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1. Introduction. Let p be a prime number, and Γ = Γp the cyclic group
of order p; Γ = F+

p , where F+
p is the additive group of the finite field Fp of

p elements. We say that a number field F satisfies condition (Ap) if for any
tame Γ -extension N/F , ON is cyclic over the group ring OF Γ . Here, OF is
the ring of integers of F . It is well known by work of Hilbert and Speiser that
the rationals Q satisfy (Ap) for all primes p. In [6, Theorem 1], Greither et

al. gave a necessary condition for a number field F to satisfy (Ap) in terms of
(a subgroup of) the ray class group of F defined modulo p, using a theorem
of McCulloh [20, 21]. Applying that condition, they proved that F 6= Q does
not satisfy (Ap) for infinitely many primes p ([6, Theorem 2]). Thus, it is
of interest to determine which number fields F satisfy (Ap). Several authors
[3, 4, 11–13] obtained some results on the problem using the above men-
tioned condition (and some other results such as a theorem of Gómez Ayala
[5, Theorem 2.1]). For instance, it was shown by Carter [3, Corollary 3]
that an imaginary quadratic field F = Q(

√
−d) with d > 0 square free

satisfies (A2) if and only if d = 1, 3 or 7. Further, all quadratic fields satisfy-
ing (A3) were determined independently in [3, Corollary 5] and [12, Propo-
sition]. There are exactly four imaginary and eight real ones satisfying (A3).
The purpose of this paper is to determine all imaginary quadratic fields
satisfying (Ap) for p = 5, 7 or 11. The result is as follows:

Theorem 1. An imaginary quadratic field F = Q(
√
−d) with a square

free positive integer d satisfies the condition (A5) if and only if d = 1 or 3.
It satisfies (A7) if and only if d = 3. No imaginary quadratic field satis-

fies (A11).

As in [6], the above mentioned theorem of McCulloh plays an important
role in proving Theorem 1. In Section 2, we recall McCulloh’s theorem and
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several of its consequences including the above mentioned condition for (Ap)
in [6]. In Section 3, we give some conditions for an imaginary quadratic field
to satisfy (Ap) and prove Theorem 1. In Section 4, we review some topics
on subfields of the p-cyclotomic field Q(ζp) satisfying (Ap).

2. Consequences of McCulloh’s theorem. In this section, we recall
a theorem of McCulloh [20, 21] and several of its consequences. Let F be
a number field. For an integer a ∈ OF , let ClF (a) be the ray class group
of F defined modulo the ideal aOF . We simply write ClF = ClF (1), the
absolute class group of F . Let Cl(OF Γ ) be the locally free class group of
the group ring OF Γ , and let Cl0(OF Γ ) be the kernel of the homomorphism
Cl(OF Γ ) → ClF induced from the augmentation OF Γ → OF . The class
group Cl0(OF Γ ) is known to be a quotient of some copies of the ray class
group ClF (ζp)(p), but it is a quite complicated object in general. Let R(OF Γ )
be the subset of Cl(OF Γ ) consisting of the locally free classes [ON ] for
all tame Γ -extensions N/F . It follows that F satisfies (Ap) if and only if
R(OF Γ ) = {0}. It is known that R(OF Γ ) ⊆ Cl0(OF Γ ). Let G = F×

p be the
multiplicative group of Fp. Through the natural action of G on Γ = F+

p , the
group ring ZG acts on Cl(OF Γ ). Let SG be the classical Stickelberger ideal
of the group ring ZG. For the definition, see Washington [26, Chapter 6].

Theorem 2 ([21]). Under the above setting , we have

R(OF Γ ) = Cl0(OF Γ )SG .

