1

α(p)
m (n)qn at ∞,

and its q-expansion at 0 has no constant term. Let (Lij)(m+1)×(m+1) be the
(m+1)× (m+1) matrix whose ij-entry is equal to the (−j)th coefficient of

φp(z)[(i−1)/u]j(z)(i−1)−[(i−1)/u]u. Since (Lij)(m+1)×(m+1) is invertible, b
(p)
m (i)

is uniquely determined for 0 ≤ i ≤ m− 1. So, j
(p)
m (z) is well defined. Let the

q-expansion of j
(p)
m (z)|0

(

0 −1
p 0

)

at ∞ be

j(p)
m (z)|0

(

0 −1
p 0

)

=

∞
∑

n=m0

β(p)
m (n)qn (β(p)

m (0) = 0).

First, note that −p(u − 1) ≤ m0. Secondly, j
(p)
m is holomorphic on H

since φp(z) is holomorphic on H and j
(p)
m is a polynomial in j(z) and φp(z).

So, if f(z) is a meromorphic modular form of weight k on Γ0(p), then for
each m ≥ 1 we have
∑

d|m

c∞(d)d +
∑

m0≤n<0

(

∑

d|−n

c0(d)d
)

β(p)
m (n)

=
∑

τ∈Fp

ν(p)
τ (f)j(p)

m (τ) +

(

h − k

12

)

α(p)
m (0) + 2kσ(m)

+ 2kp
∑

m0≤n<0

σ(−n/p)β(p)
m (n).

The sequence {j(p)
m } is an example of an (l, p)-type sequence defined in the

next section.
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3. Identities related to an (l, p)-type sequences. We begin by defin-
ing a class of sequences of modular functions.

Definition 3.1. Let {g(N)
m } be a sequence of modular functions on

Γ0(N). We call {g(N)
m } an (l, N)-type sequence if:

(1) for every m ≥ 1, the function g
(N)
m is holomorphic on H,

(2) g
(N)
m = q−m +

∑∞
n=0 am(n)qn at ∞,

(3) −l = inf{mt | t ∈ SN \ {∞} and m ≥ 1} ≫ −∞ if N 6= 1, l = −1 if
N = 1,

where g
(N)
m |0γ(N)

t =
∑∞

n=mt
at

m(n)qn at ∞ and at
m(mt) 6= 0.

The Riemann–Roch theorem implies that for each positive integer N
there exists an integer I such that for any l ≥ I we can find an (l, N)-type
sequence.

We define a function related to a sequence {g(N)
m } of modular functions

on Γ0(N). Let

[g(N)
m ]τ (z) =

∞
∑

n=1

g(N)
n (τ)qn for τ ∈ H

and

[g(N)
m ]t(z) =

∞
∑

n=1

at
n(0)qn for t ∈ SN \ {∞},

where g
(N)
m (z)|0γ(N)

t =
∑∞

n=mt
at

m(n)qn. For notational convenience we de-
fine

[g(N)
m ]∞(z) = −1 +

∞
∑

n=1

an(0)qn.

Though in general [g
(N)
m ]τ (z) is not a meromorphic modular form, we give

some examples where [g
(N)
m ]τ (z) is a meromorphic modular form.

Example 3.2 (see [3]). Let jm(z) = (j(z) − 744) |T0(m). A sequence
{jm(z)} is a (−1, 1)-type sequence, and we have

[jm]τ (z) =
E2

4(z)E6(z)

∆(z)
· 1

j(z) − j(τ)
for τ ∈ H,

where Ek(z) is the usual normalized Eisenstein series of weight k.

Example 3.3. The sequence {j(2)
m } defined in Example 2.4 is a (−1, 2)-

type sequence. Let ω = (1 +
√
−3)/2 and f(z) = E4(2z). It is well known

that E4(2z) has only a zero at ω/2 in F2. A complex number ct(n) is defined
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from (2.3). Then we have
∑

d|n

c∞(d)d = j(2)
n (ω/2) − 16σ(n/2) + 16σ(n),

since {j(2)
m } is a (−1, 2)-type sequence. Using this result and Ramanujan’s

identity (see [6]), we obtain

[j(2)
m ]ω(z) =

2

3

(

E6(2z)

E4(2z)
− 2E2(2z) + E2(z)

)

.

In fact, when p ∈ {2, 3, 5, 7, 13}, [j
(p)
m ]τ (z) is a meromorphic modular form

for τ ∈ H. This can be deduced from Theorem 3.4 (or see [1]).

It can be shown that the θ-operator plays an important role in the theory
of modular forms and p-adic modular forms (see [7], [8]). Theorem 3.4 gives

an expression of θf
f through [g

(N)
m ]τ and [g

(N)
m ]∞.

