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On values of a modular form on I(N)
by

D. CHo1 (Pohang)

1. Introduction. The values of a modular function at certain points
play a role in modular form theory. Especially, those of j(z) are related to
other number theoretical objects, where j(z) is the usual elliptic modular
function on SLg(Z). For example, if a complex number 7 is a Heegner point,
i.e. 7=(—b+ Vb% — dac)/2a with a,b,c€Z, ged(a, b, c) =1 and b? — 4ac<0,
then the Hurwitz—Kronecker class number is related to the trace of j(7) that
is called a singular modulus in [9].

After Borcherds’ work [2] on the infinite product expansion of modular
forms with no divisor except cusps and Heegner points, some results give
connections between the values of a modular function at divisor points and
the exponents of the infinite product expansion of modular forms. Bruinier,
Kohnen and Ono provided a relation between the infinite product expansion
of a modular form f and the values of a certain meromorphic modular form
at points in the divisor of f (see [3]). Ahlgren gave analogues of these results
for modular forms on I'y(p) for p € {2,3,5,7,13} (see [1]). Their results are
restricted to the genus zero group.

In this paper, we give analogues of their results for IH(N) for square
free N, and also describe the values of a modular function at certain points.
To do this we consider a certain sequence of modular functions. In Section 2,
we state the connection between the exponents of an infinite product expan-
sion of a modular form f and the values of a modular function at divisor
points of f, where 6f = 5L f'(z). In Section 3, we define (I, N)-type se-
quences of modular functions and give some related identities. In Section 4,
we obtain congruence properties of values of a modular function.

2. The values of a modular function at divisor points. Suppose
that N is a square free positive integer. The group IH(N) is the congruence
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subgroup of SLg(Z) defined as

IH(N) = {(“ Z) € SLy(Z)

Cc

c=0 (modN)}.

Let I" denote SLy(Z) and Fy be a fundamental domain for the action of
I'o(IN) on H. We denote the set of distinct cusps by Sk,

Sy ={1l/w|w # N and w| N} U {0, o0}.

From now on, we suppose that if ¢ is a cusp point, then ¢ is in S . The period
of g-expansion at t is denoted by N;, where V; is given by the following way:

Nt ift € Sy \ {0, 00},
N=<1 if t = o0,
N ift=0.
Adjoining the cusps to IH(N) \ H, we obtain a compact Riemann surface
Xo(N). For 7 € HU Sp, let Q- be the image of 7 under the canonical map
from HU Sy to Xo(N).

Suppose G is a meromorphic modular form of weight 2 on I'H(N). The
residue of G at QQ; on Xy(IV), denoted by Resg, Gdz, is well defined since
we have the canonical correspondence between meromorphic modular forms
of weight 2 on I'1(N) and meromorphic 1-forms of Xo(N). If Res: G denotes
the residue of G at 7 on H, then for 7 € H we obtain
1
I,
Here, [, is the order of the isotropy group at 7. In particular, if f is a
meromorphic modular form of weight & on IH(N) and G = eTf, then the
residue of G at @), on 7 € H is computed from the order of zero or pole of

f at 7 € H. The latter is denoted by 1/7(—N)(f) and has the form

AN(f) = ords(f),

T

Resg, Gdz = — Res; G.

where ord.(f) denotes the order of zero or pole of f at 7 as a complex
function on H. Then we have

(2.1) 27i - Resg, % =M (f).

T

We introduce some notations to describe Resg,Gdz at every cusp t. First,
recall the usual slash operator f(z)|xy given as

F2)ey = det(7)* 2 (cz + d)~F f(y2),

where v = (g 2) € GL;(Q) and ~z denotes gjig From now on, ¢ denotes
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e?™2 'We define a matrix vt(N) in the following way:

1 N,
0 t 0 if 1/t| N,
1/t 1) \o 1
(N) 0 -1 N 0 .
= ift=0,
" (1 0) (0 1
1 0
if t = oc0.

If at each cusp, GG has the Fourier expansion of the form

Gl = 3 an)g  at o,
n=mq
then we have
(2.2) Resg,Gdz = a:(0) for t € Sy.
¢ 2mi

From now on, we assume that all of the meromorphic modular functions in
this paper may have poles only at cusps. Let g be a meromorphic modular
function on I'h(NN) which at each cusp has the g-expansion of the form

o
N
9)ov™ = 3 g at oc.
n=[t
Using these results, we can obtain a connection between the Fourier
coefficients of % and the values of a meromorphic modular function at the

divisor points of f, where f is a meromorphic modular form of weight k£ on
IH(N).