Let O×
F be the group of units of a number field F . For an integer a ∈ OF ,

let [O×
F ]a be the subgroup of the multiplicative group (OF /a)× consisting

of the classes containing a unit of F . The quotient (OF /a)×/[O×
F ]a is a sub-

group of the ray class group ClF (a). Greither et al. [6] proved the following
relation between condition (Ap) and ClF (p) from Theorem 2 by studying a
canonical subgroup of Cl(OF Γ ), called the Swan subgroup.

Proposition 1 ([6, Theorem 1]). Assume that a number field F satisfies

condition (Ap). Then the exponent of the quotient (OF /p)×/[O×
F ]p divides

(p − 1)2/2 when p ≥ 3, and (OF /p)× = [O×
F ]p when p = 2.

The following is obtained from Proposition 1 and [5, Theorem 2.1].

Proposition 2 ([11, Proposition 2]). A number field F satisfies condi-

tion (A2) if and only if the ray class group ClF (2) is trivial.

Similar conditions for (A2) are also given in [3, Theorem 2] and in Her-
reng [9, Theorem 2.1]. In view of Proposition 2, we let p ≥ 3 in the following.
To give another consequence of Theorem 2, we need to recall a “Stickelberger
ideal” associated to a subgroup of G. Let H be a subgroup of G. For an el-
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ement α ∈ ZG, let

αH =
∑

σ∈H

aσσ ∈ ZH with α =
∑

σ∈G

aσσ.

In other words, αH is the H-part of α. In [14], we defined the Stickelberger

ideal SH of ZH by

SH = {αH | α ∈ SG} ⊆ ZH.

Several properties of the ideal SH are studied in [14, 15, 17, 18]. For an
integer i ∈ Z, let i be the class in Fp = Z/p containing i. It is known that
the ideal SH is generated over Z by the Stickelberger elements

θH,r =
∑

i

′
[
ri

p

]
· i−1 ∈ ZH(1)

for all integers r ∈ Z. Here, i runs over the integers with 1 ≤ i ≤ p − 1 and
i ∈ H, and for a real number x, [x] is the largest integer ≤ x. Let NH be
the norm element of ZH. It follows that

NH = −θH,−1 ∈ SH .

Letting ̺ be a generator of H, put

nH =

{
1 + ̺ + · · · + ̺|H|/2−1 if |H| is even,

1 if |H| is odd.

As is easily seen, the ideal 〈nH〉 = nHZH does not depend on the choice of ̺.
It is known that SH ⊆ 〈nH〉 ([18, Lemma 1]) and that the quotient 〈nH〉/SH

is a finite abelian group whose order divides the relative class number h−
p of

the p-cyclotomic field Q(ζp) ([18, Theorem 2]):

[〈nH〉 : SH ] |h−
p .(2)

Let F be a number field, and K = F (ζp). We naturally identify the
Galois group Gal(K/F ) with a subgroup H of G through the Galois action
on ζp. Then the group ring ZH acts on several objects associated to K/F .
Let π = ζp − 1. The following assertion was obtained from Theorem 2 and
Proposition 1.

Proposition 3 ([13, Theorem 5]). Let F be a number field , and let

K = F (ζp) and H = Gal(K/F ) ⊆ G. If F satisfies (Ap), then

ClK(π)SH = {0} and ClK(p)SH ∩ ClK(p)H = {0}.
Here, ClK(p)H is the Galois invariant part.

It is known that the converse of this assertion holds when p = 3 ([12,
Theorem 2]). The following is a consequence of Proposition 3.

Proposition 4. Let F and K be as in Proposition 3. Assume that

F satisfies (Ap) and that the norm map ClK → ClF is surjective. Then
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the natural map ClF → ClK is trivial. In particular , the exponent of ClF
divides [K : F ].

Proof. By the assumption, any ideal class c ∈ ClF is of the form c = dNH

for some d ∈ ClK . However, when F satisfies (Ap), the class dNH is trivial
in ClK by Proposition 3 and NH ∈ SH .

When F/Q is unramified at p, the Galois group Gal(K/F ) is naturally
identified with G = F×

p through the Galois action on ζp. The following is a
consequence of Theorem 2.