Theorem 3.4. Suppose that f(z) is a modular form of weight k on

Γ0(N), and that {g(N)
m } is an (l, N)-type sequence. For each cusp t let

{ct(n)}∞n=1 be the complex numbers for which

f |kγ(N)
t = αtq

ht

∞
∏

n=1

(1 − qn)ct(n) for a complex number αt.

Then

−θf(z)

f(z)
+

k

12
E2(z)

=
∑

τ∈FN

ν(p)
τ (f)[g(N)

m ]τ (z) +
∑

t∈SN

(

ht − Nt
k

12

)

[g(N)
m ]t(z)

−
∞
∑

m=1

(

∑

t∈SN\{∞}

∑

mt≤n<0

∑

d|−n

ct(d)at
m(n)d − (P

g
(N)
m

− 2kσ(m))
)

qm,

where g
(N)
m (z)|0γ(N)

t =
∑∞

n=mt
at

m(n)qn.

Proof. From Theorem 2.1 we have

θf(z)

f(z)
= h∞ −

∞
∑

m=1

∑

d|m

c∞(d)dqm

= h∞ −
∞
∑

m=1

(

∑

τ∈FN

ν(p)
τ (f)g(N)

m (τ) +
∑

t∈SN

(

ht − Nt
k

12

)

at
m(0)

)

qm
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−
∞
∑

m=1

(

2kσ(m) +
∑

t∈SN\{∞}

∑

mt≤n≤0

(

2kNtσ(−n/Nt) −
∑

d|−n

ct(d)d
)

at
m(n)

)

qm

= −
∑

τ∈FN

νp
τ (f)[g(N)

m ]τ (z) −
∑

t∈SN

(

ht − Nt
k

12

)

[g(N)
m ]t(z) +

k

12
E2(z)

+
∞
∑

m=1

(

∑

t∈SN\{∞}

∑

mt≤n<0

∑

d|n

ct(d)at
m(n)d − (P

g
(N)
m

−2kσ(m))
)

qm.

So, the result follows.

When {g(p)
m } is an (l, p)-type sequence for a prime p, we can obtain an

explicit formula for the sum of [g
(p)
m ]τ (z) and [g

(p)
m ]∞(z).

Theorem 3.5. Suppose that {g(p)
m } is an (l, p)-type sequence for a prime

p and an integer l ≥ −1. Let

u =
p − 1

gcd(p − 1, 24)
, v = max

{

1,

[

l

u

]

+ 1

}

.

Then for τ0 ∈ H we have

∑

τ∈Wp

[g(p)
m ]τ (z) − uv[g(p)

m ]∞(z) =
uv

p − 1
· η(z)24uv/(p−1)(pE2(pz) − E2(z))

η(z)24uv/(p−1) − τ0η(pz)24uv/(p−1)
,

where Wp = {τ ∈ Fp |φp(z)v = τ0, φp(z) := (η(z)/η(pz))24u/(p−1)}.
Proof. To apply Theorem 3.4 we take f(z) = φp(τ)v − τ0 for τ0 ∈ H.

Suppose that g
(p)
m (z) has the q-expansion

g(p)
m = q−m +

∞
∑

n=0

a∞m (n)qn at ∞,

g(p)
m |0γ(p)

0 =
∞
∑

n=m0

a0
m(n)qn at ∞.

For each cusp t let {ct(n)}∞n=1 be the complex numbers for which

f |kγ(N)
t = αtq

ht

∞
∏

n=1

(1 − qn)ct(n) for a complex number αt.

Here, h∞ = −uv and h0 = 0. Note that the nth Fourier coefficient of

φp(τ)v|0γ(p)
0 is zero for every n ≤ l. This implies that θ(f |0γ0) has a zero of

order at least l + 1 at ∞. So, the function θf
f

∣

∣

2
γ0 has the q-expansion

θf

f

∣

∣

∣

∣

2

γ0 =
θ(f |0γ0)

f |0γ0
=
∑

d|(l+1)

c0(d)dql+1 + O(ql+2).
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Since {g(p)
m (z)} is an (l, p)-type sequence, for every m ≥ 1 we obtain

∑

m0≤n<0

(

∑

d|−n

c0(d)d
)

a0
m(n) = 0.

Moreover, for every m ≥ 1, we have P
g
(p)
m

= 0 by noting that the weight of

f is zero. Therefore, from Theorem 3.4 we obtain

∑

τ∈Wp

[g(p)
m ]τ (z) − uv[g(p)

m ]∞(z) = −θf

f

=
24uv

p − 1
·
φp(z)v

( p
2πi

η′(pz)
η(pz) − 1

2πi
η′(z)
η(z)

)

φp(z)v − τ0

=
uv

p − 1
· η(z)24uv/(p−1)(pE2(pz) − E2(z))

η(z)24uv/(p−1) − τ0η(pz)24uv/(p−1)

since
η′(z)

η(z)
=

2πi

24
E2(z).

Remark 3.6. Suppose that p ∈ {2, 3, 5, 7, 13}. Take g
(p)
m = {j(p)

m } defined

in Example 2.4. The sequence {j(p)
m } is a (−1, p)-type sequence, and

[j(p)
m ]∞(z) =

−1

p − 1
(E2(z) − pE2(pz)).

