
ACTA ARITHMETICA

127.2 (2007)

On the number of terms of a composite polynomial
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Umberto Zannier (Pisa)

1. Introduction. From a certain viewpoint, the number of terms of
a polynomial (here over a field k supposed throughout of characteristic 0)
measures its complexity, and is thus sometimes a relevant quantity to con-
sider.
In particular, one may ask how this complexity is affected by rational op-

erations. For instance Schinzel has shown that, roughly speaking, the square
of a polynomial with “many” terms also has “many” terms. Actually, he
proved a similar statement for any fixed mth power and with explicit lower
bounds on the number of terms (see [S, p. 187]).
Schinzel also conjectured that, more generally, if g is a fixed noncon-

stant polynomial, then the number of terms of g(h(x)) tends to infinity as
the number of terms of h(x) tends to infinity. This problem appears quite
difficult and to my knowledge is so far unsolved (∗).
In the present short paper we are concerned with a similar question, but

letting the degree of g(x) grow. We have the following

Theorem 1. Let f ∈ k[x] have l > 0 nonconstant terms. Assume that
f = g(h(x)), where g, h ∈ k[x] and where h(x) is not of the shape axm + b
for a, b ∈ k. Then

deg f + l − 1 ≤ 2l(l − 1) deg h.
We may rephrase a consequence of this result by saying that a polynomial

with few terms and large degree cannot have an inner noncyclic composition

factor of small degree.
In the special case when g(x) = cxm one can prove the sharper bound

deg f ≤ l deg h provided h has at least one nonzero root; this follows directly
from a result by Hajós which bounds by t − 1 the maximal multiplicity of
a nonzero root of a polynomial with t terms. (Hajós’ result will be useful
here, and is explicitly recalled below, together with a simple proof.)

2000 Mathematics Subject Classification: 10M05, 12E05, 12Y05.
(∗) See the “Added in proof” on p. 166.

[157] c© Instytut Matematyczny PAN, 2007



158 U. Zannier

Note that the exclusion of the polynomials h(x) = axm + b is relevant:
in fact, if h has this shape, we can take g(x) = g1(x − b) where g1 has a
fixed number of terms and large degree to obtain a contradiction with the
inequality of the theorem.
Similar, slightly weaker, results may be obtained for rational functions in

place of polynomials, by a straightforward adaptation of the present meth-
ods (1). For the sake of brevity we limit ourselves to a statement involving
Laurent’s polynomials, that is, polynomials in x, x−1. We have:

Theorem 2. Let f ∈ k[x, x−1] have l > 0 nonconstant terms. Assume
that f = g(h(x)), where g ∈ k[x], h ∈ k[x, x−1] and where h is not of the
shape axm + a′x−m + b. Then

deg f ≤ (2l − 1)(l − 1)(4(degh)2 − 7 deg h+ 1).
The estimate here is weaker than in Theorem 1. Actually, our proof of

Theorem 2 is simpler than the one for Theorem 1; the latter goes exactly
in the same direction, but uses certain additional features which allow some
improvements.
Again, the special shape in the statement must be taken into account: for

instance, if h(x) = x+x−1 and if we take g(x) = Tn(x), the nth Chebyshev
polynomial, then f(x) = Tn(x+ x

−1) = xn + x−n has only two terms.
These questions were motivated by work in progress with R. Dvornicich

[DZ], concerning polynomial maps with infinitely many preperiodic points
defined over a cyclotomic field. In such context, a relevant property of a
polynomial p ∈ k[x] is the existence of a Laurent polynomial q such that the
number of terms in each of several iterates p ◦ · · · ◦ p ◦ q is bounded. It is a
simple corollary of the above statements that this can happen only in very
special cases; we have:

Corollary. Let p ∈ k[x] have degree ≥ 2 and let q ∈ k[x, x−1] be
nonconstant. Then the number of nonconstant terms of f(x) := p(r)(q(x))
is at least √

8

(deg p)2 deg q

√
deg f

up to the following exceptions: there exist a polynomial L(x) of degree 1
and an ε = ±1 such that (L ◦ p ◦ L−1)(x) is either (εx)d or Td(εx) and
L(q(x)) = cxm for a c ∈ k∗ and an integer m 6= 0.
By p(r)(x) we mean the rth iterate p ◦ · · · ◦ p(x). (In [DZ] we used

other special properties of the relevant polynomials to obtain the conclusion
needed there, which would immediately follow also from this corollary.)