Proposition 5. Assume that F/Q is unramified at p, and let K =
F (ζp). Then F satisfies condition (Ap) if and only if the Stickelberger ideal

SG annihilates the ray class group ClK(π).

Proof. Brinkhuis [2, Proposition (2.2)] proved that the ZG-module
Cl0(OF Γ ) is naturally isomorphic to the ray class group ClK(π) when F/Q
is unramified at p. Hence, the assertion follows immediately from Theo-
rem 2.

Though the following assertion is irrelevant to the proof of Theorem 1,
it might be of some interest to the reader. For a CM-field K, let Cl−K be
the kernel of the norm map ClK → ClK+ where K+ is the maximal real
subfield of K.

Proposition 6. Let F be a totally real number field , and K = F (ζp).
If F satisfies (Ap), then the exponent of Cl−K divides 2h−

p .

Proof. Let H = Gal(K/F ) ⊆ G, and let ̺ be a generator of H. As F
is totally real, |H| is even and J = ̺|H|/2 is the complex conjugation in H.
We easily see that (1 − ̺)nH = 1 − J , and that nHh−

p ∈ SH by (2). Hence,
(1 − J)h−

p ∈ SH . Assume that F satisfies (Ap). Then, by Proposition 3,
(1 − J)h−

p annihilates ClK . The assertion follows from this.

3. Imaginary quadratic fields. In this section, let p ≥ 3 be an odd
prime number, and F = Q(

√
−d) an imaginary quadratic field with a square

free positive integer d.

Lemma 1. When p is ramified in F/Q, F satisfies (Ap) if and only if

p = 3 and F = Q(
√
−3).

Proof. The “only if” part is an easy consequence of Proposition 1 since
(OF /p)× is cyclic of order p(p − 1) when p ramifies in F . The “if” part is
due to [5, p. 110].

Lemma 2.

(I) Let p = 3 or 5. If F 6= Q(
√
−1), Q(

√
−3) and p is inert in F , then

F does not satisfy (Ap).
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(II) Let p ≥ 7. If p is inert in F , then F does not satisfy (Ap).

Proof. This is an easy consequence of Proposition 1 since (OF /p)× is
cyclic of order p2 − 1 when p is inert in F .

In all what follows, we exclude the case where p = 3 and F = Q(
√
−3),

and we let K = F (ζp). Hence, by Lemma 1, if F satisfies (Ap), then F/Q is
unramified at p and the Galois group Gal(K/F ) is naturally identified with
G = F×

p .

Lemma 3. If F satisfies (Ap), then the exponent of the class group ClF
divides 2.

Proof. We use a standard argument in [26, pp. 289–290]. Assume that
F satisfies (Ap). As F/Q is unramified at p, K/F is totally ramified at the
primes over p. Hence, the natural map ClF → ClK is trivial by Propo-
sition 4. Let A be an arbitrary ideal of F relatively prime to p. We have
AOK = αOK for some α ∈ K×. Let ̺ be a generator of G, and J a gen-
erator of Gal(F/Q) = Gal(K/K+) where K+ is the maximal real subfield
of K. As A is an ideal of F , we have α1−̺ = ε ∈ O×

K . On the other hand,
A1+J = βOF for some β ∈ Q×. Hence, α1+J = βη for some unit η ∈ O×

K . It
follows that

ε1+J = (α1+J)1−̺ = η1−̺

as β ∈ Q×. Putting α1 = α2/η, we have

α1OK = A2OK .(3)

Let

ε1 = α̺−1
1 = ε−2η1−̺ ∈ O×

K .(4)

Then

ε1+J
1 = ε−2(1+J)η(1−̺)(1+J) = η(1−J)(̺−1).

Hence, ε1 is a root of unity in K by a theorem on units of a CM-field (cf.
[26, Theorem 4.12]). Let µp be the group of pth roots of unity in K. We
consider separately the cases when ε1 ∈ µp or not.

