Asymptotic formula for sum-free sets in abelian groups

by

R. Balasubramanian (Chennai) and Gyan Prakash (Allahabad)

Let G be a finite abelian group of order n. A subset A of G is said to be sum-free if there is no solution of the equation $x+y=z$ with $x, y, z \in A$. Let $\operatorname{SF}(G)$ denote the set of all sum-free subsets of G, and $\sigma(G)$ denote the number $n^{-1} \log _{2}|\mathrm{SF}(G)|$. In this article we improve the error term in the asymptotic formula for $\sigma(G)$ which was recently obtained by Ben Green and Imre Ruzsa [GR05].

Definition 1.

(I) Let $\mu(G)$ denote the density of a largest sum-free subset of G, so that any such subset has size $\mu(G) n$.
(II) Given a set $B \subset G$ we say that $(x, y, z) \in B^{3}$ is a Schur triple in B if $x+y=z$.
Observing that all subsets of a sum-free set are sum-free we have the obvious inequality

$$
\begin{equation*}
|\mathrm{SF}(G)| \geq 2^{\mu(G) n} \tag{1}
\end{equation*}
$$

From (1) it follows trivially that $\sigma(G) \geq \mu(G)$.
In this article we improve the results of Ben Green and Imre Ruzsa [GR05] and prove Theorems 2 and 3 below. Theorem 2 follows immediately from Theorem 3 and [GR05, Proposition 2.1']. The methods used to prove Theorem 3 are a slight refinement of the methods in [GR05].

Theorem 2. When G is a finite abelian group of order n, then

$$
\sigma(G)=\mu(G)+O\left(\frac{1}{(\ln n)^{1 / 27}}\right)
$$

Theorem 3. There exists an absolute positive constant δ_{0} such that if $F \subset G$ has at most δn^{2} Schur triples, where $\delta \leq \delta_{0}$, then

$$
\begin{equation*}
|F| \leq\left(\mu(G)+c \delta^{1 / 3}\right) n \tag{2}
\end{equation*}
$$

where c is an absolute positive constant.
2000 Mathematics Subject Classification: 11B75, 20D60, 20K01.

Earlier Ben Green and Ruzsa [GR05] proved the following:
Theorem 4 ([GR05, Theorem 1.8]). Let G be a finite abelian group of order n. Then

$$
\sigma(G)=\mu(G)+O\left(\frac{1}{(\ln n)^{1 / 45}}\right)
$$

Theorem 5 ([GR05, Proposition 2.2]). Let G be a finite abelian group, and suppose that $F \subseteq G$ has at most δn^{2} Schur triples. Then

$$
\begin{equation*}
|F| \leq\left(\mu(G)+2^{20} \delta^{1 / 5}\right) n . \tag{3}
\end{equation*}
$$

The following theorem is also proven in [GR05].
Theorem 6 ([GR05, Corollary 4.3]). Let G be an abelian group, and suppose that $F \subseteq G$ has at most δn^{2} Schur triples. Then

$$
\begin{equation*}
|F| \leq\left(\max (\mu(G), 1 / 3)+3 \delta^{1 / 3}\right) n . \tag{4}
\end{equation*}
$$

Theorem 3 follows immediately from Theorem 6 in the case $\mu(G) \geq 1 / 3$. If $\mu(G)<1 / 3$, Theorem 3 again follows from Theorem 6 provided δ is not very small. For δ small we require Lemma 12 with an estimate different from those in [GR05]. For the rest of results required to prove Theorem 3, the methods used are completely identical as in [GR05], but the results used are not identical.

To prove Theorem 2 we use the following result from [GR05].
Theorem 7 ([GR05, Proposition 2.1']). Let G be an abelian group of cardinality n, where n is sufficiently large. Then there is a family \mathcal{F} of subsets of G with the following properties:
(I) $\log _{2}|\mathcal{F}| \leq n(\ln n)^{-1 / 18}$.
(II) Every $A \in \operatorname{SF}(G)$ is contained in some $F \in \mathcal{F}$.
(III) If $F \in \mathcal{F}$ then F has at most $n^{2}(\ln n)^{-1 / 9}$ Schur triples.