(1) In this case we may consider the maximum number of terms of the numerator and
denominator.
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As in the above theorems, it is readily checked that the special cases are
indeed relevant, in the sense that they lead to a bounded number of terms
in p(r)(q(x)), as r grows.
As to inequalities going in the opposite direction, we thank A. Schinzel

for the following general remark: for every positive integer d there exist g
and h such that deg g = d and deg f ≥ l deg h − 2. To check this, Schinzel
takes h(x) = x2+x and chooses g so that g(h(x))−x2d is an odd polynomial,
which can be done with deg g = d.
Apart from this, we have no significant example, forgetting the excep-

tional cases appearing in the statements. However, we think that the esti-
mates of the theorems and corollary are probably not best possible (which
seems to be common in this type of questions). A question is for instance
whether the quadratic term in l in the bounds may be replaced by a linear
growth.

Convention. Throughout the paper, k will be an algebraically closed
field (which causes no loss of generality in our context) of zero characteristic.

2. Some lemmas

Lemma 1 (Hajós lemma). Let f ∈ k[x] have l nonconstant terms and
let β ∈ k∗. Then ordβ(f(x)− f(0)) ≤ l − 1.
A proof may be readily obtained as follows: suppose by contradiction

that the order at β is ≥ l, so the first l derivatives of f(x) − f(0) vanish
at β. Writing f(x) = c0+ c1x

m1 + · · ·+ clxml , 0 < m1 < · · · < ml, this gives
an l× l linear system in c1, . . . , cl, whose determinant is easily reduced to a
Vandermonde type and found to be nonzero. See [S, p. 187, Lemma 1].

Corollary (to Lemma 1). Suppose that f ∈ k[x] has l nonconstant
terms and that f(x) = f(αx+ β) for some α, β ∈ k∗. Then deg f ≤

(
l
2

)
.

Proof. In this proof f (m) will denote the mth derivative (elsewhere the
iterated composition). Again, write f(x) = c0 + c1x

m1 + · · · + clxml , 0 <
m1 < · · · < ml. Observe that for 0 ≤ r ≤ l − 1, we have ord0(f (mr)(x) −
mr!cr) ≥ mr+1 −mr. From the equation f(x) = f(αx+ β) we deduce that
ordβ(f

(mr)(x)−mr!crα−mr) ≥ mr+1 −mr.
Applying Lemma 1 with f (mr) in place of f andmr!crα

−mr in place of c0
we obtainmr+1−mr ≤ l−r−1. Summing this inequality for r = 0, . . . , l−1
we get deg f = ml =

∑l−1
r=0(mr+1 − mr) ≤

∑l−1
r=0(l − r − 1) =

(
l
2

)
, as

required.

Lemma 2. Suppose that f ∈ k[x] has l nonconstant terms and that
f(x) = g(h(x)), where h(x) is not of the shape axm + b. Then we have
ord0(f(x)− f(0)) ≤ (l − 1)(deg h− 1).
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Proof. Write f(x) as in the Corollary and set

g(x)− c0 = g0(x− ̺1)e1 · · · (x− ̺r)er ,
with g0 ∈ k∗, pairwise distinct ̺i ∈ k and positive integers ei. Now, xm1
divides f(x) − c0 = g0

∏r
i=1(h(x) − ̺i)ei ; the factors in this product are

pairwise coprime, hence xm1 has to divide some factor (h(x)− ̺j)ej .
Since by assumption h(x) is not of the form axm + b, h(x) − ̺j has at

least one nonzero root α ∈ k∗. Hence, on the one hand ej(deg h− 1) ≥ m1,
because the multiplicity of 0 as a root of h(x)− ̺j is at most deg h− 1; on
the other hand, α is a root of f(x)−c0, of multiplicity ≥ ej , hence ej ≤ l−1
by Lemma 1. Combining these estimates we obtain the conclusion of the
lemma.