The case ε1 ∈ µp. Since the map ̺ − 1 : µp → µp is an isomorphism,
we can write ε1 = ζ̺−1 for some ζ ∈ µp. Hence, it follows from (4) that
(α1/ζ)̺ = α1/ζ and α1/ζ ∈ F×. Therefore, by (3), A2 is a principal ideal
of F .

The case ε1 6∈ µp. As the class groups of Q(
√
−1) and Q(

√
−3) are

trivial, we may well assume that F 6= Q(
√
−1), Q(

√
−3). Then the condition

ε1 6∈ µp implies that −ε1 ∈ µp, and hence, −ε1 = ζ̺−1 for some ζ ∈ µp. On
the other hand, we have −1 = (

√
p∗)̺−1 where p∗ = p if p ≡ 1 mod 4 and

p∗ = −p otherwise. Therefore, ε1 = (
√

p∗ζ)̺−1. Hence, it follows from (4)
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that
(α1/

√
p∗ζ)̺ = α1/

√
p∗ζ and α1/

√
p∗ζ ∈ F×.

This implies that p is ramified in F as A is relatively prime to p. This is a
contradiction.

Lemma 3 asserts that if the exponent of ClF is greater than 2, then F
does not satisfy (Ap) for any prime p. All imaginary quadratic fields F with
Cl2F = {0} were determined by Weinberger [27, Theorem 1] with possibly
one exception. A table of such F ’s is given in Miyada [22, p. 539]. There are
exactly 65 (or possibly 66) such F . In particular, we obtain the following:

Proposition 7. For each prime number p, there exist at most 65 (or
possibly 66) imaginary quadratic fields satisfying condition (Ap).

Lemma 4. Let p = 5, and E = F (
√

5). If F satisfies (A5), then the

natural map ClF → ClE is trivial.

Proof. Assume that F satisfies (A5). Let ̺ be a generator of G =
Gal(K/F ). We have SG = 〈1 + ̺〉 by h−

5 = 1 and (2). By the assump-
tion and Proposition 3 or 5, c1+̺ = 1 for any c ∈ ClK . As the norm
map ClK → ClE is surjective, this relation holds for any c ∈ ClE . As
the norm map ClE → ClF is surjective, any class d ∈ ClF is of the form
d = NE/F (c) = c1+̺ for some c ∈ ClE . Therefore, we obtain the assertion.

Lemma 5. Let p be a prime number with p≡ 3 mod 4, and E = F (
√−p).

If F satisfies (Ap), then the natural map ClF → ClE is trivial.

Proof. Assume that F satisfies (Ap). Let A be an ideal of F . By Propo-
sition 4, AOK = αOK for some α ∈ K×. Hence, A[K:E]OE = βOE with
β = NK/E(α). This implies that AOE is a principal ideal since [K : E] is

odd by the assumption on p, and A2 is principal in F by Lemma 3.

Lemma 6. Let p be a prime number with p ≡ 3 mod 4 or p = 5. If F
satisfies (Ap), then ClF is isomorphic to the abelian group (Z/2)⊕R with

R ≤ 2.

Proof. Let H
(2)
F /F be the maximal unramified abelian extension of ex-

ponent 2, and let E be as in Lemmas 4 and 5. Assume that F satisfies (Ap).