Theorem 2 follows immediately from Theorems 7 and 3 . We shall reproduce the proof given in [GR05]. If n is sufficiently large as required by Theorem 7 then associated to each $A \in \operatorname{SF}(G)$ there is an $F \in \mathcal{F}$ for which $A \subset F$. For a given F, the number of A 's which can arise in this way is at most $2^{|F|}$. Thus we have the bound

$$
|\mathrm{SF}(G)| \leq \sum_{F \in \mathcal{F}} 2^{|F|} \leq|\mathcal{F}| \max _{F \in \mathcal{F}} 2^{|F|}
$$

Hence

$$
\begin{equation*}
\sigma(G) \leq \mu(G)+C \frac{1}{(\ln n)^{1 / 27}}+\frac{1}{(\ln n)^{1 / 18}} \tag{5}
\end{equation*}
$$

But from (1) we have $\sigma(G) \geq \mu(G)$. Hence Theorem 2 follows.

In order to prove Theorem 3 we shall need the value of $\mu(G)$, which is now known for all finite abelian groups. In order to explain the results we make the following definition.

Definition 8. Suppose that G is a finite abelian group of order n. If n is divisible by any prime $p \equiv 2(\bmod 3)$ then we say that G is of type I. We say that G is of type $I(p)$ if it is of type I and if p is the least prime factor of n of the form $3 l+2$. If n is not divisible by any prime $p \equiv 2(\bmod 3)$, but $3 \mid n$, then we say that G is of type $I I$. Otherwise G is said to be of type III. That is, G is of type III if and only if all divisors of n are congruent to 1 modulo 3 .

The following theorem is due to P. H. Diananda and H. P. Yap [DY69] for type I and type II groups, and to Green and Ruzsa [GR05] for type III groups.

Theorem 9 ([GR05, Theorem 1.5]). Let G be a finite abelian group of order n. Then the following hold:
(I) If G is of type $I(p)$ then $\mu(G)=1 / 3+1 / 3 p$.
(II) If G is of type II then $\mu(G)=1 / 3$.
(III) If G is of type III then $\mu(G)=1 / 3-1 / 3 m$, where m is the exponent of G.

1. Cardinality of almost sum-free sets. In case the group G is not of type III it follows from Theorem 9 that $\mu(G) \geq 1 / 3$ and hence Theorem 3 follows immediately using Theorem 6. Therefore we have to prove Theorem 3 for type III groups only.

For the rest of this article G will be a finite abelian group of type III, and m will denote the exponent of G. The following proposition is an immediate corollary of Theorems 9 and 6.

Proposition 10. Let G be an abelian group of type III with order n and exponent m. If $F \subset G$ has at most δn^{2} Schur triples then:
(I) $|F| \leq\left(\mu(G)+1 / 3 m+3 \delta^{1 / 3}\right) n$.
(II) If $\delta^{1 / 3} m \geq 1$ then $|F| \leq\left(\mu(G)+4 \delta^{1 / 3}\right) n$, that is, Theorem 3 holds in this case.

Therefore to prove Theorem 3 we are left with the following case: the group G is an abelian group of type III with order n and exponent m. The subset $F \subset G$ has at most δn^{2} Schur triples and $\delta^{1 / 3} m<1$.

Let γ be a character of G and let q be the order of γ. For any $j \in \mathbb{Z} / q \mathbb{Z}$, we define $H_{j}=\gamma^{-1}\left(e^{2 \pi i j / q}\right)$. We also denote the set $H_{0}=\operatorname{ker}(\gamma)$ by just H. Notice that H is a subgroup of G, and H_{j} are cosets of H with cardinality
$\left|H_{j}\right|=|H|=n / q$. For any set $F \subset G$ we also define $F_{j}=F \cap H_{j}$ and $\alpha_{j}=\left|F_{j}\right| /\left|H_{j}\right|$.