In what follows we shall need some simple facts on certain function fields
in one variable. The next lemma will take care of this; in it, h(x) will again
denote a polynomial of positive degree deg h, but the assumption h(x) 6=
axm + b will not be needed now.

Lemma 3. Let λ := h(x). There exists a conjugate y of x over k(λ) with
the following properties:

(i) If q ∈ k[x], then q(x) = q(y) if and only if q ∈ k[h(x)].
(ii) Let d := [k(x, y) : k(x)]. Then d ≤ deg h− 1.
(iii) The genus of the function field K = k(x, y) (over k) is not greater
than (d− 1)(d− 2)/2.

(iv) There exist pairwise distinct places P1, . . . ,Pd of K/k such that the
divisor of poles of both x, y is P1 + · · ·+ Pd.

Proof. Plainly, k(x) is an extension of k(λ) of degree deg h. Let L be
a Galois closure of k(x) over k(λ), with Galois group G, and let H be the
subgroup corresponding to k(x).
Observe first that the point at infinity of k(λ) (i.e. the unique pole of λ)

ramifies totally in k(x); in fact, the Puiseux series for x at λ =∞ are of the
shape x = aθλ1/deg h+ b+ cθ−1λ−1/deg h+ · · · , where b, c, . . . ∈ k, a ∈ k∗ are
independent of the branch and where θ runs over the deg h-th roots of unity.
In particular, G, as a permutation group on the deg h solutions of h(X)

= λ, contains a deg h-cycle, i.e. a generator σ of the inertia group above
λ = ∞. We set y := σ(x). (More explicitly, note that if x is represented
by the above series with θ = 1, we may take y as the above series with θ
a primitive deg h-th root of 1.)
Since the group generated by σ is transitive and since H is the stabilizer

of x inG, it follows thatH,σ generateG. Hence, if q(x) = q(y) for a q ∈ k(x),
then q(x) is left fixed by both H and σ, hence by G, i.e., q(x) ∈ k(λ). If now
q is a polynomial, then q is integral over k[λ], hence must be a polynomial
in λ, because k[λ] is integrally closed. This proves part (i).



Number of terms of a composite polynomial 161

Note now that setting H(X,Y ) := (h(X)− h(Y ))/(X − Y ) we have
H(x, y) = 0. Assertion (ii) follows since plainly degY H ≤ degH = deg h−1.
Let H1 ∈ k[X,Y ] be an irreducible polynomial with H1(x, y) = 0. Then

H1 divides H, so the highest homogeneous part of it divides the highest
one of H, which is a constant multiple of (Xdeg h − Y deg h)/(X − Y ). This
implies that degH1 = degX H1 = degY H1 = d. Now assertion (iii) is just
the well-known upper bound (d− 1)(d− 2)/2 for the genus of a plane curve
of degree ≤ d.
Since the infinite place of k(λ) is totally ramified in both k(x) and k(y),

the infinite place of k(x) is unramified in k(x, y), and hence there are exactly
d places above it. Since each of them is unramified, x has a simple pole
at each of them, and no other poles. A symmetrical argument with x, y
interchanged concludes the proof.