Then [H
(2)
F : F ] = [H

(2)
F E : E] since E/F is totally ramified at the primes

over p. Let t be the number of prime numbers which ramify in F . Let
λ1, . . . , λr (resp. µ1, . . . , µs) be all the odd prime numbers which ramify in F
and are congruent to 1 (resp. 3) modulo 4. The 2-rank of ClF equals t − 1
by a well known theorem on quadratic fields (cf. Hecke [8, Theorem 132]).
Hence, by Lemma 3, it suffices to show that t ≤ 3 since we are assuming
that F satisfies (Ap). It is well known and easy to show that

H
(2)
F = F (

√
λi,

√
−µj | 1 ≤ i ≤ r, 1 ≤ j ≤ s).
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Let ℓ be any one of the prime numbers λi and µj, and let L be the prime
ideal of F over ℓ. By Lemmas 4 and 5, the ideal LOE is principal. This
implies that ℓ = εx2 for some unit ε ∈ O×

E and x ∈ E×. Therefore,

H
(2)
F E ⊆ E(

√
ε | ε ∈ O×

E).

Now, from the above, it follows that

2t−1 = [H
(2)
F : F ] = [H

(2)
F E : E] = 1, 2 or 4

since the group O×
E is generated by two elements. Therefore, t ≤ 3.

For a number field N and a prime number q, let ClN [q] be the Sylow
q-subgroup of the class group ClN .

Lemma 7. Let p ≥ 7 be a prime number with p ≡ 3 mod 4. Let

K = F (ζp), and let N be an intermediate field of K/F with 2 ∤ [K : N ]. If

the 2-part ClN [2] is nontrivial and cyclic as an abelian group, then F does

not satisfy (Ap).

Proof. Assume that ClN [2] is nontrivial and cyclic, but F satisfies (Ap).
Let c be a generator of the cyclic group ClN [2]. Then

cσ ≡ c mod 2ClN [2](5)

for all σ ∈ G. As [K : N ] is odd, the natural map ClN [2] → ClK is injective.
Let c and ClN [2] be the images of c and ClN [2] under this injection. As
F satisfies (Ap), the Stickelberger element θG,2 kills c. We easily see that
the augmentation ZG → Z maps the element θG,2 to (p − 1)/2 from the
definition (1). Therefore, it follows from (5) that

1 = cθG,2 ≡ c (p−1)/2 mod 2ClN [2].

This implies that c(p−1)/2 ∈ 2ClN [2] as ClN [2] → ClK is injective. Hence,
c ∈ 2ClN [2] as (p − 1)/2 is odd. This is a contradiction.

For a number field N , let hN be the class number of N .

Lemma 8. Let p be a prime number with p ≡ 3 mod 4 and p ≤ 19, and

let E = F (
√−p). If the class number hE is divisible by an odd prime number

q relatively prime to (p − 1)/2, then F does not satisfy (Ap).

Proof. As q is relatively prime to (p−1)/2, the natural map ClE [q]→ClK
is injective. Let c be a class in ClE of order q, and c its lift to K. The class
c is nontrivial. Let ̺ be a generator of G = Gal(K/F ). Assume that F
satisfies (Ap). Then c̺ = c−1 since hF is a power of 2 by Lemma 3. Hence,

c̺ = c−1.(6)



186 H. Ichimura and H. Sumida-Takahashi

The condition p ≤ 19 is equivalent to h−
p = 1 (cf. [26, Corollary 11.18]).

Hence, by (2), the Stickelberger ideal SG is generated by nG. Since F satisfies
(Ap), we see that nG annihilates ClK by Proposition 3 or 5. As (p− 1)/2 is
odd, we see from (6) that

1 = cnG = c{1+(−1)}+···+{1+(−1)}+1 = c.

This is a contradiction.

Lemma 9. Let F be a quadratic field not necessarily imaginary , and let p
be a prime number splitting in F . Let P1 and P2 be the prime ideals of K =
F (ζp) over p. Then the Stickelberger ideal SG annihilates (OK/π)×/[O×

K ]π
if and only if there exists a unit ε ∈ O×

K satisfying

ε ≡ 1 mod P1 and ε ≡ −1 mod P2.(7)

Proof. For brevity, put X = (OK/π)×/[O×
K ]π. We have

(OK/π)× = (OK/P1)
× ⊕ (OK/P2)

× = F×
p ⊕ F×

p .