Proposition 11. Let G be a finite abelian group of order n. Let F be a subset of G having at most δn^{2} Schur triples where $\delta \geq 0$. Let γ be any character of G and q be its order. Also let F_{i} and α_{i} be as defined above. Then the following holds:
(I) If $x \in F_{i}$ and $y \in F_{j}$ then $x+y$ belongs to H_{i+j}.
(II) The number of Schur triples $\{x, y, z\}$ in F with $x \in F_{l}, y \in F_{j}$ and $z \in F_{j+l}$ is at least $\left|F_{l}\right|\left(\left|F_{j}\right|+\left|F_{j+l}\right|-|H|\right)$. In other words, there are at least $\alpha_{l}\left(\alpha_{j}+\alpha_{j+l}-1\right)(n / q)^{2}$ Schur triples $\{x, y, z\}$ in F with $x \in F_{l}$.
(III) Given any $l \in \mathbb{Z} / q \mathbb{Z}$ such that $\alpha_{l}>0$, we have

$$
\begin{equation*}
\alpha_{j}+\alpha_{j+l} \leq 1+\delta q^{2} / \alpha_{l} \tag{6}
\end{equation*}
$$

for any $j \in \mathbb{Z} / q \mathbb{Z}$.
(IV) Given any $t \in \mathbb{R}$ we define

$$
L(t)=\left\{i \in \mathbb{Z} / q \mathbb{Z}: \alpha_{i}+\alpha_{2 i} \geq 1+t\right\}
$$

Then

$$
\begin{equation*}
\sum_{i \in L(t)} \alpha_{i} \leq \delta q^{2} / t \tag{7}
\end{equation*}
$$

Proof. (I) This follows immediately from the fact that γ is a homomorphism.
(II) If $\left|F_{l}\right|\left(\left|F_{j}\right|+\left|F_{j+l}\right|-|H|\right) \leq 0$, there is nothing to prove. Hence we can assume that $F_{l} \neq \emptyset$. Then for any $x \in F_{l}$, we have $x+F_{j} \subset H_{j+l}$. Since also $F_{j+l} \subset H_{j+l}$ and $\left|F_{j}\right|+\left|F_{j+l}\right|-|H|>0$, it follows that

$$
\left|\left(x+F_{j}\right) \cap F_{j+l}\right|=\left|F_{j}\right|+\left|F_{j+l}\right|-\left|\left(x+F_{j}\right) \cup F_{j+l}\right| \geq\left|F_{j}\right|+\left|F_{j+l}\right|-|H| .
$$

Now for any $z \in\left(x+F_{j}\right) \cap F_{j+l}$ there exists $y \in F_{j}$ such that $x+y=z$. Hence the claim follows.
(III) From (II) there are at least $\alpha_{l}\left(\alpha_{j}+\alpha_{j+l}-1\right)(n / q)^{2}$ Schur triples in F. Hence the claim follows by the assumed upper bound on the number of those triples.
(IV) For any fixed $i \in L(t)$, taking $j=l=i$ in (II), we see that there are at least $\alpha_{i}(n / q)^{2} t$ Schur triples $\{x, y, z\}$ in F with $x \in F_{i}$. Now for any $i_{1}, i_{2} \in L(t)$ such that $i_{1} \neq i_{2}$, the sets $F_{i_{1}}$ and $F_{i_{2}}$ are disjoint. Therefore there are at least $(n / q)^{2} t \sum_{i \in L(t)} \alpha_{i}$ Schur triples in F. Hence the claim follows.