THEOREM 2.1. Suppose that f(z) is a meromorphic modular form of
weight k on ITo(N) with square free N. For each cusp t let {ci(n)}22 be the
complex numbers for which

(2.3) f|;ﬂ§N) = g™ H(l —¢M™  for a complex number .

n=1

If g(z) is a meromorphic modular function on I'y(IN') with possible poles only
at cusps, then

> ¥ (th(d)d)rt(n)

teSN u<n<0 d|—-n
= Z VgN)(f)g(T) + Z <ht — NV ﬁ)ﬁ(o) + Py,

12
TEFN teSN
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where
Py= Y 2kN, Y o(-n/Nri(n)
teSn #:<n<0
and o(n) = 3 o<qjn d-

Proof. We begin by stating a lemma which was proved by Eholzer and
Skoruppa in [4].

LEMMA 2.2. Suppose that f =377, a(n)q™ is a meromorphic modular
function in a neighborhood of ¢ = 0 and that a(h) = 1. Then there are
uniquely determined complex numbers c(n) such that

f=d" T -,
n=1

where the product converges in a small neighborhood of ¢ = 0. Moreover,
the following identity is true

6
7f =h-— Z Zc(d)dq”.

n>1 djn
Let 0f(z) K
F(z) = ) EEQ(Z).

Here, Fs(z) is the usual normalized Eisenstein series of weight 2 defined by
By(z) =1-24) a(n)q"
n>1

The function F(z) is a meromorphic modular form of weight 2 on IH(V).
Its Fourier expansion at ¢t € Sy is given by

0f(z k
Pl = ()] 20— §5 Bl
(N)
0 k

- LV(tN)) _ ENtEQ(NtZ)

flev

k
=hi =Y > cld)dg" — 173 Vi + 2k > o(n/Ni)g".
n>1 djn n>1

Since F'(z)g(z)dz is a meromorphic 1-form on Xy(N), we deduce that for
te Sy,

k
2miResg, F(2)g(z)dz = <ht — Ny E)H(O) + 2k Ny Z o(—=n/Ni)ri(n)
ue<n<0

- Y (3 al@d)nm)

ut<n<0 d|—n
from (2.2).
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Next we compute Resg, F(2)g(z)dz for 7 € H. For each 7 € H, from
(2.1) we find that

2miResg, F(2)g(z)dz = 2mi — l ResT QJ{((ZZ))

since Ea(z) and g(z) are holomorphic on H.
The residue theorem implies that

2mi Z Resg, F(2)g(z)dz =0

since Xo(V) is a compact Riemann surface. This completes the proof of
Theorem 2.1. u

REMARK 2.3. Suppose that j(z) is the usual j-function
1
§(2) = = + 744 + 196884q + - -
q

and jm(2) = (j(2) —744) | To(m), where Tp(m) is the normalized mth weight
zero Hecke operator. When ¢(z) = j,(z), Kohnen and Ahlgren point out
that Theorem 2.1 can be extended to every finite index subgroup G of I’
in the following way. Let S be the set of equivalence classes of cusps of G
and hg denote the period of f(z)[x7ys where s = v500. Let {cs(n)}52, be the
complex numbers for which

o

Flivs = g TT (= a5yt
n=1

1/hs Using the residue theorem with

— [ @] 1—k2E2(z)>

where ¢; = q
. I eavr f(2)k7)
Im(2) ( H«,ec\r @)k

. N o b
—in()( X MEra ),

eanr f)lky
we obtain
> ve()dm(7) + 2ko(m => > de(d
TeG\H s€S d|mhs

where v-(f) = (1/1;) ord-(f) and [, is the order of the isotropy subgroup of
G at 7.