The Galois group G = Gal(K/F ) fixes the prime ideal Pi, and it acts
trivially on (OK/Pi)

×. The augmentation ιG : ZG → Z maps both nG and
θG,2 to (p−1)/2. Hence, we see from (2) that ιG maps the ideal SG ⊆ ZG onto
the ideal of Z generated by (p − 1)/2. Therefore, the condition XSG = {0}
is equivalent to

(OK/π)×
(p−1)/2 ⊆ [O×

K ]π.

From this, we obtain the assertion.

Lemma 10. Let F = Q(
√
−d) be an imaginary quadratic field with a

square free positive integer d, and let p be a prime number splitting in F .

There exists a unit ε ∈ O×
K satisfying (7) in the following two cases:

(I) d = 1,
(II) d is a prime number with d 6≡ 1 mod 4, and p ≡ 3 mod 4.

Proof. We first show the assertion in case (II). Let E = F (
√−p). It is

well known that the unit index QE of the imaginary abelian field E equals 2
by Hasse [7, p. 76]. We apply the classical argument used to show QE = 2.
Let E+ = Q(

√
pd) be the maximal real subfield of E. Let Qd be the prime

ideal of E+ over the prime d; (d) = Q2
d. From the conditions on d and p, we

see that the class number of E+ is odd by genus theory. Hence, there exist
u, v ∈ Z such that u2 − v2pd = ±4d. It follows that u = u′d for some u′ ∈ Z
and η = (u′

√
−d + v

√−p)/2 is a unit of OE . Let P1 and P2 be the prime
ideals of K over p. Let a ∈ Z be an integer such that

√
−d ≡ a mod P1.

We see that
√
−d ≡ −a mod P2 by taking the conjugate over Q. Therefore,

η ≡ b mod P1 and η ≡ −b mod P2 for some integer b with 1 ≤ b ≤ p−1. Let
δb = 1+ζp + · · ·+ζb−1

p be a cyclotomic unit in K. Then, since δb ≡ b mod π,
the unit ε = η/δb satisfies (7).
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In case (I), we can similarly show the assertion by taking ε =
√
−1 times

a suitable cyclotomic unit of K.

Proof of Theorem 1. By Lemma 6, we do not need the conditional result
of Weinberger [27] mentioned before. The imaginary quadratic fields F with
hF = 1 were determined by Stark [24]. Those with hF = 2 were determined
independently by Stark [25] and Montgomery and Weinberger [23], and those
with hF = 4 by Arno [1]. By genus theory, we can easily pick out those with
ClF = (Z/2)⊕2 from Arno’s result. Using these results and Lemmas 1 and 2,
we obtain the following lists.

Lemma 11. An imaginary quadratic field F = Q(
√
−d) may satisfy (A5)

only when d is one of the following :

(i) 1, 3, 11, 19; (ii) 6, 51, 91; (iii) 21.

Lemma 12. An imaginary quadratic field F = Q(
√
−d) may satisfy (A7)

only when d is one of the following :

(i) 3, 19; (ii) 5, 6, 10, 13, 115, 187; (iii) 33, 195.

Lemma 13. An imaginary quadratic field F = Q(
√
−d) may satisfy (A11)

only when d is one of the following :

(i) 2, 7, 19, 43; (ii) 6, 10, 13, 35, 51, 123, 403;

(iii) 21, 30, 57, 85, 195, 435, 483.

In the above lists, those F or d in the first groups satisfy hF = 1, those in
the second groups have hF = 2, and those in the last groups, ClF = (Z/2)⊕2.
In the following, let K = F (ζp) and E be the intermediate field of K/F with
[E : F ] = 2. Let ̺ be a generator of G = Gal(K/F ). By (2), SG is generated
by

nG = 1 + ̺ + · · · + ̺(p−1)/2−1.

All the following calculations were done using KASH.