Since the order of any character of an abelian group G divides the order of the group and G is of type III, the order q of any character γ of G is odd and congruent to 1 modulo 3 . Therefore $q=6 k+1$ for some $k \in \mathbb{N}$. Let
$I, H, M, T \subset \mathbb{Z} / q \mathbb{Z}$ denote the images of the intervals $\{k+1, k+2, \ldots, 5 k-1$, $5 k\},\{k+1, k+2, \ldots, 2 k-1,2 k\},\{2 k+1,2 k+2, \ldots, 4 k-1,4 k\},\{4 k+1$, $4 k+2, \ldots, 5 k-1,5 k\}$ in $\mathbb{Z} / q \mathbb{Z}$. Then the set I is divided into $2 k$ disjoint pairs of the form $(i, 2 i)$ where $i \in H \cup T$.

Lemma 12. Let G be a finite abelian group of type III and order n. Suppose that $F \subset G$ has at most δn^{2} Schur triples. Let γ be a character of G. Let the order of γ be $q=6 k+1$. Then

$$
\begin{equation*}
\sum_{i=k+1}^{5 k} \alpha_{i} \leq 2 k+2 \delta^{1 / 2} q^{3 / 2} \tag{8}
\end{equation*}
$$

Proof. The set $I=\{k+1, k+2, \ldots, 5 k\}$ is divided into $2 k$ disjoint pairs of the form $(i, 2 i)$ where $i \in H \cup T$. Therefore

$$
\begin{equation*}
\sum_{i=k+1}^{5 k} \alpha_{i}=\sum_{i \in H \cup T}\left(\alpha_{i}+\alpha_{2 i}\right) \tag{9}
\end{equation*}
$$

Given a $t>0$ we divide $H \cup T$ into two disjoint sets,

$$
\begin{aligned}
& S=\left\{i \in H \cup T: \alpha_{i}+\alpha_{2 i} \leq 1+t\right\} \\
& L=\left\{i \in H \cup T: \alpha_{i}+\alpha_{2 i}>1+t\right\}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\sum_{i \in H \cup T}\left(\alpha_{i}+\alpha_{2 i}\right)=\sum_{i \in S}\left(\alpha_{i}+\alpha_{2 i}\right)+\sum_{i \in L}\left(\alpha_{i}+\alpha_{2 i}\right) \tag{10}
\end{equation*}
$$

From (7) we have

$$
\sum_{i \in L} \alpha_{i} \leq \delta q^{2} / t
$$

Since for any $l \in \mathbb{Z} / q \mathbb{Z}$, the inequality $\alpha_{l} \leq 1$ holds trivially, it follows that

$$
\begin{equation*}
\sum_{i \in L}\left(\alpha_{i}+\alpha_{2 i}\right) \leq|L|+\delta q^{2} / t \tag{11}
\end{equation*}
$$

Also

$$
\begin{equation*}
\sum_{i \in S}\left(\alpha_{i}+\alpha_{2 i}\right) \leq|S|+|S| t \tag{12}
\end{equation*}
$$

just by the definition of the set S. Now from (9), it follows that

$$
\begin{equation*}
\sum_{i=k+1}^{5 k} \alpha_{i} \leq|L|+\delta q^{2} / t+|S|+|S| t \leq 2 k+q t+\delta q^{2} / t \tag{13}
\end{equation*}
$$

Choosing $t=(\delta q)^{1 / 2}$ completes the proof of the lemma.
REmARK. The sum appearing in the last lemma was estimated by $2 k+$ $\delta^{1 / 2} q^{2}$ in [GR05]. There the estimate $\alpha_{i}+\alpha_{2 i} \leq \delta^{1 / 2} q$ was used to estimate the right hand side of (9).

Notice that Lemma 12 holds for any character γ of a group G of type III. We would like to show that given $F \subset G$ having at most δn^{2} Schur triples and also assuming that $\delta^{1 / 3} m<1$ where m is the exponent of G, there is a character γ such that $\alpha_{i} \leq c(\delta q)^{1 / 2}$ for $i \in\{0,1, \ldots, k\} \cup\{5 k+1, \ldots, 6 k\}$ where c is an absolute positive constant, q is the order of γ and $k=(q-1) / 6$. To do this we recall the concept of special direction as defined in [GR05]. The method of proof of this part is identical as in [GR05], though the results are not.