Remark. Actually, (i) will not be strictly necessary for the rest, and y
can be just any conjugate of x different from x.
M. Fried determined the precise conditions for the reducibility of the

polynomial H(X,Y ) of the above proof. See [S, §1.5, Thm. 10].
Lemma 4. Let K/k be a function field in one variable, of genus g, and

let z1, . . . , zs ∈ K be not all constant and such that 1 + z1 + · · · + zs = 0.
Suppose also that no proper subsum of the left side vanishes. Then

max(deg(zi)) ≤
(
s

2

)
(#S + 2g − 2),

where S is a set of points of K containing all zeros and poles of the zi.

By deg(z) we mean [K : k(z)]; equivalently, this is the number of poles
of z counted with multiplicity. This lemma is an immediate consequence of
Corollary I of [BM] (as improved after Thm. B therein); we have just used the
fact that the “K-height” of the projective point (1 : z1 : . . . : zs) is bounded
below by the maximum degree. (See also [Z] for analogous statements.)

3. Proof of main results

Proof of Theorem 1. The polynomial f(x) will be written as follows:

(1) f(x) = c0 + c1x
m1 + · · ·+ clxml ,

where

(2) ci ∈ k, c1 · · · cl 6= 0, 0 =: m0 < m1 < · · · < ml := deg f.
Suppose first that h ∈ k(xn) for some integer n > 1, so h = q(xn),

q ∈ k[x], and f = f̃(xn), where f̃(x) = g(q(x)). Since f̃ has the same
number of (nonconstant) terms as f , we may argue with q(x) in place of
h(x). Note in fact that q(x) cannot be of the shape axm + b, for otherwise



162 U. Zannier

h(x) = axmn+ b would also be. If we assume the inequality to be proved for
q in place of h and the same g, we find (deg f)/n+ l−1 ≤ 2l(l−1)(deg h)/n,
whence deg f +n(l− 1) ≤ 2l(l− 1) deg h, which implies the sought estimate
and more.
Therefore, we may suppose that, for any n > 1, h 6∈ k(xn).
Secondly, suppose that h is decomposable, i.e. that h(x) = p(q(x)) for

p, q ∈ k[x] both of degree > 1. Note that if q(x) = axm + b then m > 1 and
h ∈ k(xm), against the previous assumption. Hence q is not of the shape
axm+ b. We may now write f(x) = r(q(x)), where r(x) = g(p(x)). Again, if
we assume the sought inequality for q(x) in place of h(x) and for g(p(x)) in
place of g(x), we obtain deg f + l − 1 ≤ 2l(l − 1) deg q, which again implies
the inequality we want to prove. Hence it will suffice to prove the theorem
with g, h replaced by g ◦ p, q respectively.
Therefore, by iterating suitably this argument, we may assume from now

on that h is indecomposable.

If ml ≤ (l− 1)(deg h− 1) the inequality in the conclusion of the theorem
is true. Hence suppose that ml > (l − 1)(degh− 1).
In the rest of this proof we let K = k(x, y) and we adopt the notation

of Lemma 3. Since f ∈ k(h(x)) we have f(x) − f(y) = 0, where y is as in
Lemma 3. In view of (1) this reads

(3) c1x
m1 − c1ym1 + · · ·+ clxml − clyml = 0.

We shall exploit (3) by means of Lemma 4. Before applying it, we deal
with possible vanishing subsums of the left side of (3). We partition the
terms on the left of (3) into minimal subsets with vanishing sum. (A priori
this partition may be done in several ways; we can choose freely one of
them.) Among such subsets we pick the one containing the term clx

ml . We
denote the corresponding terms by w0, . . . , ws agreeing that ws = clx

ml .
We shall then obtain a relation w0+ · · ·+ws = 0, without proper vanishing
subsums, where ws = clx

ml and where w0, . . . , ws are distinct terms on the
left side of (3).
Also, we may write such a vanishing relation in the form

p(x) = q(y),

where p and q are nonzero polynomials obtained as certain nonempty sub-
sums of terms ±wj and where deg p = ml.
This equation says that p(x) lies in the intersection k(x) ∩ k(y), which