The case p = 5. We checked that the natural map ClF → ClE is not
trivial when d = 6, 51, 91 or 21. Hence, by Lemma 4, F does not satisfy (A5)
for these d. When d = 1 or 3, we have ClK = {0}. When d = 1, we
see that ClK(π)SG = {0} by Lemmas 9 and 10. When d = 3, we checked
ClK(π)SG = {0} by explicitly finding a system of fundamental units of K.
Hence, by Proposition 5, F satisfies (A5) for d = 1 or 3. When d = 11

(resp. 19), we see that ClK = Z/2 (resp. Z/4) and ClSG

K = {0}. We chose
an ideal A of K such that the class [A] generates the cyclic group ClK . We
checked that a generator α of the principal ideal A1+̺ is not congruent to a
unit modulo π. Hence, by Proposition 5, F does not satisfy (A5) for d = 11
or 19.
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The case p = 7. We checked that the natural map ClF → ClE is not
trivial when d = 6, 33, 195. Hence, by Lemma 5, F does not satisfy (A7) for
these d. For d = 5, 10, 115, 187, the 2-part of ClK is nontrivial and cyclic,
and hence F does not satisfy (A7) by Lemma 7. When d = 13, we found that

ClK = Z/2⊕3 ⊕ Z/3 and ClSG

K 6= {0}, and hence F does not satisfy (A7).

When d = 19, we found that ClK = Z/3 and ClSG

K = {0}. We checked
that F does not satisfy (A7) in this case similarly to the case where p = 5
and d = 11, 19. Finally, when d = 3, we found that ClK = {0}, and that
ClK(π)SG = {0} by Lemmas 9 and 10. Hence, F satisfies (A7) for d = 3.

The case p = 11. For d = 10, 35, 21, 30, 57, 85, 195, 435 or 483, we found
that the natural map ClF → ClE is not trivial. Hence, by Lemma 5, F does
not satisfy (A11) for these d. For d = 6, 13, 51, 123 or 403, we have hE = 2.
Hence, by Lemma 7, F does not satisfy (A11) for these d. For d = 43, we
have hE = 3, and F does not satisfy (A11) by Lemma 8. Let us deal with the
remaining cases where d = 2, 7 or 19. In these cases, we have hE = 1. Instead
of the field K = F (ζ11), we use the subfield N = F (cos 2π/11). We have
hN = 5 for d = 2 or 7, and hN = 55 for d = 19. Let A be an ideal of N . If F
satisfies (A11), then AnGOK = αOK for some α ∈ K× congruent modulo π
to a unit of K. Taking the norm to N , it follows that A2nG = βON . Here,
β = NK/Nα and is congruent to a unit of N modulo π. For these three d, we

chose a nontrivial ideal A of N and checked that A2nG is a principal ideal of
ON and that its generator is not congruent to a unit of N modulo π after
computing a system of fundamental units of N . Therefore, there exists no
imaginary quadratic field satisfying (A11).

Observation/Question. Let p be a prime number. As usual, we put
p̃ = 4 (resp. p) when p = 2 (resp. p ≥ 3). We have seen that for the first five p̃,
the number of imaginary quadratic fields F satisfying (Ap) is 4, 3, 2, 1 and 0,
respectively. What is the next term or a general term of this (arithmetic!)
progression?

Remark 1. We can generalize Lemma 3 as follows. For a number field F ,
let µF be the group of roots of unity in F , and µ1

F the subgroup of elements
of odd order. Let K/F be a finite cyclic extension with both K and F
CM-fields. Assume that the following three conditions are satisfied:

(i) 2e ‖ [K : F ] for some e ≥ 1,
(ii) µF = 〈ζ2e〉,
(iii) there exists a prime ideal ℘ of F over an odd prime number p such

that ℘ is totally ramified at the intermediate field E of K/F with
[E : F ] = 2e.