Given any set $B \subset G$ and a character γ of G we define $\widehat{B}(\gamma)=\sum_{b \in B} \gamma(b)$. Fix a character γ_{s} such that $\operatorname{Re} \widehat{B}(\gamma)$ is minimal. We follow the terminology in [GR05] and call γ_{s} a special direction of B.

The following lemma is proven in [GR05], but we shall reproduce the proof here for the sake of completeness.

Lemma 13 ([GR05, Lemmas 7.1 and 7.3(iv)]). Let G be an abelian group of type III. Suppose $F \subset G$ has at most δn^{2} Schur triples. Let γ_{s} be a special direction of F. Set $\alpha=|F| /|G|$. Then the following hold:
(I) $\operatorname{Re} \widehat{F}\left(\gamma_{s}\right) \leq\left(\frac{\delta}{\alpha(1-\alpha)}-\frac{\alpha^{2}}{\alpha(1-\alpha)}\right) n$.
(II) If $\delta \leq \eta / 5$, then either $|F| \leq \mu(G) n$ or

$$
\begin{equation*}
q^{-1} \sum_{j=0}^{q-1} \alpha_{j} \cos \left(\frac{2 \pi j}{q}\right)+\frac{(\mu(\mathbb{Z} / q \mathbb{Z}))^{2}}{1-\mu(\mathbb{Z} / q \mathbb{Z})}<6 \delta \tag{14}
\end{equation*}
$$

Proof. (I) There are exactly $n^{-1} \sum_{\gamma}(\widehat{F}(\gamma))^{2} \widehat{F}(\gamma)$ Schur triples in the set F. This follows after straightforward calculation, using the fact that

$$
\sum_{\gamma} \gamma(b)= \begin{cases}0 & \text { if } b \neq 0 \tag{15}\\ n & \text { if } b=0\end{cases}
$$

where 0 denotes the identity element of the group G. Therefore using the assumed upper bound on the number of Schur triples in F it follows that

$$
n^{-1} \sum_{\gamma}(\widehat{F}(\gamma))^{2} \widehat{F}(\gamma)=n^{-1} \sum_{\gamma \neq 1}(\widehat{F}(\gamma))^{2} \widehat{F}(\gamma)+n^{-1}(\widehat{F}(1))^{2} \widehat{F}(1) \leq \delta n^{2}
$$

where $\gamma=1$ is the trivial character of G. Since $n^{-1}(\widehat{F}(1))^{2} \widehat{F}(1)=\alpha^{3} n^{2}$, it follows that

$$
\operatorname{Re} \widehat{F}\left(\gamma_{s}\right) \sum_{\gamma \neq 1}(\widehat{F}(\gamma))^{2} \leq n^{-1} \sum_{\gamma \neq 1}(\widehat{F}(\gamma))^{2} \widehat{F}(\gamma) \leq\left(\delta-\alpha^{3}\right) n^{2}
$$

Since from (15) it follows that $\sum_{\gamma \neq 1}(\widehat{F}(\gamma))^{2}=\alpha\left(1-\alpha^{2}\right) n^{2}$, the claim follows.
(II) We have $\operatorname{Re} \widehat{F}\left(\gamma_{s}\right)=|H| \sum_{j} \alpha_{j} \cos (2 \pi j / q)$. Therefore in the case $|F| \geq \mu(G)$, from (I) it follows that

$$
\begin{align*}
& q^{-1} \sum_{j=0}^{q-1} \alpha_{j} \cos \left(\frac{2 \pi j}{q}\right) \leq \frac{\delta}{\alpha(1-\alpha)}-\frac{\alpha^{2}}{\alpha(1-\alpha)} \tag{16}\\
& q^{-1} \sum_{j=0}^{q-1} \alpha_{j} \cos \left(\frac{2 \pi j}{q}\right)+\frac{(\mu(G))^{2}}{1-\mu(G)} \leq \frac{\delta}{\alpha(1-\alpha)} \tag{17}
\end{align*}
$$