We give an example of application of Theorem 2.1 for a meromorphic

modular function jﬁg =q "+> 77, anq" whose order of pole at every cusp
except oo is bounded by a fixed constant for every positive integer m.
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EXAMPLE 2.4. Let

24u/(p—1)
Op(2) = (7;7((;2))> for a prime number p,

where u = (p — 1)/ged(p — 1,24) and n(z) is defined by the product

o =¢TJa
n=1
(p)

For each m > 1, let j», be a polynomial in gbp(z) and j(z) defined by
(2.4)  P(2) := gp(2)m/ el (z)m—m/ule 4 Z b(P )/l )n—n/ulu,

(p)

where the constants b%)(n) are so chosen that j;’ has the g-expansion of
the form

i (2) = ¢ + alP(0) + Za(p) at 0o,

and its g-expansion at 0 has no constant term. Let (Lij)(m1)x(m+1) be the
(m+1) x (m+ 1) matrix whose ij-entry is equal to the (—j)th coefficient of

dp(2) =D/l () E=D=1G=D/uu Gince (Lij) m+1)x (m+1) 18 invertible, b(p)( /)
is uniquely determined for 0 <7 <m —1. So, j(p )( ) is well defined. Let the
g-expansion of jﬁf;)(z)b(o _1) at oo be

i@ (2)] Z B (82 (0) = 0).

n=mgo

First, note that —p(u — 1) < myp. Secondly, jﬁff) is holomorphic on H

since ¢, (z) is holomorphic on H and jf(,f) is a polynomial in j(z) and ¢p(2).
So, if f(z) is a meromorphic modular form of weight k£ on Ij(p), then for
each m > 1 we have

Sexldd+ Y (3 al@d)sP m)

dlm mo<n<0 d|—n
k
— (p) (P) — 2 a® (o
= > (h 12) (0) + 2ko (m)
TEF)
+2kp Y a(=n/p)B (n).

mo<n<0

The sequence { ]m)} is an example of an (I, p)-type sequence defined in the
next section.
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3. Identities related to an (I, p)-type sequences. We begin by defin-
ing a class of sequences of modular functions.

DEFINITION 3.1. Let {g,(nN)} be a sequence of modular functions on
I'h(N). We call {gﬁnN)} an (I, N)-type sequence if:
(N) -

(1) for every m > 1, the function gy, ’ is holomorphic on H,

2) g —q*m—i—zn 0 am(n)g™ at oo,

3) —l—mf{mt]tESN\{oo} andm > 1} > —oc0if N #1,1=—1if
N =1,

—~~

where ggqN)loﬁyt(N) =52 al (n)g" at oo and al,(m;) # 0.

n=mt¢

The Riemann—Roch theorem implies that for each positive integer N
there exists an integer I such that for any [ > I we can find an (I, N)-type
sequence.

We define a function related to a sequence {gan)} of modular functions
on I'p(N). Let

z) = ZggN)(T)q” for r € H

and
o0
z) = Zai(O)q” for t € Sy \ {0},
n=1
where gm ( )oY, (N) = > ol m, @ (n)g". For notational convenience we de-
fine
o0
(95 1o0(2) = =1+ 3~ an(0)g"
n=1
Though in general [ ] (z) is not a meromorphic modular form, we give

some examples where [g 7(n )] (z) is a meromorphic modular form.
EXAMPLE 3.2 (see [3]). Let jm(z) = (j(z) — 744) | To(m). A sequence
{jm(2)} is a (=1, 1)-type sequence, and we have
. EZ(Z)E@(Z) 1
Im|r\Z) = C -
A TP R T B 9

where Ej(z) is the usual normalized Eisenstein series of weight k.