is a field intermediate between k(λ) and k(x) (we are using throughout the
notation of Lemma 3 above). By the Lüroth Theorem (see [S]) this field is of
the shape k(r(x)), where r ∈ k(x) is such that λ = h(x) = t(r(x)) for some
t ∈ k(X). However, h is a polynomial, i.e.∞ ∈ P1(k) has just the preimage
∞ under the map P 7→ h(P ). Hence∞must have just one preimage, denoted
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by Q, under the map P 7→ r(P ). Then, replacing r by L◦ r and t by t◦L−1,
for a suitable L ∈ PSL2(k) = Aut(P1(k)), we may assume that Q =∞.
This means however that r, t may be assumed to be polynomials, without
changing their respective degrees. (This simple self-contained argument may
be replaced by a quotation of [S, §1.2, Thm. 4].)
However, we are assuming that h is an indecomposable polynomial, so

we must have either deg r = 1 or deg t = 1.

In the first case we must therefore have k(x) ∩ k(y) = k(x), i.e., y =
v(x) ∈ k(x). Since y is integral over k[x] we deduce that v ∈ k[x]. By
looking at the poles at Pi we also deduce that deg v = 1, namely y = αx+β
for suitable α ∈ k∗, β ∈ k. Since h(x) = h(y) we have h(x) = h(αx + β)
identically. If β = 0, α must be a root of unity, of exact order n > 1; this
implies that h ∈ k(xn), which we are assuming not to be the case. Hence
β 6= 0. By the Corollary to Lemma 1 we thus find ml ≤

(
l
2

)
, which gives the

sought result and more.
In the second case, k(x) ∩ k(y) = k(λ), so p(x) ∈ k(h(x)), which means

that p(x) = u(h(x)) for some polynomial u ∈ k[x]. By Lemma 2 (applied
with p(x) in place of f(x) and u(x) in place of g(x)) we deduce that the
minimum degree of a term of p is≤ (l−1)(deg h−1). Letmℓ be this minimum
degree (so in particular ℓ 6= l); this amounts to assuming that cℓxmℓ appears
in p(x) and that ℓ is minimal for this property. We may renumber the indices
so that this term is w0.
Dividing the relation w0 + · · · + ws = 0 by w0 = cℓxmℓ and setting

zj := wj/w0 we find

(4) 1 + z1 + · · ·+ zs = 0.
Note that ws 6= w0, hence there is at least one nonconstant term in the sum.
We are then in a position to apply Lemma 4. We proceed to estimate the
relevant quantities.
Note that zs has a pole of order at least ml − mℓ at each P1, . . . ,Pd.

Hence deg(zs) ≥ d(ml−mℓ). Further, x, y have altogether the same d simple
poles (Lemma 3(iv)) and therefore at most d distinct zeros each. We can
then bound #S by 3d (2). Finally, the genus g is estimated by Lemma 2 as
≤ (d− 1)(d− 2)/2.
Combining these estimates and using Lemma 4 we find

d(ml −mℓ) ≤
(
s

2

)
(3d+ (d− 1)(d− 2)− 2) =

(
s

2

)
d2.

Now, we have s+ 1 ≤ 2l, whence ml ≤ mℓ + (2l− 1)(l− 1)d. Finally, recall
that mℓ ≤ (l− 1)(deg h− 1) and that d ≤ deg h− 1 by Lemma 3. All of this

(2) Here a very slight improvement would be possible, taking into account that x, y
may be proved to have some common zero.
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gives

ml ≤ (l − 1)(deg h− 1) + (2l − 1)(l − 1) deg h = 2l(l − 1) deg h− l + 1,
which proves Theorem 1.