Since from Theorem 9 we know that $\mu(G) \geq \mu(\mathbb{Z} / q \mathbb{Z})$ it follows that

$$
\frac{(\mu(G))^{2}}{1-\mu(G)} \geq \frac{(\mu(\mathbb{Z} / q \mathbb{Z}))^{2}}{1-\mu(\mathbb{Z} / q \mathbb{Z})}
$$

The claim follows from this and the fact that $1 / 2 \geq \mu(G) \geq 1 / 4$, which implies that $\delta / \alpha(1-\alpha) \leq 6 \delta$.

Lemma 14. Let G be an abelian group of type III with order n and exponent m. Suppose $F \subset G$ has at most δn^{2} Schur triples and $\delta^{1 / 3} m \leq 1$. Let $|F| \geq \mu(G) n$. Let γ_{s} be a special direction of F and q the order of γ_{s}. Let $q=6 k+1$ and α_{i} be as defined above. There exist absolute positive constants q_{0} and δ_{1} such that if $q \geq q_{0}$ and $\delta \leq \delta_{1}$, then

$$
\begin{equation*}
\alpha_{i} \leq c(\delta q)^{1 / 2} \quad \text { for all } i \in\{0,1, \ldots, k\} \cup\{5 k+1, \ldots, 6 k-1\} \tag{18}
\end{equation*}
$$

where c is an absolute positive constant.
Proof. If $F \subset G$ is as in the statement, then so is $-F \subset G$. Moreover $\left|F_{j}\right|=\left|(-F)_{-j}\right|$. Therefore to prove the proposition it is sufficient to show that

$$
\alpha_{i} \leq c(\delta q)^{1 / 2} \quad \text { for all } i \in\{0,1, \ldots, k\}
$$

for some absolute positive constant c.
Let

$$
S=q^{-1} \sum_{j=0}^{q-1} \alpha_{j} \cos \left(\frac{2 \pi j}{q}\right)+\frac{(\mu(\mathbb{Z} / q \mathbb{Z}))^{2}}{1-\mu(\mathbb{Z} / q \mathbb{Z})}
$$

Then from Lemma 13 we have

$$
\begin{equation*}
S \leq 6 \delta \tag{19}
\end{equation*}
$$

Now suppose that $\alpha_{l}>c(\delta q)^{1 / 2}$ for some $l \in\{0,1, \ldots, k\}$ (where c is a positive number to be chosen later). We shall show that this violates (19), provided q and c are sufficiently large and δ is sufficiently small. For this we shall find the lower bound of $M=q^{-1} \sum_{j=0}^{q-1} \alpha_{j} \cos (2 \pi j / q)$.

Set $\gamma_{j}=\left(\alpha_{j}+\alpha_{j+l}\right) / 2$. Then we have

$$
M=\frac{1}{2 q \cos (\pi l / q)} \sum_{j=0}^{q-1} \alpha_{j}\left(\cos \left(\frac{(2 j+l) \pi}{q}\right)+\cos \left(\frac{(2 j-l) \pi}{q}\right)\right)
$$

That is,

$$
\begin{equation*}
M=\frac{1}{q \cos (\pi l / q)} \sum_{j=0}^{q-1} \gamma_{j} \cos \left(\frac{(2 j+l) \pi}{q}\right) . \tag{20}
\end{equation*}
$$

Notice that $\cos (\pi l / q)$ is not well defined if we consider l as an element of $\mathbb{Z} / q \mathbb{Z}$. This is because the function $\cos (\pi t / q)$ as a function of t is periodic, but with period $2 q$ and not q. But we have assumed that $l \in\{0,1, \ldots, k\}$, so the above computation is valid.