for 7 € H,

ExXAMPLE 3.3. The sequence {jr(,f)} defined in Example 2.4 is a (—1, 2)-
type sequence. Let w = (1 ++/—3)/2 and f(z) = E4(22). It is well known
that E4(2z) has only a zero at w/2 in F3. A complex number ¢(n) is defined
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from (2.3). Then we have
> eo(d)d = P (w/2) — 160(n/2) + 160 (n),
din

since {j,(ﬁ)} is a (—1,2)-type sequence. Using this result and Ramanujan’s
identity (see [6]), we obtain

[ (2) = %(gﬁg C2Ey(22) + Eg(z)>,

In fact, when p € {2,3,5,7,13}, [jﬁﬁ)]T(z) is a meromorphic modular form
for 7 € H. This can be deduced from Theorem 3.4 (or see [1]).

It can be shown that the f-operator plays an important role in the theory
of modular forms and p-adic modular forms (see [7], [8]). Theorem 3.4 gives
an expression of % through [gﬁnN)]T and [ggqN)]oo.

THEOREM 3.4. Suppose that f(z) is a modular form of weight k on

I'y(N), and that {gﬁnN)} is an (I, N)-type sequence. For each cusp t let
{ct(n)}22, be the complex numbers for which

o
f‘k’YéN) = g™ H(l — qn)ct(") for a complex number «.
n=1

Then
K )
DELGTVICEDY (ht N 1—’;) e

SIS . )y () = (o = b))

m=1 " teSy\{oo} me<n<0 d|—

where gl (2)|0n™) = S0, 0l ()g"
Proof. From Theorem 2.1 we have
0f(2) _
Coo
ERlER W

~ o - ml( 5 )+ 3 (= N Jata(0))

TEFN teSN
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_ i (2ko' Z Z <2tha —n/Ny) — Z Ct(d)d) afn(n))qm

m=1 teSn\{oo} m:<n<0 dl—n
k k
- - 3 AR - (e = 30 55 ) 0 t2) + 5 B

(X X Y aldalm)d - (P —2ko(m)) )™,

m=1 tGSN\{OO} me<n<0 d|n

So, the result follows. =

When {gﬁg)} is an (I, p)-type sequence for a prime p, we can obtain an

explicit formula for the sum of [gﬁ,’f)]T(z) and [g,(ﬁ)]oo(z).

THEOREM 3.5. Suppose that {g,(f:)} is an (I, p)-type sequence for a prime
p and an integer | > —1. Let

= L v = maxq 1 i +1
~ ged(p —1,24)° N "lu ’
Then for 1o € H we have

S 9] (2) — wo[g®P)oo(2) =

TeW)

where Wy, = {1 € Fp | ¢p(2)" = 70, ¢p(2) := (n(2)/n(pz))***/?= 1},
Proof. To apply Theorem 3.4 we take f(z) = ¢p(7)" — 70 for 79 € H.
Suppose that g(p )( ) has the g-expansion

o0
=q "+ Zaﬁ(n)q" at oo,
n=0

uv n(z)24uv/(p—1)(pE2 (pz) _ EQ(Z))
p—1 n(z)%uw/(p=1) — 7yn(pz)24uw/(p-1)’

9love” = > an(n)g"  at .
n=myo

For each cusp ¢ let {c:(n)}952; be the complex numbers for which
oo
f|kfyt(N) = apq™ H(l — ¢ for a complex number oy.
n=1

Here, hoo = —uv and hg = 0. Note that the nth Fourier coefficient of
gbp(T)vlofy(gp) is zero for every n < [. This implies that 6(f|oyo) has a zero of
order at least [ 4+ 1 at co. So, the function %b% has the g-expansion

ﬁ o = 0(f’070) _ Z Co(d)dql+1 —I—O(qH'Q).
2 flovo aary

f
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Since {g,(,lf)(z)} is an (I, p)-type sequence, for every m > 1 we obtain

2 (Z Co<d)d)a?n<n> =0.