Proof of Theorem 2. This proof is analogous, but simpler than the one
for Theorem 1, and leads to a weaker result; the point is that the polynomial
case has peculiar features which allow some improvements. (We do not know
whether this could be done more generally.)
We write f(x) in the form (1), but where now m1 < · · · < ml are

nonzero integers, not necessarily positive. By changing x into x−1 we may
also assume that ml = max(|mj |); in particular, deg f = ml.
As in the opening step of the proof of Theorem 1, we reduce to the case

when h(x) does not lie in a field k(xn), no matter the integer n > 1. Clearly
we may also suppose that deg h > 1.
Similarly to the proof of Theorem 1, we let y 6= x be a conjugate of x

over k(λ), where h(x) = λ, so h(y) = h(x); we let K = k(x, y).
If y = cx for a c ∈ k∗, then h(x) = h(cx), whence c is a root of unity and

h ∈ k(xn) where n > 1 is the order of c, a case which we are excluding. The
case y = c/x may happen, but possibly for a single conjugate: if it happens
for two conjugates y, y′ then their ratio is constant and leads to an excluded
case, as we have just shown. If there are no conjugates other than c/x, then
h(x) has degree 2 and then must be of the shape ax+ bx−1 + c′, which we
are again excluding.
Hence we may assume that y is neither of the form cx nor c/x.
Since f = g(h(x)) we also have f(x)−f(y) = 0. This last equation may be

written as a sum of 2l terms, according to (1). As in the proof of Theorem 1
we partition the set of these terms into subsets with vanishing subsum. The
subsum containing clx

ml will correspond to a relation w0 + · · · + ws = 0,
where each wj is a nonconstant term in f(x) or in −f(y), where ws = clxml
and where there are no proper vanishing subsums.
Dividing by w0 we get a relation 1+ z1 + · · ·+ zs = 0 without vanishing

subsums, where zj = wj/w0.
Suppose first that zs is constant. Plainly, this can happen only if w0 is

of type −cjymj , and then xml/ymj would be constant.
Now, deg(λ) = deg(h) deg(x) = deg(h) deg(y), so deg(x) = deg(y) (view-

ing λ, x, y as elements of K). If xml = cymj for a c ∈ k∗ then |ml| deg(x) =
|mj | deg(y), whence |ml| = |mj |. By our assumption that |ml| = max(|mi|),
we can have either mj = ml (and j = l) or mj = −ml (and mj = m1).
In the first case we have y = ax for an a ∈ k∗, which we are excluding.
If we have mj = m1 = −ml < 0, then y = b/x for a b ∈ k∗, which we

are also excluding.
In conclusion, we may suppose that the term xml/ymj is not constant.
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Suppose first mj > 0. If div0(y) ≥ div0(x) then the divisors are equal,
because they have equal degree; similarly if div∞(y) ≥ div∞(x). Then, if
both inequalities hold, x/y must be constant, which we are excluding. Hence
at least one of the two inequalities does not hold, which implies that there
is a point P of K with |ordP(x)| > |ordP(y)|. Hence |ordP(xml/ymj )| ≥
|ml|(|ordP(x)| − |ordP(y)|) ≥ |ml|, which implies deg(xml/ymj ) ≥ |ml|.
The same inequality holds if mj < 0: we can simply repeat the argument

just given, replacing y with y−1 and noting that xy cannot be constant.

Let now d = [K : k(x)]; we have d ≤ deg h− 1.
Suppose that h(x) has a pole at x = ∞. Then a pole of x (resp. of y)

must be a pole or a zero of y (resp. of x). Hence there are at most 3d places
of K at which x or y has a zero or a pole. Similarly if h(x) has a pole at
x = 0.

Using Lemma 4 we then obtain

deg f = ml ≤
(
s

2

)
(3d+ 2g − 2),

where g is the genus of K. This is estimated as ≤ (D−1)(D−2)/2, where D
is the degree of an irreducible equation H(x, y) = 0. Since h(x)− h(y) = 0,
H(X,Y ) must be a divisor of the numerator of (h(X) − h(Y ))/(X − Y ),
which has degree ≤ 2 deg h − 1; hence D ≤ 2 deg h − 1. In conclusion we
obtain

deg f ≤
(
2l − 1
2

)
(4(deg h)2 − 7 deg h+ 1),

finishing the proof of Theorem 2.