Take τ0 = φp(τ) for a fixed τ ∈ H. Since φp is bijective from Fp to C \ {0},
we have Wp = {τ}. Then we obtain

[j(p)
m ]τ (z) =

pE2(pz) − E2(z)

p − 1

(

η(z)24/(p−1)

η(z)24/(p−1) − φp(τ)η(pz)24/(p−1)
− 1

)

from Theorem 3.5. So, in this case we recover the result given in [1]. Fur-
thermore, Theorem 1 in [1] turns out to be a special case of Theorem 3.5.

4. Values of modular functions at certain points. In this section,

we introduce some congruence properties of j
(p)
m (τ) at the zero divisor of Ek.

The von Staudt–Clausen Theorem (see p. 153 in [5]) gives the congruence
properties of Ek(z): for each k ≥ 4,

Ek ≡ 1
(

mod4
∏

(e−1)|k
5≤eprime

e
)

.

From this identity, when p ∈ {2, 3, 5, 7, 13}, we obtain congruence properties

of the values of j
(p)
m defined in Example 2.4 at a certain point.
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Corollary 4.1. Suppose that p ∈ {2, 3, 5, 7, 13}. Let f be a normalized

modular form of weight δ such that

f =
h
∑

i=1

ci

ti
∏

j=1

Ekij
(Lijz) for ci ∈ Z and Lij | p,

where kij ≥ 4 is a positive even integer. Let k be the greatest common divisor

of the kij. If gcd(e, p − 1) = 1 for every e such that e ≥ 5 and (e − 1) | k,
then

∑

τ∈Fp

ν(p)
τ (f)j(p)

m (τ)

≡ 2δp

p − 1
σ(m(p − 1)/p) − 2δp

p − 1
σ(m(p − 1))

(

mod
∏

(e−1)|k
5≤e prime

e
)

.

Proof. Using the von Staudt–Clausen Theorem, for even r ≥ 4 we have

Er ≡ 1
(

mod4
∏

(e−1)|r
5≤eprime

e
)

.

This identity implies

θf

f
≡ 0

(

mod4
∏

(e−1)|k
5≤e prime

e
)

.

From Theorem 2.1 we obtain
∑

τ∈Fp

ν(p)
τ (f)j(p)

m (τ)

≡ 2δp

p − 1
σ(m(p − 1)/p) − 2δp

p − 1
σ(m(p − 1))

(

mod
∏

(e−1)|k
5≤eprime

e
)

.

Corollary 4.2. Suppose that p ∈ {2, 3, 5, 7, 13}. Let j
(p)
m be a modular

function defined in Example 2.4 and let ω denote (1 +
√
−3)/2.

(I) Let T := {γω ∈ Fp | γ ∈ SL2(Z)} and M be a positive integer not

divisible by a prime P ≡ 1 (mod3). If gcd(p − 1, M) = 1, then for

some positive real number ξ(M) we have

♯

{

1 ≤ m ≤ X

∣

∣

∣

∣

3

(

∑

τ∈T

1

lτ
j(p)
m (τ)

)

≡ 24

p − 1
(pσ(m/p) − σ(m)) (modM)

}

= O
(

X

(log X)ξ(M)

)

.
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(II) Let T := {γi ∈ Fp | γ ∈ SL2(Z)} and M be a positive integer not

divisible by a prime P ≡ 1 (mod4). If gcd(p − 1, M) = 1, then for

some positive real number ξ(M) we obtain

♯

{

1 ≤ m ≤ X

∣

∣

∣

∣

2

(

∑

τ∈T

1

lτ
j(p)
m (τ)

)

≡ 24

p − 1
(pσ(m/p) − σ(m)) (modM)

}

= O
(

X

(log X)ξ(M)

)

.

Proof. Let jm(z) = (j(z) − 744) |T0(m). Applying Theorem 2.1 to j
(p)
m ,

we obtain

3
(

∑

τ∈FN

ν(p)
τ (E4)j

(p)
m (τ)

)

− 24

p − 1
(pσ(m/p) − σ(m)) = jm(ω),

2
(

∑

τ∈Fp

ν(p)
τ (E6)j

(p)
m (τ)

)

− 24

p − 1
(pσ(m/p) − σ(m)) = jm(i).

Theorem 6 in [3] implies that for each τ ∈ {i, ω} there is a positive number
ξ(M) for which

♯{1 ≤ m ≤ X | jm(τ) ≡ 0 (modM)} = O
(

X

(log X)ξ(M)

)

,

where M is as in (I) if τ = ω, and as in (II) if τ = i. Therefore, the corollary
can be proved by the method of Theorem 6 in [3]. So, we omit the details.
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