Since $\delta^{1 / 2} q^{3 / 2} \leq \delta^{1 / 2} m^{3 / 2}<1$ by assumption, recalling Lemma 11 it follows that

$$
\begin{equation*}
2 \gamma_{j}=\alpha_{j}+\alpha_{j+l} \leq 1+\frac{1}{c} \delta^{1 / 2} q^{3 / 2} \leq 1+\frac{1}{c} \quad \text { for any } j \in \mathbb{Z} / q \mathbb{Z} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j} \gamma_{j}=\sum_{j} \alpha_{j} \geq \mu(G) n \geq 2 k . \tag{22}
\end{equation*}
$$

The inequality (22) follows from the assumption that $|F| \geq \mu(G) n$.
Set $t_{c}=1+1 / c$. Let $E(c, q)$ denote the minimum of the expression $\sum_{j=0}^{q-1} \gamma_{j} \cos ((2 j+l) \pi / q)$ subject to the constraints $0 \leq \gamma_{j} \leq t_{c} / 2$ and $\sum_{j} \gamma_{j} \geq 2 k$.

The function $f: \mathbb{Z} \rightarrow \mathbb{R}$ given by $f(x)=\cos ((q+x) \pi / q)$ is even with period $2 q$ and

$$
\begin{equation*}
f(0)<f(1)<\cdots<f(q) \tag{23}
\end{equation*}
$$

Now to determine $E(c, q)$, we should choose γ_{j} to be as large as we can when $\cos ((2 j+l) \pi / q)$ is small. We have two cases to discuss: when l is even and when l is odd. The image of the function $g: \mathbb{Z} / q \mathbb{Z} \rightarrow \mathbb{R}$ defined by $g(j)=\cos ((2 j+l) \pi / q)$ is equal to $\{f(x): x$ is even $\}$ if l is odd, and to $\{f(x): x$ is odd $\}$ if l is even. From this it is also easy to observe that the number of $j \in \mathbb{Z} / q \mathbb{Z}$ such that $\cos ((2 j+l) \pi / q)$ is negative is at most $(q+1) / 2$. Now let

$$
-\frac{q-1}{2}-l \leq j \leq \frac{q-1}{2}-l
$$

so that $-q \leq 2 j+l \leq q$. For l odd consider the case when $\gamma_{j}=t_{c} / 2$ if

$$
2 j+l=q-\left[\frac{k}{t_{c}}-\frac{1}{2}\right], \ldots, q-2, q, q+1, \ldots, q+\left[\frac{k}{t_{c}}-\frac{1}{2}\right]
$$

and $\gamma_{j}=0$ otherwise. The condition $2\left[k / t_{c}-1 / 2\right]+1 \geq(q+1) / 2$ ensures that in the above configuration for all possible negative values of $\cos ((2 j+l) \pi / q)$ the maximum possible weight $t_{c} / 2$ is chosen. This condition can be ensured if $q \geq 11$ by choosing $c \geq c_{1}$ where c_{1} is a sufficiently large absolute positive
constant. Therefore a small calculation shows that for $c \geq c_{1}$,

$$
\begin{equation*}
E(c, q) \geq-t_{c} \frac{\sin \left(2 \pi\left[k / t_{c}-1 / 2\right] / q\right)}{2 q \sin (\pi / q) \cos (\pi l / q)}-\frac{1}{q} \tag{24}
\end{equation*}
$$

For l even and $c \geq c_{1}$, choosing $\gamma_{j}=t_{c} / 2$ if

$$
2 j+l=q-\left[\frac{k}{t_{c}}\right], \ldots, q-1, q+1, \ldots, q+\left[\frac{k}{t_{c}}\right]
$$

and $\gamma_{j}=0$ otherwise, we get

$$
\begin{equation*}
E(c) \geq-t_{c} \frac{\sin \left(\left(2 \pi\left[k / t_{c}\right]+1\right) / q\right)}{2 q \sin (\pi / q)} \cos \pi q-\frac{t_{c}}{q} \tag{25}
\end{equation*}
$$