Proof of Corollary to Theorem 2. Put f(x) = p(r)(q(x)). We may sup-
pose without loss of generality that r ≥ 2.
We follow in part the normalization arguments from [DZ, Lemma 2], and

we start to normalize p(x) in the Fatou normal form.

Namely, let L ∈ k[x] be a polynomial of degree 1 and set p1 := L◦p◦L−1,
q1 := L ◦ q. We have p(r)1 ◦ q1 = L ◦ p(r) ◦ q = L ◦ f .
Also, the number of nonconstant terms of L ◦ f is the same as that of f ,

and moreover if the conclusion is true for p1, q1 it is true for p, q. Therefore,
we may work with p, q replaced by p1, q1. Observe finally that by a suitable
choice of L we may suppose that

(5) p(x) = xd + α2x
d−2 + · · ·+ αd

where d := deg p ≥ 2 and αi ∈ k.
Suppose first that one among hs(x) := p

(s)(q(x)), s = 0, 1, 2, is not of
the shape axm+ bx−m+ c. Then we may apply Theorem 2 to hs(x) in place
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of h(x) and to p(r−s)(x) in place of g(x). We obtain in the worst case

deg f ≤ (2l − 1)(l − 1)4(deg p)4(deg q)2,

whence

l ≥
√
8

(deg p)2 deg q

√
deg f,

proving the inequality in the statement.

Hence we may assume that all hs(x), s = 0, 1, 2, are of the mentioned
special shape, i.e.

hs(x) = p
(s)(q(x)) = asx

ms + bsx
−ms + cs, s = 0, 1, 2.

Putting m := deg q, we have necessarily ms = md
s.

Suppose first that a0b0 = 0; then after replacing x with x
−1 we may

suppose a0 6= 0, b0 = 0, whence b1 = b2 = 0 and a0a1a2 6= 0. Now, setting
Ls(x) = asx + cs, we have q(x) = L0(x

m), p(L0(x)) = L1(x
d), p(L1(x)) =

L2(x
d).

If we take into account (5), the last two equations imply c0 = c1 = 0
(look at the second coefficient on both sides). Thus p(a0x) = a1x

d. In turn,
(5) implies p(x) = xd, as required.

Suppose now that a0b0 6= 0. Note that we may write x for xm without af-
fecting the content, which amounts to supposing deg q = 1. Next, on setting
u := vx where v2b0 = a0, we have q(x) = a(u+ u

−1) + c0, where a := b0v.

From now on we write z := u + u−1, so q(x) = az + c0 and hs(x) =
p(s)(az + c0).

This forces p(s)(az + c0) = a
dsTds(z) + cs for s = 1, 2, where Tm is the

Chebyshev polynomial. Since the second coefficient of Td is 0 (Td has the
same parity as d) we deduce from (5) that c0 = 0.

The identity with s = 1 yields p(az) = adTd(z) + c1, which leads to

p(2)(az) = p(adTd(z) + c1). The left side is a
d2Td2(z) + c2, by the use of the

identity with s = 2. Hence, since Td2 = Td ◦ Td, we have ad
2

Td(z) + c2 =
p(adz+ c1). Comparing again the second coefficients we find c1 = 0, whence

ad
2

Td(z) + c2 = p(a
dz) = adTd(a

d−1z). But now Lemma 5, Ch. 1.4 of [S]
implies c2 = 0 and a

d−1 =: ε = ±1.
From p(az) = adTd(z) we find a

−1p(az) = εTd(z), and we have q(z) =
az, proving finally what we want.

Added in proof (January 2007). In a recent preprint entitled “On composite lacu-
nary polynomials and the proof of a conjecture of Schinzel” the present author has solved
the problem mentioned in the Introduction, by proving that if g(h(x)) has boundedly
many terms, then the same is true of h(x).
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