By the last condition, we can write E = F (a1/2e

) for some a ∈ F× with
ord℘(a) = 1. Then we can show that the exponent of the kernel of the



Quadratic fields satisfying the Hilbert–Speiser type condition 189

natural map Cl−F → Cl−K divides 2 by an argument exactly similar to the

proof of Lemma 3 using µ1
K and a1/2e

in place of µp and
√

p∗.

Remark 2. If all imaginary abelian fields K of degree 2(p−1) for which

Cl
2h−

p

K = {0} were determined, it would be possible to determine all real
quadratic fields satisfying (Ap) for small primes p by Proposition 6.

4. Subfields of the p-cyclotomic field. In this section, we deal with
subfields of the p-cyclotomic field Q(ζp). The following is an immediate con-
sequence of Proposition 1. A more general statement is given in [9, Propo-
sition 3.4].

Proposition 8. Let p be an odd prime number. An imaginary subfield

F of Q(ζp) satisfies (Ap) if and only if p = 3 and F = Q(ζ3).

In the following, we summarize what is known or conjectured for the
real case. Let O′

F = OF [1/p] be the ring of p-integers of F . We say that F
satisfies condition (A′

p) if for any Γ -extension N/F , O′
N is cyclic over the

group ring O′
F Γ . It is known that if F satisfies (Ap) then it satisfies (A′

p).
Condition (A′

p) is easier to handle than (Ap), and many results on (A′
p)

are already obtained in [14, 16, 17, 18]. Let K = F (ζp). For instance, it is
known that F satisfies (A′

p) if h′
K = 1, where h′

K is the class number of the
Dedekind domain O′

K .
Let K = Q(ζp), and hp the class number of K. As the unique prime

ideal of OK over p is principal, we have hp = h′
K . It is well known that

hp = 1 if and only if p ≤ 19 (cf. [26, Theorem 11.1]). Hence, when p ≤ 19,
any subfield F of K = Q(ζp) satisfies (A′

p). When p ≥ 23, we proposed the
following conjecture in [18].

Conjecture 1. Let p be a prime number with p ≥ 23, and F a subfield
of Q(ζp) with F 6= Q. If [F : Q] > 2 or p ≡ 1 mod 4, then F does not satisfy
condition (A′

p) except when p = 29 and [F : Q] = 2 or 7.

We have seen in [18, Proposition 4] that the conjecture is valid when
23 ≤ p ≤ 499 and when [K : F ] ≤ 4 or = 6. A reason that the case p = 29
is exceptional is that h−

p is a power of 2 if and only if p ≤ 19 or p = 29
by Horie [10]. When p = 29 and [F : Q] = 2 or 7, it is known that F
satisfies (A′

p) ([18, Proposition 4(II)]). In [16, Theorem 1], we determined
all imaginary subfields F of Q(ζp) satisfying (A′

p), and gave an affirmative
answer to the conjecture for the imaginary case. In [17], we showed the
following assertion for the real case.

Proposition 9 ([17, Proposition 1]). Let p ≥ 23. Assume that q ‖ h−
p

for some odd prime number q. Then any real subfield F of Q(ζp) with F 6= Q
does not satisfy (A′

p). (Hence, it does not satisfy (Ap).)
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The assumption in this assertion is satisfied for all primes p with 23 ≤
p < 210 except p = 29, 31, 41 by the tables in [26], Lehmer and Masley [19]
and Yamamura [28].

Now, we have enough reasons to propose the following:

Conjecture 2. A real subfield F of Q(ζp) with F 6= Q does not satisfy
(Ap) except when p ≤ 19, or p = 29 and [F : Q] = 2, 7.

Among the exceptional cases in Conjecture 2, we have checked that
Q(

√
5) satisfies (A5) and that Q(cos 2π/7) does not satisfy (A7) by a com-

puter calculation based upon Theorem 2. The difficult point is that the
locally free class group Cl0(OF Γ ) is very complicated when F/Q is ramified
at p.
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