Using this we get

$$
\begin{array}{ll}
\text { (26) } \quad S \geq-t_{c} \frac{\sin \left(2 \pi\left[k / t_{c}\right] / q\right)}{2 q \sin (\pi / q) \cos (\pi l / q)}+\frac{(\mu(\mathbb{Z} / q \mathbb{Z}))^{2}}{1-\mu(\mathbb{Z} / q \mathbb{Z})} \quad \text { when } l \text { is even, } \tag{26}\\
\text { (27) } \quad S \geq t_{c} \frac{\sin \left(2 \pi\left[k / t_{c}-1 / 2\right] / q\right)}{2 q \sin (\pi / q) \cos (\pi l / q)}-\frac{1}{q}+\frac{(\mu(\mathbb{Z} / q \mathbb{Z}))^{2}}{1-\mu(\mathbb{Z} / q \mathbb{Z})} \quad \text { when } l \text { is odd. }
\end{array}
$$

Now as $q \rightarrow \infty$ the right hand side of (26) as well as (27) converges to

$$
-t_{c} \frac{\sin \left(2 \pi / 3 t_{c}\right)}{2 \pi \cos (\pi l / q)}+\frac{1}{6}
$$

Let $\eta=2^{-20}$. Then choosing $c \geq c_{2}$ and $q \geq q_{0}$ and noticing that $l \leq q / 6$ we get

$$
\begin{equation*}
S \geq-\frac{1}{2 \pi}+\frac{1}{6}-\eta=8 \delta_{1} \quad \text { say } \tag{28}
\end{equation*}
$$

When $\delta \leq \delta_{1}$, the lower bound on S given by (28) is in contradiction to the upper bound on S given by (19). Hence the lemma follows.

To complete the proof of Theorem 3, we require the following result from [GR05].

Lemma 15 ([GR05, Proposition 7.2]). Let G be an abelian group of type III and n, m be its order and exponent respectively. Suppose $F \subset G$ has at most δn^{2} Schur triples, with $\delta^{1 / 3} m<1$. Let q be the order of a special direction such that $q \leq q_{0}$, where q_{0} is an absolute positive constant as in Lemma 14. Also assume that $\delta \leq \eta / q^{5}=\delta_{2}$, where $\eta=2^{-50}$. Then either $|F| \leq \mu(G) n$ or $\alpha_{i} \leq 64 \delta^{1 / 3} q^{2 / 3}$ for any $i \in\{0,1, \ldots, k\} \cup\{5 k+1, \ldots, 6 k\}$.

Let δ_{1} and δ_{2} be as in Lemmas 14 and 15 respectively. Then we take $\delta_{0}=\min \left(\delta_{1}, \delta_{2}\right)$ in Theorem 3. Combining Lemmas 12,14 and 15 yields Theorem 3 in case $\delta^{1 / 3} m<1$. In case $\delta^{1 / 3} m>1$, Theorem 3 follows from Proposition 10.

Acknowledgments. The authors are very thankful to the anonymous referee for a careful reading of the first version of this paper and suggesting a number of improvements.

References

[DY69] P. H. Diananda and H. P. Yap, Maximal sum-free sets of elements of finite abelian groups, Proc. Japan Acad. 45 (1969), 1-5.
[GR05] B. J. Green and I. Z. Ruzsa, Sum-free sets in abelian groups, Israel J. Math. 147 (2005), 157-189.

The Institute of Mathematical Sciences Harish-Chandra Research Institute

CIT Campus, Taramani
Chennai 600113, India
E-mail: balu@imsc.res.in

Chhatnag Road, Jhunsi
Allahabad 211019, India
E-mail: gyan@mri.ernet.in