mo<n<0 d|-n

Moreover, for every m > 1, we have P = 0 by noting that the weight of
f is zero. Therefore, from Theorem 3. 4 we obtain
Eﬂﬁm@—w@wuwz—%
TEW)
_ 24w <I5p( ) (%Z(ﬁff - ﬁ?]((zz)))
—1 p(2)? — 10
_ w2 P (pEy(pz) — Bs(2))
- p—1 n(z)24uv/(p—1) _ Ton(pz)24uv/(p—l)
since
n'(z) 2mi
=—F
n(z) 24 2(2). =

REMARK 3.6. Suppose that p E {2,3,5,7,13}. Take gm = {] }deﬁned
in Example 2.4. The sequence { Jm } is a (—1, p)-type sequence, and

0 )oe(2) =~ (Buli) = pE2(p),

Take 79 = ¢, (1) for a fixed 7 € H. Since ¢, is bijective from F, to C\ {0},
we have W), = {7}. Then we obtain

" PEs(pz) — Bs(2) n(z)*/ @Y
e (2) = == (77( )2/ 1) = () (pz)>H/ =) _1>

from Theorem 3.5. So, in this case we recover the result given in [1]. Fur-
thermore, Theorem 1 in [1] turns out to be a special case of Theorem 3.5.

4. Values of modular functions at certain points. In this section,

we introduce some congruence properties of j(p )( ) at the zero divisor of E.
The von Staudt—Clausen Theorem (see p. 153 in [5]) gives the congruence
properties of Ey(z): for each k > 4,

E,.=1 (mod4 H e).
(efl)_|k
5<eprime

From this identity, when p € {2,3,5,7,13}, we obtain congruence properties

:(p)

of the values of j;,” defined in Example 2.4 at a certain point.
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COROLLARY 4.1. Suppose that p € {2,3,5,7,13}. Let f be a normalized
modular form of weight § such that

h t;
f= Z C; H Ekij (Lijz) for ¢; € Z and Lij |p,
i=1  j=1

where k;; > 4 is a positive even integer. Let k be the greatest common divisor
of the kij. If ged(e,p — 1) = 1 for every e such that e > 5 and (e — 1) | k,
then

> vP(NiIR(r)

TEFp
_ 20p 20p
:p_1U(m(p—1)/p)—p_10(m(p—1))<mod | | e).
(e=1)k
5<e prime

Proof. Using the von Staudt—Clausen Theorem, for even r > 4 we have

Erzl(mod4 H e).

(e—=1)|r
5<eprime

This identity implies
0
TfEO (m0d4 H e).

(e—1)|k
5<eprime
From Theorem 2.1 we obtain
> O(NIDE)
TEFp
_ 20p 20p
= _1U(m(p 1)/p) p_la(m(p 1)) (mod H e). n
(e—1)|k
5<eprime

COROLLARY 4.2. Suppose that p € {2,3,5,7,13}. Let jfff) be a modular
function defined in Example 2.4 and let w denote (1 + /—3)/2.

(I) Let T := {yw € Fp|y € SLa(Z)} and M be a positive integer not
divisible by a prime P =1 (mod3). If ged(p — 1, M) = 1, then for
some positive real number £(M) we have

(3 1 0)

ﬁ{lgmgX
reT T

24

= 2L (o)~ otm) (mod 3} = 0oy )
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(IT) Let T := {~i € F, | v € SLa(Z)} and M be a positive integer not
divisible by a prime P =1 (mod4). If ged(p — 1, M) = 1, then for
some positive real number (M) we obtain

ti{l <m<X 2(;% '5&“’(7))
= 2 om/n) — otm) (mod M)} = O (e )

Proof. Let jm(2) = (j(2) — 744) | To(m). Applying Theorem 2.1 to j,(ﬁ),
we obtain

S(TerN BN = =2 (po(m/p) = 7(m)) = (),

2( X (B @) — = (o) = o(m)) = ).

TEFp P 1

Theorem 6 in [3] implies that for each 7 € {i,w} there is a positive number
&(M) for which

X
< < ] = = _—
H1 < < X | in(r) =0 (m0d M)} = O Gz )
where M is as in (I) if 7 = w, and as in (II) if 7 = 4. Therefore, the corollary
can be proved by the method of Theorem 6 in [3]. So, we omit the details. m
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